1
|
Hao M, Li C, Wu M, Li Q, Xiao Z, Shen D, Wang W. Superhydrophilicity and superaerophobicity Ni/Ni 3S 4/1T-MoS 2 for hydrazine-assisted seawater splitting. J Colloid Interface Sci 2025; 679:966-974. [PMID: 39418899 DOI: 10.1016/j.jcis.2024.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
The overall hydrazine splitting (OHzS) is a promising strategy to achieve the efficient hydrogen production in seawater through replacing the slow kinetic oxygen evolution reaction (OER) and toxic chlorine evolution reaction (ClOR) by hydrazine oxidation (HzOR). We report an efficient bifunctional electrocatalyst of Ni/Ni3S4/1T-MoS2 on carbon cloth (Ni/Ni3S4/1T-MoS2/CC), which was formed from large layer spacing MoS2 and Ni3S4 with metal-Ni, and was applied as for both hydrogen evolution reaction (HER) and HzOR. The MoS2 had expanded interlayer spacing and showed 1T phase, with significantly improved conductivity and hydrophilicity, which promotes transfer process of reactants. Furthermore, the introduction of Ni/Ni3S4 on the 1T-MoS2 base surface leaded to superhydrophilic and superaerophobic properties, which makes it more conducive to the adsorption of H. The improvement of electrical conductivity induced the excellent HER and HzOR electrocatalytic properties of Ni/Ni3S4/1T-MoS2/CC, which showed an ultralow overpotential of 24 mV and working potential of 0 mV at a current density of 10 mA cm-2, respectively. Inspiringly, Ni/Ni3S4/1T-MoS2/CC also showed excellent performance in hydrazine-assisted alkaline seawater electrolysis, as well as solar panel powered electrolysis of seawater OHzS, therefore, exhibiting great potential for practical applications.
Collapse
Affiliation(s)
- Minghui Hao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunhu Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mingrui Wu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Quan Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhengting Xiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Dongcai Shen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Wentai Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Liu L, Gao Z, Liao Y, Du K, Xia L, Li X, Qing Y, Wu Y. MoS 2/NiO heterocatalyst featuring stacking Structures, oxygen Vacancies, and hydrophilic Interfaces for hydrogen production via urea electrolysis. J Colloid Interface Sci 2025; 678:864-872. [PMID: 39321642 DOI: 10.1016/j.jcis.2024.09.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Two-dimensional nano-MoS2 holds remarkable potential for widespread use in hydrogen evolution reaction (HER) applications owing to its high catalytic activity, abundant availability, and low cost. However, its electrocatalytic performance is significantly lower than that of Pt-based catalysts necessitating strategies to improve its catalytic activity. We developed an effective strategy for enhancing the HER performance of MoS2 based on the synergistic effect of oxygen vacancies (Ov), heterostructures, and interfacial wettability. In particular, highly graphitized wood-based carbon (GWC) was used as a platform to prepare a hydrophilic/aerophobic MoS2@Ov-NiO-GWC heterocatalyst featuring nanosheet stacking and containing abundant Ov. Consequently, a current density of 10 mA cm-2 and an overpotential of only 77 mV were achieved in a 1 M KOH electrolyte using the prepared catalyst; notably, the overpotential increase was only 1.2 % after continuous operation for 90 h. Density functional theory calculations showed that coupling MoS2 with the Ov-NiO heterointerface increased the exposure of the MoS2 active sites on the heterointerface and accelerated the electron transfer between NiO and the MoS2 interface, considerably enhancing the HER performance. Moreover, an overall urea electrolysis cell assembled using this heterocatalyst demonstrated excellent hydrogen production activity and durability, with current densities of 10 and 100 mA cm-2 at cell voltages of only 1.33 and 1.46 V, respectively. Even after continuous operation for 75 h at a current density of 100 mA cm-2, the cell exhibited a voltage retention rate of 92.8 %. These results demonstrate the potential of this nano-heterocatalyst to efficiently produce hydrogen via overall urea electrolysis.
Collapse
Affiliation(s)
- Lei Liu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Zhifei Gao
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yu Liao
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Kun Du
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Liaoyuan Xia
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Xingong Li
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yan Qing
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yiqiang Wu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
3
|
Zhou A, Cai W, Guo W, Ma J, Wang Y, Zhang J. Interfacial coupling of Ce-CoSe 2 nanoneedle arrays with MXene for efficient overall water splitting. J Colloid Interface Sci 2025; 678:970-978. [PMID: 39226837 DOI: 10.1016/j.jcis.2024.08.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Designing highly effective, low-cost bifunctional electrocatalysts without noble metals for overall water splitting remains a significant challenge. In this work, interfacial coupling of Ce-doped CoSe2 nanoneedle arrays with MXene (Ce-CoSe2/MXene) is developed via the facile hydrothermal and selenization methods. The extensive specific surface area and favorable hydrophilicity of Ti3AlC2, combined with the optimized electronic structure and abundant active sites from Ce-doping and selenization, contribute to the exceptional bifunctional electrocatalytic performance of the Ce-CoSe2/MXene electrode. Specifically, this heterostructure achieves a low hydrogen evolution reaction (HER) overpotential of 34 mV at 10 mA cm-2, an oxygen evolution reaction (OER) overpotential of 279 mV at 100 mA cm-2, and an overall water splitting (OWS) potential as low as 1.45 V at 10 mA cm-2. In-situ Raman spectroscopy reveals that surface reconstruction would improve catalytic activity and stability. Theoretical calculations indicate that the Ce-CoSe2/MXene can improve the adsorption of intermediates and facilitate HER/OER process by lowering the kinetic barrier, thereby enhancing electrocatalytic activity. This research marks a substantial advancement in the development of low-cost, efficient electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Ao Zhou
- Key Laboratory for Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Wenwen Cai
- Key Laboratory for Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Weijian Guo
- Key Laboratory for Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Jizhen Ma
- Key Laboratory for Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yueqing Wang
- Key Laboratory for Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Jintao Zhang
- Key Laboratory for Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| |
Collapse
|
4
|
Jiang A, Chen C, Feng J, Li Q, Liu W, Dong M. Boosting electrocatalytic hydrogen evolution via partial oxidation of rhenium through cobalt modification in nanoalloy structure. J Colloid Interface Sci 2025; 677:617-625. [PMID: 39154453 DOI: 10.1016/j.jcis.2024.08.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Although the theoretical electrocatalytic activity of rhenium (Re) for the hydrogen evolution reaction is comparable to that of platinum, the experimental performance of reported rhenium-based electrocatalysts remains unsatisfactory. Herein, we report a highly efficient and stable electrocatalyst composed of rhenium and cobalt (Co) nanoalloy embedded in nitrogen-doped carbon film (Re3Co2@NCF). The Re3Co2@NCF electrocatalyst exhibited remarkable hydrogen evolution performance, with an overpotential as low as 30 ± 3 mV to reach a current density of 10 mA cm-2. In addition, the Re3Co2@NCF demonstrated exceptional stability over several days at a current density of 150 mA cm-2. Theoretical calculations revealed that alloying cobalt with rhenium altered the electronic structure of the metals, causing partial oxidation of the superficial metal atoms. This modification provided a balance for various intermediates' adsorption and desorption, thereby boosting the intrinsic activity of rhenium for hydrogen evolution reaction. This work improves the electrocatalytic performance of rhenium to its theoretical activity, suggesting a promising future for rhenium-based electrocatalysts.
Collapse
Affiliation(s)
- Anning Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250000, China; Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jijun Feng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250000, China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C DK-8000, Denmark.
| |
Collapse
|
5
|
Wang H, Yang X, Bao L, Zong Y, Gao Y, Miao Q, Zhang M, Ma R, Zhao J. Nanocrystalline transition metal tetraborides as efficient electrocatalysts for hydrogen evolution reaction at the large current density. J Colloid Interface Sci 2025; 677:967-975. [PMID: 39178675 DOI: 10.1016/j.jcis.2024.08.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
While great efforts have been made to improve the electrocatalytic activity of existing materials toward hydrogen evolution reaction (HER), it is also importance for searching new type of nonprecious HER catalysts to realize the practical hydrogen evolution. Herein, we firstly report nanocrystalline transition metal tetraborides (TMB4, TM=W and Mo) as an efficient HER electrocatalyst has been synthesized by a single-step solid-state reaction. The optimized nanocrystalline WB4 exhibits an overpotential as low as 172 mV at 10 mA/cm2 and small Tafel slope of 63 mV/dec in 0.5 M H2SO4. Moreover, the nanocrystalline WB4 outperforms the commercial Pt/C at high current density region, confirming potential applications in industrially electrochemical water splitting. Theoretical study reveals that high intrinsic HER activity of WB4 is originated from its large work function that contributes to the weak hydrogen-adsorption energy. Therefore, this work provides new insights for development of robust nanocrystalline electrocatalysts for efficient HER.
Collapse
Affiliation(s)
- Hao Wang
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Xiaowei Yang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
| | - Lihong Bao
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China; Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, Hohhot 010022, Inner Mongolia, China.
| | - Yuyang Zong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Yuxin Gao
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Qi Miao
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
| | - Min Zhang
- College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China.
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.
| | - Jijun Zhao
- Guangdong Provincial Key Laboratory of Ouantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
6
|
Yan M, Zhang J, Wang C, Gao L, Liu W, Zhang J, Liu C, Lu Z, Yang L, Jiang C, Zhao Y. Synergistic engineering of heterostructure and oxygen vacancy in cobalt hydroxide/aluminum oxyhydroxide as bifunctional electrocatalysts for urea-assisted hydrogen production. J Colloid Interface Sci 2025; 677:1069-1079. [PMID: 39137609 DOI: 10.1016/j.jcis.2024.07.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Designing inexpensive, high-efficiency and durable bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is an encouraging tactic to produce hydrogen with reduced energy expenditure. Herein, oxygen vacancy-rich cobalt hydroxide/aluminum oxyhydroxide heterostructure on nickel foam (denoted as Co(OH)2/AlOOH/NF-100) has been fabricated using one step hydrothermal process. Theoretical calculation and experimental results indicate the electrons transfer from Co(OH)2 to highly active AlOOH results in the interfacial charge redistribution and optimization of electronic structure. Abundant oxygen vacancies in the heterostructure could improve the conductivity and simultaneously serve as the active sites for catalytic reaction. Consequently, the optimal Co(OH)2/AlOOH/NF-100 demonstrates excellent electrocatalytic performance for HER (62.9 mV@10 mA cm-2) and UOR (1.36 V@10 mA cm-2) due to the synergy between heterointerface and oxygen vacancies. Additionally, the in situ electrochemical impedance spectrum (EIS) for UOR suggests that the heterostructured catalyst exhibits rapid reaction kinetics, mass transfer and current response. Importantly, the urea-assisted electrolysis composed of the Co(OH)2/AlOOH/NF-100 manifests a low cell voltage (1.48 V @ 10 mA cm-2) in 1 M KOH containing 0.5 M urea. This work presents a promising avenue to the development of HER/UOR bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Minglei Yan
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China.
| | - Junjie Zhang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Cong Wang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Lang Gao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Wengang Liu
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Jiahao Zhang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Chunquan Liu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chenglu Jiang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yang Zhao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
7
|
Du Z, Cheng X, Yang X, Ran G, Liu H, He S, Hua Z. Sulfur occupancy-induced construction of ant-nest-like NiMo/CF(N) electrode for highly efficient hydrogen evolution. J Colloid Interface Sci 2025; 677:665-676. [PMID: 39116564 DOI: 10.1016/j.jcis.2024.07.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The microstructure of the electrocatalyst plays a critical role in the reaction efficiency and stability during electrochemical water splitting. Designing an efficient and stable electrocatalyst, further clarifying the synthesis mechanism, is still an important problem to be solved urgently. Inspired by the copper pyrometallurgy theory, an exceptionally active NiMo/CF(N) electrode, consisting of an ant-nest-like copper foam substrate (defined as CF(N)) and deposited NiMo layer, was fabricated for the alkaline hydrogen evolution reaction (HER). Our findings expounded the structure construction mechanism and highlighted the pivotal role of the spatial occupancy of sulfur atoms in the construction of the ant-nest-like structure. The NiMo/CF(N) composite, characterized by channels with a 2 μm diameter, showcases strong electronic interactions, increased catalytic active sites, enhanced electron/ion transport, and facilitated gas release during HER. Remarkably, NiMo/CF(N) demonstrates ultralow overpotentials of 21 mV to deliver a current density of 10 mA cm-2 in 1 M KOH. This electrode also exhibits outstanding durability, maintaining a current density of 200 mA cm-2 for 110 h, attributed to the chemical and structural integrity of its catalytic surface and the excellent mechanical properties of the electrode. This work advances the fundamental understanding of constructing micro/nano-structured electrocatalysts for highly efficient water splitting.
Collapse
Affiliation(s)
- Zhongde Du
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China; School of Materials Science and Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Xu Cheng
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Xu Yang
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Gaojun Ran
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Huan Liu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China.
| | - Shiwei He
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Zhongsheng Hua
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China.
| |
Collapse
|
8
|
Liu Y, Cheng L, Zhou S, Niu C, Taylor Isimjan T, Yang X. Electronic regulation of hcp-Ru by d-d orbital coupling for robust electrocatalytic hydrogen oxidation in alkaline electrolytes. J Colloid Interface Sci 2025; 677:997-1004. [PMID: 39178678 DOI: 10.1016/j.jcis.2024.08.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Bimetallic alloys hold exceptional promise as candidate materials because they offer a diverse parameter space for optimizing electronic structures and catalytic sites. Herein, we fabricate ruthenium-cobalt alloy nanoparticles uniformly dispersed within hollow mesoporous carbon spheres (hcp-RuCo@C) via impregnation and pyrolysis strategies. The intriguing hollow mesopore structure of hcp-RuCo@C facilitates efficient contact between active sites and reactants, thereby accelerating hydrogen oxidation reaction (HOR) kinetics. As anticipated, the hcp-RuCo@C showcases remarkable exchange current density and mass activity of 3.73 mA cm-2 and 2.8 mA μgRu-1, respectively, surpassing those of commercial Pt/C and documented Ru-based electrocatalysts. Notably, hcp-RuCo@C demonstrates robust resistance to 1000 ppm CO, a trait lacking in Pt/C catalysts. Comprehensive experimental results reveal that the alloying-induced d-d electronic interactions between Ru and Co species significantly optimizes hydrogen binding energy (HBE) and hydroxide binding energy (OHBE). This optimization promotes the vital Volmer step, ameliorating the alkaline HOR properties of hcp-RuCo@C.
Collapse
Affiliation(s)
- Yi Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lianrui Cheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shuqing Zhou
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chenggong Niu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
9
|
Yan X, An F, Li Y, Xie J, Du H, Yu Z, Jiang F, Chen H. Advances and Challenges in Interfacial Binding Forces for Electrocatalysts. CHEMSUSCHEM 2024; 17:e202400750. [PMID: 38978158 DOI: 10.1002/cssc.202400750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/10/2024]
Abstract
As a practical chemical energy conversion technology, electrocatalysis could be used in fields of energy conversion and environmental protection. In recent years, significant research efforts have been devoted to the design and development of high-performance electrocatalysts because the rational design of catalysts is crucial for enhancing electrocatalytic performance. Creating electrocatalysts by forming interactions between different components at the interface is an important means of controlling and improving performance. Therefore, several common interfacial binding forces used for synthesizing electrocatalysts was systematically summarized in this review for the first time. The discussion revolves around the crucial roles these binding forces play in various electrocatalytic reaction processes. Various characterization techniques capable of proving the existence of these interfacial binding forces was also involved in the review. Finally, some prospects and challenges for designing and researching materials through the utilization of interfacial binding forces were presented.
Collapse
Affiliation(s)
- Xing Yan
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Fengxia An
- State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission, China Energy Science and Technology Research Institute Co., Ltd., Nanjing, 210023, People's Republic of China
| | - Yuxiang Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Junliang Xie
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Heng Du
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Zhonghao Yu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| |
Collapse
|
10
|
Li Y, Liu X, Xu J, Chen S. Ruthenium-Based Electrocatalysts for Hydrogen Evolution Reaction: from Nanoparticles to Single Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402846. [PMID: 39072957 DOI: 10.1002/smll.202402846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Benefiting from similar hydrogen bonding energy to Pt and much lower price compare with Pt, Ru based catalysts are promising candidates for electrocatalytic hydrogen evolution reaction (HER). The catalytic activity of Ru nanoparticles can be enhanced through improving their dispersion by using different supports, and the strong metal supports interaction can further regulate their catalytic performance. In addition, single-atom catalysts (SACs) with almost 100% atomic utilization attract great attention and the coordinative atmosphere of single atoms can be adjusted by supports. Moreover, the syngenetic effects of nanoparticles and single atoms can further improve the catalytic performance of Ru based catalysts. In this review, the progress of Ru based HER electrocatalysts are summarized according to their existing forms, including nanoparticles (NPs), single atoms (SAs) and the combination of both NPs and SAs. The common supports such as carbon materials, metal oxides, metal phosphides and metal sulfides are classified to clarify the metal supports interaction and coordinative atmosphere of Ru active centers. Especially, the possible catalytic mechanisms and the reasons for the improved catalytic performance are discussed from both experimental results and theoretical calculations. Finally, some challenges and opportunities are prospected to facilitate the development of Ru based catalysts for HER.
Collapse
Affiliation(s)
- Yanqiang Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China
| | - Xuan Liu
- School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, China
| | - Junlong Xu
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Siru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
11
|
Xu H, Wang X, Tian G, Fan F, Wen X, Liu P, Shu C. Manipulating Electron Delocalization of Metal Sites via a High-Entropy Strategy for Accelerating Oxygen Electrode Reactions in Lithium-Oxygen Batteries. ACS NANO 2024; 18:27804-27816. [PMID: 39348091 DOI: 10.1021/acsnano.4c11909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
High-entropy perovskite oxides, in which the B-type metal site of perovskite oxides (ABO3) is occupied by over five kinds of transition metal ions, show promising applications in energy storage and conversion fields. Herein, high-entropy perovskite oxides (LaSr(5TM)O3) composed of Cr, Mn, Fe, Co, and Ni at the B-type metal site are prepared as oxygen electrocatalysts for Li-O2 batteries. The presence of compressive strain in LaSr(5TM)O3 effectively regulates the 3d orbit occupancy of the active Co site (Co2+ → Co3+) and lifts the energy level of the Co d-band center, thus leading to enhanced adsorption toward the LiO2 intermediate on Co sites. Furthermore, the high electron-drawing capability of Cr sites ensures sufficient electron exchange and further strengthens the adsorption of LiO2. As expected, the Li-O2 battery with a LaSr(5TM)O3 electrode delivers a low overpotential (0.79 V) and superior cyclability (226 cycles). This study provides a meaningful strain strategy to improve the electrocatalytic activity of multicomponent oxides via fabricating high-entropy materials.
Collapse
Affiliation(s)
- Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Xinxiang Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Guilei Tian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Fengxia Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Xiaojuan Wen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Pengfei Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China
| |
Collapse
|
12
|
Sun P, Zheng X, Chen A, Zheng G, Wu Y, Long M, Zhang Q, Chen Y. Constructing Amorphous-Crystalline Interfacial Bifunctional Site Island-Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309927. [PMID: 38498774 PMCID: PMC11199995 DOI: 10.1002/advs.202309927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Indexed: 03/20/2024]
Abstract
The development of efficient and durable non-precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous-crystalline (A-C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero-interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A-C non-homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3S4 A-C, functioning as a bifunctional site "island-sea" synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi-dimensional A-C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water-dissociation kinetics at the cluster Co sites. Additionally, PdCo-Co3S4 heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long-term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large-scale hydrogen production.
Collapse
Affiliation(s)
- Pengliang Sun
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityShanghai200092P. R. China
| | - Anran Chen
- School of Materials and EnergyYunnan UniversityKunming650091P. R. China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Min Long
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityShanghai200092P. R. China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and EngineeringTongji UniversityShanghai200092P. R. China
- Shanghai Institute of Pollution Control and Ecological SecurityShanghai200092P. R. China
| |
Collapse
|
13
|
Zhou Y, Tao C, Ke J, Dai X, Guo J, Zhang L, Li T, Yan C, Qian T. Balancing the Binding of Intermediates Enhances Alkaline Hydrogen Oxidation on D-Band Center Modulated Pd Sites. Inorg Chem 2024; 63:10092-10098. [PMID: 38748447 DOI: 10.1021/acs.inorgchem.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Exploring efficient alkaline hydrogen oxidation reaction (HOR) electrocatalysts is of great concern for constructing anion exchange membrane fuel cells (AEMFCs). Herein, d-band center modulated PdCo alloys with ultralow Pd content anchored onto the defective carbon support (abbreviated as PdCo/NC hereafter) are proposed as highly efficient HOR catalyst. The as-prepared catalyst exhibits exceptional HOR performance compared to the Pt/C catalyst, achieving thermodynamically spontaneous and kinetically preferential reactions. Specifically, the resultant PdCo/NC demonstrates a marked enhancement in alkaline HOR performance, with the highest mass and specific activities of 1919.6 mA mgPd-1 and 1.9 mA cm-2, 51.1 and 4.2 times higher than those of benchmark of Pt/C, along with an excellent stability in a chronoamperometry test. In the analysis of in situ Raman spectra, it was discovered that tetrahedrally coordinated H-bonded water molecules were formed during the HOR process. This indicates that the promotion of interfacial water molecule formation and enhancement of HOR activities in PdCo/NC are facilitated by defect engineering and the turning of d-band center in PdCo alloy. The essential knowledge obtained in this study could open up a new direction for modifying the electronic structure of cost-effective HOR catalysts through electronic structure engineering.
Collapse
Affiliation(s)
- Yang Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chen Tao
- School of Electrical Engineering, Nantong University, Nantong 226019, China
| | - Jiawei Ke
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xinyi Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jiayao Guo
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
14
|
Das S, Chowdhury S, Tiwary CS. High-entropy-based nano-materials for sustainable environmental applications. NANOSCALE 2024; 16:8256-8272. [PMID: 38587499 DOI: 10.1039/d4nr00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
High entropy materials (HEMs), epitomized by high entropy alloys (HEAs), have sparked immense interest for a range of clean energy and environmental applications due to their remarkable structural versatility and adjustable characteristics. In the face of environmental challenges, HEMs have emerged as valuable tools for addressing issues ranging from wastewater remediation to energy conversion and storage. This review provides a comprehensive exploration of HEMs, spotlighting their catalytic capabilities in diverse redox reactions, such as carbon dioxide reduction to value-added products, degradation of organic pollutants, oxygen reduction, hydrogen evolution, and ammonia decomposition using electrocatalytic and photocatalytic pathways. Additionally, the review highlights HEMs as novel electrode nanomaterials, with the potential to enhance the performance of batteries and supercapacitors. Their unique features, including high capacitance, electrical conductivity, and thermal stability, make them valuable components for meeting crucial energy demands. Furthermore, the review examines challenges and opportunities in advancing HEMs, emphasizing the importance of understanding the underlying mechanisms governing their catalytic and electrochemical behaviors. Essential considerations for optimizing the HEM performance in catalysis and energy storage are outlined to guide future research. Moreover, to provide a comprehensive understanding of the current research landscape, a meticulous bibliometric analysis is presented, offering insights into the trends, focal points, and emerging directions within the realm of HEMs, particularly in addressing environmental concerns.
Collapse
Affiliation(s)
- Shubhasikha Das
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
15
|
Chepkasov IV, Radina AD, Kvashnin AG. Structure-driven tuning of catalytic properties of core-shell nanostructures. NANOSCALE 2024; 16:5870-5892. [PMID: 38450538 DOI: 10.1039/d3nr06194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The annual increase in demand for renewable energy is driving the development of catalysis-based technologies that generate, store and convert clean energy by splitting and forming chemical bonds. Thanks to efforts over the last two decades, great progress has been made in the use of core-shell nanostructures to improve the performance of metallic catalysts. The successful preparation and application of a large number of bimetallic core-shell nanocrystals demonstrates the wide range of possibilities they offer and suggests further advances in this field. Here, we have reviewed recent advances in the synthesis and study of core-shell nanostructures that are promising for catalysis. Particular attention has been paid to the structural tuning of the catalytic properties of core-shell nanostructures and to theoretical methods capable of describing their catalytic properties in order to efficiently search for new catalysts with desired properties. We have also identified the most promising areas of research in this field, in terms of experimental and theoretical studies, and in terms of promising materials to be studied.
Collapse
Affiliation(s)
- Ilya V Chepkasov
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| | - Aleksandra D Radina
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| | - Alexander G Kvashnin
- Skolkovo Institute of Science and Technology, 121205, Bolshoi Blv. 30, Building 1, Moscow, Russia.
| |
Collapse
|
16
|
Alam N, Noor T, Iqbal N. Catalyzing Sustainable Water Splitting with Single Atom Catalysts: Recent Advances. CHEM REC 2024; 24:e202300330. [PMID: 38372409 DOI: 10.1002/tcr.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Indexed: 02/20/2024]
Abstract
Electrochemical water splitting for sustainable hydrogen and oxygen production have shown enormous potentials. However, this method needs low-cost and highly active catalysts. Traditional nano catalysts, while effective, have limits since their active sites are mostly restricted to the surface and edges, leaving interior surfaces unexposed in redox reactions. Single atom catalysts (SACs), which take advantage of high atom utilization and quantum size effects, have recently become appealing electrocatalysts. Strong interaction between active sites and support in SACs have considerably improved the catalytic efficiency and long-term stability, outperforming their nano-counterparts. This review's first section examines the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER). In the next section, SACs are categorized as noble metal, non-noble metal, and bimetallic synergistic SACs. In addition, this review emphasizes developing methodologies for effective SAC design, such as mass loading optimization, electrical structure modulation, and the critical role of support materials. Finally, Carbon-based materials and metal oxides are being explored as possible supports for SACs. Importantly, for the first time, this review opens a discussion on waste-derived supports for single atom catalysts used in electrochemical reactions, providing a cost-effective dimension to this vibrant research field. The well-known design techniques discussed here may help in development of electrocatalysts for effective water splitting.
Collapse
Affiliation(s)
- Nasar Alam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| |
Collapse
|