1
|
Gui ZH, Heinrich J, Min Qian Z, Schootman M, Zhao TY, Xu SL, Jin NX, Huang HH, He WT, Wu QZ, Zhang JL, Wang DS, Yang M, Liu RQ, Zeng XW, Dong GH, Lin LZ. Exposures to particulate matters and childhood sleep disorders-A large study in three provinces in China. ENVIRONMENT INTERNATIONAL 2024; 190:108841. [PMID: 38917626 DOI: 10.1016/j.envint.2024.108841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVES Evidence on the link between long-term ambient particulate matter (PM) exposures and childhood sleep disorders were scarce. We examined the associations between long-term exposures to PM2.5 and PM1 (PM with an aerodynamic equivalent diameter <2.5 μm and <1 μm, respectively) with sleep disorders in children. METHODS We performed a population-based cross-sectional survey in 177,263 children aged 6 to 18 years in 14 Chinese cities during 2012-2018. A satellite-based spatiotemporal model was employed to estimate four-year annual average PM2.5 and PM1 exposures at residential and school addresses. Parents or guardians completed a checklist using the Sleep Disturbance Scale for Children. We estimated the associations using generalized linear mixed models with adjustment for characteristics of children, parents, and indoor environments. RESULTS Long-term PM2.5 and PM1 exposures were positively associated with odds of sleep disorders for almost all domains. For example, increments in PM2.5 and PM1 per 10 μg/m3 were associated with odds ratios of global sleep disorder of 1.24 (95 % confidence interval [CI]: 1.14, 1.35) and 1.31 (95 %CI: 1.18, 1.46), respectively. Similar results were observed for subtypes of sleep disorder. These associations were heterogeneous regionally, with stronger associations among children residing in southeast region than in northeast and northwest regions. Moreover, larger estimates of PM1 were found than that of PM2.5 in southeast region. CONCLUSION Long-term PM2.5 and PM1 exposures are independently associated with higher risks of childhood sleep disorders, and these associations vary by geographical region.
Collapse
Affiliation(s)
- Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich 80336, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Health, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Zhengmin Min Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, 3545 Lafayette Avenue, Saint Louis, MO 63104, United States
| | - Mario Schootman
- Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, 2708 S. 48th Street, Springdale, AR 72762, United States
| | - Tian-Yu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich 80336, Germany
| | - Shu-Li Xu
- Department of Occupational and Environmental Health, Shenzhen Baoan District Public Health Service Center, Shenzhen 518100, China
| | - Nan-Xiang Jin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70210 Kuopio, Finland
| | - He-Hai Huang
- Department of Occupational and Environmental Health, Shenzhen Baoan District Public Health Service Center, Shenzhen 518100, China
| | - Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Lin Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dao-Sen Wang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Shi C, Zhi J, Zhao H, Wang W, Zhang H, Zhou G, Fu X, Ba Y. Risk of heavy metal(loid) compositions in fine particulate matter on acute cardiovascular mortality: a poisson analysis in Anyang, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1275-1286. [PMID: 38625430 DOI: 10.1007/s00484-024-02665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Fine particulate matter (PM2.5) is a risk factor of cardiovascular disease. Associations between PM2.5 compositions and cardiovascular disease are a point of special interest but inconsistent. This study aimed to explore the cardiovascular effects of heavy metal(loid) compositions in PM2.5. Data for mortality, air pollutants and meteorological factors in Anyang, China from 2017 to 2021 were collected. Heavy metal(loid) in PM2.5 were monitored and examined monthly. A Case-crossover design was applied to the estimated data set. The interquartile range increase in cadmium (Cd), antimony (Sb) and arsenic (As) at lag 1 was associated with increment of 8.1% (95% CI: 3.3, 13.2), 4.8% (95% CI: 0.2, 9.5) and 3.5% (95% CI: 1.1, 6.0) cardiovascular mortality. Selenium in lag 2 was inversely associated with cerebrovascular mortality (RR = 0.920 95% CI: 0.862, 0.983). Current-day exposure of aluminum was positively associated with mortality from ischemic heart disease (RR = 1.083 95% CI: 1.001, 1.172). Stratified analysis indicated sex, age and season modified the cardiovascular effects of As (P < 0.05). Our study reveals that heavy metal(loid) play key roles in adverse effects of PM2.5. Cd, Sb and As were significant risk factors of cardiovascular mortality. These findings have potential implications for accurate air pollutants control and management to improve public health benefits.
Collapse
Affiliation(s)
- Chaofan Shi
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
- Department of Public Health, Anyang Center for Disease Control and Prevention, Anyang, Henan, 455000, PR China
| | - Jianjun Zhi
- Department of Public Health, Anyang Center for Disease Control and Prevention, Anyang, Henan, 455000, PR China
| | - Hongsheng Zhao
- Department of Public Health, Anyang Center for Disease Control and Prevention, Anyang, Henan, 455000, PR China
| | - Wan Wang
- Department of Physical and Chemical Examination, Anyang Center for Disease Control and Prevention, Anyang, Henan, 455000, PR China
| | - Hongjin Zhang
- Department of Public Health, Anyang Center for Disease Control and Prevention, Anyang, Henan, 455000, PR China
| | - Guoyu Zhou
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
- Henan Key Laboratory of Population Defects Prevention, National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, 450001, PR China
| | - Xiaoli Fu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
- Henan Key Laboratory of Population Defects Prevention, National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
3
|
Zhou J, Liu J, Zhou Y, Xu J, Song Q, Peng L, Ye X, Yang D. The impact of fine particulate matter on chronic obstructive pulmonary disease deaths in Pudong New Area, Shanghai, during a long period of air quality improvement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122813. [PMID: 37898429 DOI: 10.1016/j.envpol.2023.122813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) deaths attributed to fine particulate matter (with an aerodynamic equivalent diameter <2.5 μm, PM2.5) exposure are a common global public health concern. Recent improvements in air quality and the corresponding health benefits have received much attention. Thus, we have explored the trends of PM2.5 pollution improvement on COPD deaths during an important period of air pollution control (2008-2017) in Pudong New Area, Shanghai, China. Data, including daily COPD death counts, meteorological variables, and ambient air pollutants, were collected from 2008 to 2017. Generalized additive models were fitted to evaluate the percent change (%) in pollution-related COPD deaths. The results showed that the number of days with daily PM2.5 concentrations <35 μg/m3 increased from 19 days (5.19%) in 2008 to 166 days (45.48%) in 2017, and PM2.5 concentrations >75 μg/m3 decreased from 222 days (60.66%) in 2008 to 33 days (9.04%) in 2017. The associations in the overall period between 2008 and 2017 was significant. In subperiod analysis, each 10 μg/m3 increment in PM2.5 was associated with a percent change (%) of 0.89 (95% confidence interval [CI], 0.37, 1.42) at lag 5 and 0.78 (95% CI, 0.26, 1.30) at lag 6 during 2008-2013. Significant results were also found at lag 0-5 [percent change (%), 1.12 (95% CI, 0.09, 2.17)], lag 0-6 [percent change (%), 1.52 (95% CI, 0.43, 2.62)] and lag 0-7 [percent change (%), 1.72 (95% CI, 0.57, 2.88)] during 2008-2013. By contrast, no significant association was found between 2014 and 2017. In conclusion, the decreased COPD deaths associated with PM2.5 exposure were found, especially after the air quality improvement turning point in 2014.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai, China; Shanghai Typhoon Institute, CMA, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China.
| | - Jiangtao Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Zhou
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China
| | - Jianming Xu
- Shanghai Typhoon Institute, CMA, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
| | - Quanquan Song
- Guangyuan Mental Health Center, Guangyuan, 628000, China
| | - Li Peng
- Shanghai Typhoon Institute, CMA, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
| | - Xiaofang Ye
- Shanghai Typhoon Institute, CMA, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
| | - Dandan Yang
- Shanghai Typhoon Institute, CMA, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
| |
Collapse
|
4
|
Bhaskaran A, Sharma D, Roy S, Singh SA. Technological solutions for NO x, SO x, and VOC abatement: recent breakthroughs and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91501-91533. [PMID: 37495811 DOI: 10.1007/s11356-023-28840-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
NOx, SOx, and carbonaceous volatile organic compounds (VOCs) are extremely harmful to the environment, and their concentrations must be within the limits prescribed by the region-specific pollution control boards. Thus, NOx, SOx, and VOC abatement is essential to safeguard the environment. Considering the importance of NOx, SOx, and VOC abatement, the discussion on selective catalytic reduction, oxidation, redox methods, and adsorption using noble metal and non-noble metal-based catalytic approaches were elaborated. This article covers different thermal treatment techniques, category of materials as catalysts, and its structure-property insights along with the advanced oxidation processes and adsorption. The defect engineered catalysts with lattice oxygen vacancies, bi- and tri-metallic noble metal catalysts and non-noble metal catalysts, modified metal organic frameworks, mixed-metal oxide supports, and their mechanisms have been thoroughly reviewed. The main hurdles and potential achievements in developing novel simultaneous NOx, SOx, and VOC removal technologies are critically discussed to envisage the future directions. This review highlights the removal of NOx, SOx, and VOC through material selection, properties, and mechanisms to further improve the existing abatement methods in an efficient way.
Collapse
Affiliation(s)
- Aathira Bhaskaran
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Deepika Sharma
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India
| | - Satyapaul A Singh
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani Hyderabad Campus, Hyderabad, 500078, India.
- Department of Chemical Engineering, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
5
|
Cai J, Shen Y, Zhao Y, Meng X, Niu Y, Chen R, Quan G, Li H, Groeger JA, Du W, Hua J, Kan H. Early-Life Exposure to PM 2.5 and Sleep Disturbances in Preschoolers from 551 Cities of China. Am J Respir Crit Care Med 2023; 207:602-612. [PMID: 36170612 DOI: 10.1164/rccm.202204-0740oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Air pollution has been linked with sleep disturbance in adults, but the association in children remains unclear. Objectives: To examine the associations of prenatal and postnatal exposure to fine particulate matter (particulate matter ⩽2.5 μm in aerodynamic diameter; PM2.5) with sleep quality and sleep disturbances among children in 551 Chinese cities. Methods: A total of 1,15,023 children aged 3-7 years from the Chinese National Cohort of Motor Development were included. Sleep quality was measured using the Children's Sleep Habits Questionnaire (CSHQ). PM2.5 exposure was estimated using a satellite-based model. Generalized additive mixed models with Gaussian and binomial distributions were used to examine the associations of PM2.5 exposure with CSHQ scores and risk of sleep disturbance, respectively, adjusting for demographic characteristics and temporal trends. Measurements and Main Results: Early-life PM2.5 exposure was associated with higher total CSHQ score, and the association was stronger for exposure at age 0-3 years (change of CSHQ score per interquartile range increase of PM2.5 = 0.46; 95% confidence interval [CI], 0.29-0.63) than during pregnancy (0.22; 95% CI, 0.12-0.32). The associations were more evident in sleep-disordered breathing and daytime sleepiness. Postnatal PM2.5 exposure was associated with increased risk of sleep disturbance (adjusted odds ratio for per-interquartile range increase of PM2.5 exposure at age 0-3 years, 1.10; 95% CI, 1.04-1.15), but no associations were found for prenatal exposure. Children who were exclusively breastfed for <6 months and had neonatal ICU admission may be more vulnerable to sleep disturbance related to PM2.5 exposure. Conclusions: PM2.5 exposure can impair sleep quality in preschool children.
Collapse
Affiliation(s)
- Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yang Shen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yan Zhao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Guangbin Quan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and
| | - John A Groeger
- Department of Psychology, School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Wenchong Du
- Department of Psychology, School of Social Sciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Jing Hua
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Feng S, Miao J, Wang M, Jiang N, Dou S, Yang L, Ma Y, Yu P, Ye T, Wu Y, Wen B, Lu P, Li S, Guo Y. Long-term improvement of air quality associated with lung function benefits in Chinese young adults: A quasi-experiment cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158150. [PMID: 35995154 DOI: 10.1016/j.scitotenv.2022.158150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Long-term exposure to air pollution is associated with lung function impairment. However, whether long-term improvements in air quality could improve lung function is unclear. OBJECTIVES To examine whether the reduction of long-term air pollution was associated with lung function improvement among Chinese young adults. METHODS We conducted a prospective quasi-experiment cohort study with 1731 college students in Shandong, China from September 2019 to September 2020, covering COVID-19 lockdown period. Data on air pollution concentrations were obtained from China Environmental Monitoring Station. Lung function indicators included forced vital capacity (FVC), forced expiratory volume in 1st second (FEV1) and forced expiratory flow at 50 % of FVC (FEF50%). We used linear mixed-effects model to examine the associations between the change of air pollutants concentrations and the change of lung function, and additional adjustments for indoor air pollution (IAP) source. We also conducted stratified analysis by sex. RESULTS Compared with 2019, the mean FVC, FEV1 and FEF50% were elevated by 414.4 ml, 321.5 ml, and 28.4 ml/s respectively in 2020. Every 5 μg/m3 decrease in annual average PM2.5 concentrations was associated with 36.0 ml [95 % confidence interval (CI):6.0, 66.0 ml], 46.1 ml (95 % CI:16.7, 75.5 ml), and 124.2 ml/s (95 % CI:69.5, 178.9 ml/s) increment in the FVC, FEV1, and FEF50%, respectively. Similar associations were found for PM10. The estimated impact was almost unchanged after adjusting for IAP source. There was no significant effect difference between males and females. CONCLUSION Long-term improvement of air quality can improve lung function among young adults. Stricter policies on improving air quality are needed to protect human health.
Collapse
Affiliation(s)
- Shurong Feng
- Binzhou Medical University, Yantai, Shandong, China
| | - Jiaming Miao
- Binzhou Medical University, Yantai, Shandong, China
| | - Minghao Wang
- Binzhou Medical University, Yantai, Shandong, China
| | - Ning Jiang
- Binzhou Medical University, Yantai, Shandong, China
| | - Siqi Dou
- Binzhou Medical University, Yantai, Shandong, China
| | - Liu Yang
- Binzhou Medical University, Yantai, Shandong, China
| | - Yang Ma
- Binzhou Medical University, Yantai, Shandong, China
| | - Pei Yu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tingting Ye
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Peng Lu
- Binzhou Medical University, Yantai, Shandong, China.
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Yuming Guo
- Binzhou Medical University, Yantai, Shandong, China; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Hou X, Guo Q, Hong Y, Yang Q, Wang X, Zhou S, Liu H. Assessment of PM 2.5-related health effects: A comparative study using multiple methods and multi-source data in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119381. [PMID: 35500711 DOI: 10.1016/j.envpol.2022.119381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
In China, PM2.5 pollution has caused extensive death and economic loss. Thus, an accurate assessment of the spatial distribution of these losses is crucial for delineating priority areas for air pollution control in China. In this study, we assessed the PM2.5 exposure-related health effects according to the integrated exposure risk function and non-linear power law (NLP) function in 338 prefecture-level cities in China by utilizing online monitoring data and the PM2.5 Hindcast Database (PHD). Our results revealed no significant difference between the monitoring data and PHD (p value = 0.66 > 0.05). The number of deaths caused by PM2.5-related Stroke (cerebrovascular disease), ischemic heart disease, chronic obstructive pulmonary disease, and lung cancer at the national level estimated through the NLP function was 0.27 million (95% CI: 0.06-0.50), 0.23 million (95% CI: 0.08-0.38), 0.31 million (95% CI: 0.04-0.57), and 0.31 million (95% CI: 0.16-0.40), respectively. The total economic cost at the national level in 2016 was approximately US$80.25 billion (95% CI: 24.46-132.25). Based on a comparison of Z statistics, we propose that the evaluation results obtained using the NLP function and monitoring data are accurate. Additionally, according to scenario simulations, Beijing, Chongqing, Tianjin, and other cities should be priority areas for PM2.5 pollution control to achieve considerable health benefits. Our statistics can help improve the accuracy of PM2.5-related health effect assessments in China.
Collapse
Affiliation(s)
- Xiaoyun Hou
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310016, China; Zhejiang Academy of Ecological Civilization, Hangzhou, 310016, China
| | - Qinghai Guo
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310016, China; Zhejiang Academy of Ecological Civilization, Hangzhou, 310016, China.
| | - Yan Hong
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310016, China
| | - Qiaowei Yang
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310016, China
| | - Xinkui Wang
- Dongying Development and Reform Commission, Dongying, 370502, China
| | - Siyang Zhou
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Haiqiang Liu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310016, China
| |
Collapse
|
8
|
Analysis of PM2.5 Variations Based on Observed, Satellite-Derived, and Population-Weighted Concentrations. REMOTE SENSING 2022. [DOI: 10.3390/rs14143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fine particulate matter (PM2.5), which can cause adverse human health effects, has been proven as the first air pollutant in China. In situ observations with ground-level monitoring and satellite-based concentrations have been used to analyze the variations in PM2.5. However, variation analyses based on these two kinds of measurement have mainly focused on the concentration itself and ignored the effects on the population. Therefore, this study not only investigated these two kinds of measurements, but also performed weighted population analyses to study the variations in PM2.5. Firstly, daily models of timely structure adaptive modeling (TSAM) were constructed to simulate satellite-derived PM2.5 levels from January 2013 to December 2016. Secondly, population-weighted concentrations were calculated based on TSAM-derived PM2.5 surfaces. Finally, observed, TSAM-derived, and population-weighted concentrations were used to analyze the variations in PM2.5. The results showed the different importance of various input parameters; AOD had the highest rank. Additionally, TSAM models demonstrated good performance, fitting R ranging from 0.86 to 0.91, and validating R from 0.82 to 0.89. According to the air quality standard in China, TSAM-derived PM2.5 showed that the increase in area lower than Level II was 29.03% and the increase in population was only 14.81%. This indicates that the air quality exhibited an overall improvement in spatial perspective, but some areas with high population density showed a relatively low improvement due to uneven distributions in China. The population-weighted PM2.5 concentration could better represent the health threats of air pollutants compared with in situ observations.
Collapse
|
9
|
Cai F, Yin K, Hao M. COVID-19 Pandemic, Air Quality, and PM2.5 Reduction-Induced Health Benefits: A Comparative Study for Three Significant Periods in Beijing. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.885955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previous studies have estimated the influence of control measures on air quality in the ecological environment during the COVID-19 pandemic. However, few have attached importance to the comparative study of several different periods and evaluated the health benefits of PM2.5 decrease caused by COVID-19. Therefore, we aimed to estimate the control measures' impact on air pollutants in 16 urban areas in Beijing and conducted a comparative study across three different periods by establishing the least squares dummy variable model and difference-in-differences model. We discovered that restriction measures did have an apparent impact on most air pollutants, but there were discrepancies in the three periods. The Air Quality Index (AQI) decreased by 7.8%, and SO2, NO2, PM10, PM2.5, and CO concentrations were lowered by 37.32, 46.76, 53.22, 34.07, and 19.97%, respectively, in the first period, while O3 increased by 36.27%. In addition, the air pollutant concentrations in the ecological environment, including O3, reduced significantly, of which O3 decreased by 7.26% in the second period. Furthermore, AQI and O3 concentrations slightly increased compared to the same period in 2019, while other pollutants dropped, with NO2 being the most apparent decrease in the third period. Lastly, we employed health effects and environmental value assessment methods to evaluate the additional public health benefits of PM2.5 reduction owing to the restriction measures in three periods. This research not only provides a natural experimental basis for governance actions of air pollution in the ecological environment, but also points out a significant direction for future control strategies.
Collapse
|
10
|
Hao X, Li J, Wang H, Liao H, Yin Z, Hu J, Wei Y, Dang R. Long-term health impact of PM 2.5 under whole-year COVID-19 lockdown in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118118. [PMID: 34523527 PMCID: PMC8419199 DOI: 10.1016/j.envpol.2021.118118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/10/2023]
Abstract
The health impact of changes in particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) pollution associated with the COVID-19 lockdown has aroused great interest, but the estimation of the long-term health effects is difficult because of the lack of an annual mean air pollutant concentration under a whole-year lockdown scenario. We employed a time series decomposition method to predict the monthly PM2.5 concentrations in urban cities under permanent lockdown in 2020. The premature mortality attributable to long-term exposure to ambient PM2.5 was quantified by the risk factor model from the latest epidemiological studies. Under a whole-year lockdown scenario, annual mean PM2.5 concentrations in cites ranged from 5.4 to 68.0 μg m-3, and the national mean concentration was reduced by 32.2% compared to the 2015-2019 mean. The Global Exposure Mortality Model estimated that 837.3 (95% CI: 699.8-968.4) thousand people in Chinese cities would die prematurely from illnesses attributable to long-term exposure to ambient PM2.5. Compared to 2015-2019 mean levels, 140.2 (95% CI: 122.2-156.0) thousand premature deaths (14.4% of the annual mean deaths from 2015 to 2019) attributable to long-term exposure to PM2.5 were avoided. Because PM2.5 concentrations were still high under the whole-year lockdown scenario, the health benefit is limited, indicating that continuous emission-cutting efforts are required to reduce the health risks of air pollution. Since a similar scenario may be achieved through promotion of electric vehicles and the innovation of industrial technology in the future, the estimated long-term health impact under the whole year lockdown scenario can establish an emission-air quality-health impact linkage and provide guidance for future emission control strategies from a health protection perspective.
Collapse
Affiliation(s)
- Xin Hao
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University for Information Science & Technology, Nanjing, 210044, China; Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jiandong Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Huijun Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University for Information Science & Technology, Nanjing, 210044, China; Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Zhicong Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University for Information Science & Technology, Nanjing, 210044, China; Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Ying Wei
- Institute of Urban Meteorology, China Meteorology Administration, Beijing, 100089, China
| | - Ruijun Dang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|
11
|
Yang X, Wang Y, Chen D, Tan X, Tian X, Shi L. Does the "Blue Sky Defense War Policy" Paint the Sky Blue?-A Case Study of Beijing-Tianjin-Hebei Region, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312397. [PMID: 34886123 PMCID: PMC8657255 DOI: 10.3390/ijerph182312397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
Improving air quality is an urgent task for the Beijing-Tianjin-Hebei (BTH) region in China. In 2018, utilizing 365 days' daily concentration data of six air pollutants (including PM2.5, PM10, SO2, NO2, CO and O3) at 947 air quality grid monitoring points of 13 cities in the BTH region and controlling the meteorological factors, this paper takes the implementation of the Blue Sky Defense War (BSDW) policy as a quasi-natural experiment to examine the emission reduction effect of the policy in the BTH region by applying the difference-in-difference method. Results show that the policy leads to the significant reduction of the daily average concentration of PM2.5, PM10, SO2, O3 by -1.951 μg/m3, -3.872 μg/m3, -1.902 μg/m3, -7.882 μg/m3 and CO by -0.014 mg/m3, respectively. The results of the robustness test support the aforementioned conclusions. However, this paper finds that the concentration of NO2 increases significantly (1.865 μg/m3). In winter heating seasons, the concentration of SO2, CO and O3 decrease but PM2.5, PM10 and NO2 increase significantly. Besides, resource intensive cities, non-key environmental protection cities and cities in the north of the region have great potential for air pollutant emission reduction. Finally, policy suggestions are recommended; these include setting specific goals at the city level, incorporating more cities into the list of key environmental protection cities, refining the concrete indicators of domestic solid fuel, and encouraging and enforcing clean heating diffusion.
Collapse
Affiliation(s)
- Xuan Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; (X.Y.); (Y.W.); (D.C.); (X.T.)
| | - Yue Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; (X.Y.); (Y.W.); (D.C.); (X.T.)
| | - Di Chen
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; (X.Y.); (Y.W.); (D.C.); (X.T.)
| | - Xue Tan
- Energy Strategy and Planning Research Department, State Grid Energy Research Institute Co., Ltd., Beijing 102209, China;
| | - Xue Tian
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; (X.Y.); (Y.W.); (D.C.); (X.T.)
| | - Lei Shi
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China; (X.Y.); (Y.W.); (D.C.); (X.T.)
- Correspondence: ; Tel.: +86-10-82502696
| |
Collapse
|