1
|
Avitabile E, Menotti L, Croatti V, Giordani B, Parolin C, Vitali B. Protective Mechanisms of Vaginal Lactobacilli against Sexually Transmitted Viral Infections. Int J Mol Sci 2024; 25:9168. [PMID: 39273118 PMCID: PMC11395631 DOI: 10.3390/ijms25179168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
The healthy cervicovaginal microbiota is dominated by various Lactobacillus species, which support a condition of eubiosis. Among their many functions, vaginal lactobacilli contribute to the maintenance of an acidic pH, produce antimicrobial compounds, and modulate the host immune response to protect against vaginal bacterial and fungal infections. Increasing evidence suggests that these beneficial bacteria may also confer protection against sexually transmitted infections (STIs) caused by viruses such as human papillomavirus (HPV), human immunodeficiency virus (HIV) and herpes simplex virus (HSV). Viral STIs pose a substantial public health burden globally, causing a range of infectious diseases with potentially severe consequences. Understanding the molecular mechanisms by which lactobacilli exert their protective effects against viral STIs is paramount for the development of novel preventive and therapeutic strategies. This review aims to provide more recent insights into the intricate interactions between lactobacilli and viral STIs, exploring their impact on the vaginal microenvironment, host immune response, viral infectivity and pathogenesis, and highlighting their potential implications for public health interventions and clinical management strategies.
Collapse
Affiliation(s)
- Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Vanessa Croatti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
2
|
Campisciano G, Sorz A, Cason C, Zanotta N, Gionechetti F, Piazza M, Carli P, Uliana FM, Ballaminut L, Ricci G, De Seta F, Maso G, Comar M. Genital Dysbiosis and Different Systemic Immune Responses Based on the Trimester of Pregnancy in SARS-CoV-2 Infection. Int J Mol Sci 2024; 25:4298. [PMID: 38673883 PMCID: PMC11050260 DOI: 10.3390/ijms25084298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Respiratory infections are common in pregnancy with conflicting evidence supporting their association with neonatal congenital anomalies, especially during the first trimester. We profiled cytokine and chemokine systemic responses in 242 pregnant women and their newborns after SARS-CoV-2 infection, acquired in different trimesters. Also, we tested transplacental IgG passage and maternal vaginal-rectal microbiomes. IgG transplacental passage was evident, especially with infection acquired in the first trimester. G-CSF concentration-involved in immune cell recruitment-decreased in infected women compared to uninfected ones: a beneficial event for the reduction of inflammation but detrimental to ability to fight infections at birth. The later the infection was acquired, the higher the systemic concentration of IL-8, IP-10, and MCP-1, associated with COVID-19 disease severity. All infected women showed dysbiosis of vaginal and rectal microbiomes, compared to uninfected ones. Two newborns tested positive for SARS-CoV-2 within the first 48 h of life. Notably, their mothers had acute infection at delivery. Although respiratory infections in pregnancy are reported to affect babies' health, with SARS-CoV-2 acquired early during gestation this risk seems low because of the maternal immune response. The observed vaginal and rectal dysbiosis could be relevant for neonatal microbiome establishment, although in our series immediate neonatal outcomes were reassuring.
Collapse
Affiliation(s)
- Giuseppina Campisciano
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Alice Sorz
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health–IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (A.S.); (M.P.); (G.R.); (F.D.S.); (G.M.)
| | - Carolina Cason
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Nunzia Zanotta
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Fabrizia Gionechetti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy;
| | - Maria Piazza
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health–IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (A.S.); (M.P.); (G.R.); (F.D.S.); (G.M.)
| | - Petra Carli
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Francesca Maria Uliana
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Lisa Ballaminut
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
| | - Giuseppe Ricci
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health–IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (A.S.); (M.P.); (G.R.); (F.D.S.); (G.M.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Francesco De Seta
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health–IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (A.S.); (M.P.); (G.R.); (F.D.S.); (G.M.)
- Department of Obstetrics and Gynecology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Gianpaolo Maso
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health–IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (A.S.); (M.P.); (G.R.); (F.D.S.); (G.M.)
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65, 34137 Trieste, Italy; (C.C.); (N.Z.); (P.C.); (F.M.U.); (L.B.); (M.C.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| |
Collapse
|
3
|
Avitabile E, Menotti L, Giordani B, Croatti V, Parolin C, Vitali B. Vaginal Lactobacilli Supernatants Protect from Herpes Simplex Virus Type 1 Infection in Cell Culture Models. Int J Mol Sci 2024; 25:2492. [PMID: 38473739 DOI: 10.3390/ijms25052492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
A healthy vaginal microbiota hosts Lactobacillus as the most predominant genus. Lactobacilli play a role in human health through the production of diverse antimicrobial substances that can act against human pathogens or modulate the immune system. Previous reports highlighted the ability of vaginal lactobacilli to counteract viruses causing STIs, e.g., HIV-1 and HSV-2. In this report, we analyze the activity of supernatants of vaginal lactobacilli against HSV-1 infection, which is becoming increasingly relevant as a STI. We show that the supernatants of two vaginal Lactobacillus species (i.e., L. crispatus and L. gasseri) were active at neutralizing HSV-1 infection in two different cell lines of human and simian origin. Specifically, we demonstrate that L. crispatus strains are the most effective in antiviral activity, as evidenced by the comparison with a vaginal pathogen taken as reference. The effect was specific and not attributable to the generic toxicity of the supernatants to the cells. Our results pave the way for the development of probiotics to limit the impact of HSV-1 infection on women's health.
Collapse
Affiliation(s)
- Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Barbara Giordani
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Vanessa Croatti
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
4
|
Borase H, Shukla D. The Interplay of Genital Herpes with Cellular Processes: A Pathogenesis and Therapeutic Perspective. Viruses 2023; 15:2195. [PMID: 38005873 PMCID: PMC10675801 DOI: 10.3390/v15112195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Genital herpes, primarily caused by herpes simplex virus-2 (HSV-2), remains a pressing global health concern. Its remarkable ability to intertwine with cellular processes, from harnessing host machinery for replication to subverting antiviral defenses like autophagy and programmed cell death, exemplifies the intricate interplay at the heart of its pathogenesis. While the biomedical community has extensively researched antiviral interventions, the efficiency of these strategies in managing HSV-2 remains suboptimal. Recognizing this, attention has shifted toward leveraging host cellular components to regulate HSV-2 replication and influence the cell cycle. Furthermore, innovative interventional strategies-including drug repurposing, microbivacs, connecting the host microbiome, and exploiting natural secondary metabolites-are emerging as potential game changers. This review summarizes the key steps in HSV-2 pathogenesis and newly discovered cellular interactions, presenting the latest developments in the field, highlighting existing challenges, and offering a fresh perspective on HSV-2's pathogenesis and the potential avenues for its treatment by targeting cellular proteins and pathways.
Collapse
Affiliation(s)
- Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Fakharian F, Sadeghi A, Pouresmaeili F, Soleimani N, Yadegar A. Immunomodulatory effects of live and pasteurized Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-triggered inflammation in gastric epithelial cells in vitro. Mol Biol Rep 2023; 50:6795-6805. [PMID: 37392285 DOI: 10.1007/s11033-023-08596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Helicobacter pylori infection is considered as the major risk factor for gastric adenocarcinoma. Today, the increasing emergence of antibiotic-resistant strains has drastically decreased the eradication rate of H. pylori infection. This study was aimed to investigate the inhibitory and modulatory effects of live and pasteurized Lactobacillus crispatus strain RIGLD-1 on H. pylori adhesion, invasion, and inflammatory response in AGS cell line. METHODS AND RESULTS The probiotic potential and properties of L. crispatus were evaluated using several functional and safety tests. Cell viability of AGS cells exposed to varying concentrations of live and pasteurized L. crispatus was assessed by MTT assay. The adhesion and invasion abilities of H. pylori exposed to either live or pasteurized L. crispatus were examined by gentamycin protection assay. The mRNA expression of IL-1β, IL-6, IL-8, TNF-α, IL-10, and TGF-ß genes was determined by RT-qPCR from coinfected AGS cells. ELISA was used for the detection of IL-8 secretion from treated cells. Both live and pasteurized L. crispatus significantly decreased H. pylori adhesion/invasion to AGS cells. In addition, both live and pasteurized L. crispatus modulated H. pylori-induced inflammation by downregulating the mRNA expression of IL-1β, IL-6, IL-8, and TNF-α and upregulating the expression of IL-10, and TGF-ß cytokines in AGS cells. Furthermore, H. pylori-induced IL-8 production was dramatically decreased after treatment with live and pasteurized L. crispatus. CONCLUSIONS In conclusion, our findings demonstrated that live and pasteurized L. crispatus strain RIGLD-1 are safe, and could be suggested as a potential probiotic candidate against H. pylori colonization and inflammation.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Pouresmaeili
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Grinevich VB, Lazebnik LB, Kravchuk YA, Radchenko VG, Tkachenko EI, Pershko AM, Seliverstov PV, Salikova CP, Zhdanov KV, Kozlov KV, Makienko VV, Potapova IV, Ivanyuk ES, Egorov DV, Sas EI, Korzheva MD, Kozlova NM, Ratnikova AK, Ratnikov VA, Sitkin SI, Bolieva LZ, Turkina CV, Abdulganieva DI, Ermolova TV, Kozhevnikova SA, Tarasova LV, Myazin RG, Khomeriki NM, Pilat TL, Kuzmina LP, Khanferyan RA, Novikova VP, Polunina AV, Khavkin AI. Gastrointestinal disorders in post-COVID syndrome. Clinical guidelines. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:4-68. [DOI: 10.31146/1682-8658-ecg-208-12-4-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Summary Post- COVID syndrome refers to the long-term consequences of a new coronavirus infection COVID-19, which includes a set of symptoms that develop or persist after COVID-19. Symptoms of gastrointestinal disorders in post- COVID syndrome, due to chronic infl ammation, the consequences of organ damage, prolonged hospitalization, social isolation, and other causes, can be persistent and require a multidisciplinary approach. The presented clinical practice guidelines consider the main preventive and therapeutic and diagnostic approaches to the management of patients with gastroenterological manifestations of postCOVID syndrome. The Guidelines were approved by the 17th National Congress of Internal Medicine and the 25th Congress of Gastroenterological Scientifi c Society of Russia.
Collapse
Affiliation(s)
| | - L. B. Lazebnik
- A. I. Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | | | | | | | | | | | - K. V. Kozlov
- Military Medical Academy named after S. M. Kirov
| | | | | | | | - D. V. Egorov
- Military Medical Academy named after S. M. Kirov
| | - E. I. Sas
- Military Medical Academy named after S. M. Kirov
| | | | | | - A. K. Ratnikova
- North-West District Scientifi c and Clinical Center named after L. G. Sokolov Federal Medical and Biological Agency
| | - V. A. Ratnikov
- North-West District Scientifi c and Clinical Center named after L. G. Sokolov Federal Medical and Biological Agency
| | - S. I. Sitkin
- North-Western state medical University named after I. I. Mechnikov;
Almazov National Medical Research Centre
| | | | | | | | - T. V. Ermolova
- North-Western state medical University named after I. I. Mechnikov
| | | | | | | | - N. M. Khomeriki
- Moscow Regional Research Clinical Institute n. a. M. F. Vladimirsky”
| | - T. L. Pilat
- Scientifi c Research Institute of labour medicine named after academician N. F. Izmerov
| | - L. P. Kuzmina
- Scientifi c Research Institute of labour medicine named after academician N. F. Izmerov;
I. M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - A. I. Khavkin
- Russian National Research Medical University named after N. I. Pirogov
| |
Collapse
|
7
|
Protective and Therapeutic Capacities of Lactic Acid Bacteria Postmetabolites against Koi Herpesvirus Infection In Vitro. Life (Basel) 2023; 13:life13030739. [PMID: 36983894 PMCID: PMC10054248 DOI: 10.3390/life13030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Background: The accumulation of data on beneficial biological effects of probiotics and their metabolic products favors their potential use in the prevention and treatment of various malaises. Methods: Nine postmetabolites from Lactic acid bacteria (LAB) of human or dairy origin and their antiviral activity were studied using the cytopathic effect inhibition test. The virucidal capacity, their influence on the adsorption stage of Koi herpes virus (KHV) and their preventive role against subsequent viral challenge on intact Common carp brain (CCB) cells were also determined by titration assay. Residual viral infectivity in postmetabolites-treated samples was compared to mock-treated controls and Δlgs were calculated. Results: When administered during KHV replication, the microbial products isolated from Lactiplantibacillus plantarum showed remarkable activity with a selectivity index (SI) between 26.5 and 221.4, as those effects were dependent on the sample-virus incubation time. Postmetabolites from Lactobacillus gasseri and Lactiplantibacillus plantarum also demonstrated significant inhibition of KHV replication with SI of 24 and 16, respectively. The bioactive metabolites isolated from Limosilactobacillus fermentum had a minor effect on the viral replicative cycle. Compounds, produced during the fermentation by lactobacilli, grown on different nutritive media and collected at different time points, significantly inhibited extracellular KHV virions. All investigated postmetabolites remarkably blocked KHV attachment to the host cell (CCB), leading to a drop in viral titers by Δlg = 4.25–5.25, and exerted protective effects on CCB cells before they were subjected to viral infection. Conclusions: Our results open new horizons and promote LAB and their postbiotic products to be used in the prophylaxis and therapy of viral infections.
Collapse
|
8
|
In Vitro Screening of Antiviral Activity of Lactic Acid Bacteria Isolated from Traditional Fermented Foods. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Studies of newly isolated strains of lactic acid bacteria (LAB) are a good basis for expanding the potential for their applications in functional foods, probiotic food supplements, and other probiotic products. They exhibit various functional properties, including such with antiviral activity. Probiotic strains can manifest their antiviral effects by various mechanisms, including direct interaction with viruses, production of antiviral compounds, or immune system modulation. Ten newly isolated LAB strains from traditional fermented food products have been tested for the determination of their antiviral activity. This study was performed to evaluate the effect of cell-free supernatants (CFSs) from the studied strains for the effect on viral replication of Human alphaherpesvirus—HHV-1 and HHV-2 as well as for direct virucidal activity. The CFSs of the LAB strains were used in non-toxic concentrations of 25%, 6.25%, and 1.6%. No direct virucidal activity was observed in tested CFSs, but five of the strains observed a well-defined effect of viral replication inhibition with the selective index (SI) from 4.40 to >54. For two of these five strains, Lactobacillus delbrueckii subsp. bulgaricus KZM 2-11-3 and Lactiplantibacillus plantarum KC 5-12 strong activity against HHV-2 with a selective index (SI) over 45 was detected, which is a good basis for further research.
Collapse
|
9
|
Lactic Acid Bacteria as Mucosal Immunity Enhancers and Antivirals through Oral Delivery. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucosal vaccination offer an advantage over systemic inoculation from the immunological viewpoint. The development of an efficient vaccine is now a priority for emerging diseases such as COVID-19, that was declared a pandemic in 2020 and caused millions of deaths globally. Lactic acid bacteria (LAB) especially Lactobacillus are the vital microbiota of the gut, which is observed as having valuable effects on animals’ and human health. LAB produce lactic acid as the major by-product of carbohydrate degradation and play a significant role in innate immunity enhancement. LAB have significant characteristics to mimic pathogen infections and intrinsically possess adjuvant properties to enhance mucosal immunity. Increasing demand and deliberations are being substantially focused on probiotic organisms that can enhance mucosal immunity against viral diseases. LAB can also strengthen their host’s antiviral defense system by producing antiviral peptides, and releasing metabolites that prevent viral infections and adhesion to mucosal surfaces. From the perspectives of “one health” and the use of probiotics, conventional belief has opened up a new horizon on the use of LAB as antivirals. The major interest of this review is to depict the beneficial use of LAB as antivirals and mucosal immunity enhancers against viral diseases.
Collapse
|
10
|
Rastogi S, Singh A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol 2022; 13:1042189. [PMID: 36353491 PMCID: PMC9638459 DOI: 10.3389/fphar.2022.1042189] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
The highest density of microbes resides in human gastrointestinal tract, known as “Gut microbiome”. Of note, the members of the genus Lactobacillus that belong to phyla Firmicutes are the most important probiotic bacteria of the gut microbiome. These gut-residing Lactobacillus species not only communicate with each other but also with the gut epithelial lining to balance the gut barrier integrity, mucosal barrier defence and ameliorate the host immune responses. The human body suffers from several inflammatory diseases affecting the gut, lungs, heart, bone or neural tissues. Mounting evidence supports the significant role of Lactobacillus spp. and their components (such as metabolites, peptidoglycans, and/or surface proteins) in modulatingimmune responses, primarily through exchange of immunological signals between gastrointestinal tract and distant organs. This bidirectional crosstalk which is mediated by Lactobacillus spp. promotes anti-inflammatory response, thereby supporting the improvement of symptoms pertaining to asthma, chronic obstructive pulmonary disease (COPD), neuroinflammatory diseases (such as multiple sclerosis, alzheimer’s disease, parkinson’s disease), cardiovascular diseases, inflammatory bowel disease (IBD) and chronic infections in patients. The metabolic disorders, obesity and diabetes are characterized by a low-grade inflammation. Genus Lactobacillus alleviates metabolic disorders by regulating the oxidative stress response and inflammatory pathways. Osteoporosis is also associated with bone inflammation and resorption. The Lactobacillus spp. and their metabolites act as powerful immune cell controllers and exhibit a regulatory role in bone resorption and formation, supporting bone health. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus spp. in alleviating inflammatory diseases pertaining to different organs from animal and clinical trials. The present narrative review explores in detail the complex interactions between the gut-dwelling Lactobacillus spp. and the immune components in distant organs to promote host’s health.
Collapse
|
11
|
In Vitro Evaluation of Antiviral Activity Effect of Selenium, Bacillus clausii Supernatant, and Their Combination on the Replication of Herpes Simplex Virus 1. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-129848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: About 70% of individuals worldwide suffer from herpes simplex virus 1 (HSV-1). Several studies have reported that selenium and supernatant of probiotic bacteria are antiviral; nevertheless, their effect alone or synergistically on HSV-1 is unknown. Objectives: The present study aimed to evaluate the antiviral effects of Bacillus clausii supernatant, selenium (Se), and their combination on HSV-1. Methods: After determining cytotoxicity by the MTT assay, selenium and B. clausii supernatants were added to HeLa cells 24 hours before (pre-infection treatment) and after (post-infection treatment) HSV-1 inoculation. After 47 hours of incubation at 37°C, the viral titer and expression levels of the unique long 47 (UL47) gene were determined by the 50% tissue culture infectious dose (TCID50) and real-time polymerase chain reaction methods, respectively. Results: The bacterial supernatant in dilutions of 1:4 and 1:8, selenium in concentrations of 0.5 and 1 μM, and a combination of them had a cytotoxicity level lower than 80% in HeLa cells. The HSV-1 titers in pre-infection and post-infection assays with a dilution of 1:4 supernatant decreased by about 2.16 and 1 log10 TCID50/mL, respectively. Moreover, 1 μM Se could reduce the virus titer by 2.33 log10 TCID50/mL. The virus titer showed a greater decrease when Se and the bacterial supernatants were combined than when only one of the two was used. The highest selectivity index (SI) was obtained when selenium and bacterial supernatant were combined (SI = 29.2). The combined use of 1 μM Se and a 1:4 dilution of B. clausii supernatant caused the greatest drop in virus titer (3.3 log10 TCID50/mL) in comparison to other treatment conditions. The UL47 gene expression was reduced by Se at concentrations of 0.5 and 1 μM by about 1.6- and 2-fold, respectively. The UL47 expression showed a higher decline when selenium and bacterial supernatant were combined than when only one of the two was employed, which is similar to viral titer data. Conclusions: Selenium and the supernatant of B. clausii have potent antiviral activity against HSV-1. The combination of selenium and the bacterial supernatant has a synergistic effect in reducing HSV-1 replication. However, further research is required to fully understand how they inhibit viruses.
Collapse
|
12
|
Chiang MC, Chern E. Ocular surface microbiota: Ophthalmic infectious disease and probiotics. Front Microbiol 2022; 13:952473. [PMID: 36060740 PMCID: PMC9437450 DOI: 10.3389/fmicb.2022.952473] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, increasing studies have emphasized the importance of commensal bacteria in humans, including microbiota in the oral cavity, gut, vagina, or skin. Ocular surface microbiota (OSM) is gaining great importance as new methodologies for bacteria DNA sequencing have been published. This review outlines the current understanding and investigation of OSM and introduces the new concept of the gut–eye axis. Moreover, we have collected current studies that focus on the relationship between ophthalmic infectious disease and alterations in the OSM or human gut microbiota. Finally, we discuss the current application of probiotics in ophthalmic infectious disease, its limitations to date, and futural directions.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Edward Chern
| |
Collapse
|
13
|
In vitro evaluation of antiviral activity of Shouchella clausii probiotic strain and bacterial supernatant against herpes simplex virus type 1. Arch Microbiol 2022; 204:522. [PMID: 35879582 DOI: 10.1007/s00203-022-03137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022]
Abstract
Herpes simplex virus-1 (HSV-1) is an important human neurotropic virus infecting 70% of the world population. Due to the emergence of viral resistance via mutations in HSV-1 genes and some of the adverse effects of antiviral compounds, there is a growing need for safe, novel, and effective therapeutic and preventive strategies. The aim of the present study was to investigate for the first time the potential antiviral activity of Shouchella clausii probiotic strain and bacterial supernatant against HSV-1. The MTT assay was used to determine the possible cytotoxicity of the S. clausii and bacterial supernatant. Vero cells were treated by S. clausii, bacterial supernatant, and HSV-1 under pre-treatment (incubation of Vero cells with S. clausii then HSV-1 inoculation), pre-incubation (mixture of co-incubated HSV-1/S. clausii added to Vero cell), competition (adding HSV-1 and S. clausii into Vero cells simultaneously) and post-treatment (Vero cells inoculated with HSV-1 then incubated with S. clausii) assays. Viral titer reduction (TCID50) and viral DNA relative quantification by real-time PCR were measured in each experimental condition. The results indicated that S. clausii and its supernatant had the greatest inhibitory activity toward HSV-1 in pre-treatment assay. The HSV-1 titer treated with S. clausii, and bacterial supernatant was 3.6 and 2.2 Log10TCID50/mL lower compared to the control (7.66 Log10TCID50/mL). Results showed an antiviral effect of S. clausii and its supernatant. S. clausii could be considered as a novel inhibitor for HSV-1 infection.
Collapse
|
14
|
Chiang MC, Chern E. More than Antibiotics: Latest Therapeutics in the Treatment and Prevention of Ocular Surface Infections. J Clin Med 2022; 11:4195. [PMID: 35887958 PMCID: PMC9323953 DOI: 10.3390/jcm11144195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Ocular surface infections have been common issues for ophthalmologists for decades. Traditional strategies for infection include antibiotics, antiviral agents, and steroids. However, multiple drug-resistant bacteria have become more common with the prevalence of antibiotic use. Furthermore, an ideal treatment for an infectious disease should not only emphasize eliminating the microorganism but also maintaining clear and satisfying visual acuity. Immunogenetic inflammation, tissue fibrosis, and corneal scarring pose serious threats to vision, and they are not attenuated or prevented by traditional antimicrobial therapeutics. Herein, we collected information about current management techniques including stem-cell therapy, probiotics, and gene therapy as well as preventive strategies related to Toll-like receptors. Finally, we will introduce the latest research findings in ocular drug-delivery systems, which may enhance the bioavailability and efficiency of ocular therapeutics. The clinical application of improved delivery systems and novel therapeutics may support people suffering from ocular surface infections.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Wang Y, Moon A, Huang J, Sun Y, Qiu HJ. Antiviral Effects and Underlying Mechanisms of Probiotics as Promising Antivirals. Front Cell Infect Microbiol 2022; 12:928050. [PMID: 35734576 PMCID: PMC9207339 DOI: 10.3389/fcimb.2022.928050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics exert a variety of beneficial effects, including maintaining homeostasis and the balance of intestinal microorganisms, activating the immune system, and regulating immune responses. Due to the beneficial effects of probiotics, a wide range of probiotics have been developed as probiotic agents for animal and human health. Viral diseases cause serious economic losses to the livestock every year and remain a great challenge for animals. Moreover, strategies for the prevention and control of viral diseases are limited. Viruses enter the host through the skin and mucosal surface, in which are colonized by hundreds of millions of microorganisms. The antiviral effects of probiotics have been proved, including modulation of chemical, microbial, physical, and immune barriers through various probiotics, probiotic metabolites, and host signaling pathways. It is of great significance yet far from enough to elucidate the antiviral mechanisms of probiotics. The major interest of this review is to discuss the antiviral effects and underlying mechanisms of probiotics and to provide targets for the development of novel antivirals.
Collapse
Affiliation(s)
| | | | | | - Yuan Sun
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| | - Hua-Ji Qiu
- *Correspondence: Hua-Ji Qiu, ; Yuan Sun,
| |
Collapse
|
16
|
Gut Microbiota Disruption in COVID-19 or Post-COVID Illness Association with severity biomarkers: A Possible Role of Pre / Pro-biotics in manipulating microflora. Chem Biol Interact 2022; 358:109898. [PMID: 35331679 PMCID: PMC8934739 DOI: 10.1016/j.cbi.2022.109898] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease (COVID-19), a coronavirus-induced illness attributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, is thought to have first emerged on November 17, 2019. According to World Health Organization (WHO). COVID-19 has been linked to 379,223,560 documented occurrences and 5,693,245 fatalities globally as of 1st Feb 2022. Influenza A virus that has also been discovered diarrhea and gastrointestinal discomfort was found in the infected person, highlighting the need of monitoring them for gastro intestinal tract (GIT) symptoms regardless of whether the sickness is respiration related. The majority of the microbiome in the intestines is Firmicutes and Bacteroidetes, while Bacteroidetes, Proteobacteria, and Firmicutes are found in the lungs. Although most people overcome SARS-CoV-2 infections, many people continue to have symptoms months after the original sickness, called Long-COVID or Post COVID. The term "post-COVID-19 symptoms" refers to those that occur with or after COVID-19 and last for more than 12 weeks (long-COVID-19). The possible understanding of biological components such as inflammatory, immunological, metabolic activity biomarkers in peripheral blood is needed to evaluate the study. Therefore, this article aims to review the informative data that supports the idea underlying the disruption mechanisms of the microbiome of the gastrointestinal tract in the acute COVID-19 or post-COVID-mediated elevation of severity biomarkers.
Collapse
|
17
|
Reiprich A, Skalden L, Raab A, Bolotina N, Lang C. Lactobacillus crispatus DSM25988 as novel bioactive agent to co-aggregate Streptococcus pyogenes and to exclude it by binding to human cells. Benef Microbes 2022; 13:83-94. [PMID: 35144524 DOI: 10.3920/bm2021.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus pyogenes, a group A streptococcus, is the major bacterial pathogen responsible for acute bacterial infection of the human oropharynx and the causative agent of scarlet fever. Estimates of the global burden of S. pyogenes related diseases revealed 616 million cases of pharyngitis, and at least 517,000 deaths due to severe invasive diseases and sequelae. Here we describe Lactobacillus crispatus DSM25988 that was identified among hundreds of Lactobacillus strains (referring to all organisms that were classified as Lactobacillaceae until 2020) showing ability to prevent adhesion of S. pyogenes to Detroit 562 cells, and to exhibit a masking and co-aggregating effect on S. pyogenes in vitro. L. crispatus DSM25988 also inhibits invasion of cultured human epithelial pharyngeal cells by S. pyogenes. Competitive binding to fibronectin might be involved in the inhibition process. Antiviral activity of the L. crispatus DSM25988 cells were identified in an in vitro cell model demonstrating that L. crispatus effectively excludes viruses from epithelial cells using SARS-CoV2 proteins as a model. This finding points to the potential of DSM25988 to protect cells from virus infection. Biological activity is retained in heat treated cells. The heat-treated Lactobacillus strain was further developed into functional throat lozenges, wherein its biological activity is stably maintained in the formulation. Lozenges containing L. crispatus DSM25988 underwent testing in an uncontrolled, prospective user study in 44 subjects with symptoms of sore throat for a period of up to 14 days. The study data shows promising safety and efficacy of the medical device when used against symptoms of sore throat like scratchy feeling, hoarse voice and swallowing pain.
Collapse
Affiliation(s)
- A Reiprich
- Belano medical AG, Neuendorfstraße 19, 16761 Hennigsdorf, Germany
| | - L Skalden
- Belano medical AG, Neuendorfstraße 19, 16761 Hennigsdorf, Germany
| | - A Raab
- Belano medical AG, Neuendorfstraße 19, 16761 Hennigsdorf, Germany
| | - N Bolotina
- Belano medical AG, Neuendorfstraße 19, 16761 Hennigsdorf, Germany
| | - C Lang
- Belano medical AG, Neuendorfstraße 19, 16761 Hennigsdorf, Germany
| |
Collapse
|
18
|
Abstract
Viral infections represent a major health problem worldwide. Due to the wide variety of etiological agents and their increasing resistance to anti-virals and antibiotics treatments, new strategies for effective therapies need to be developed. Scientific evidence suggests that probiotics may have prophylactic and therapeutic effects in viral diseases. Indeed, these microorganisms interact harmoniously with the intestinal microbiota and protect the integrity of the intestinal barrier as well as modulate the host immune system. Currently, clinical trials with probiotics have been documented in respiratory tract infections, infections caused by human immunodeficiency viruses, herpes, human papillomavirus and hepatic encephalopathy. However, the benefits documented so far are difficult to extrapolate, due to the strain-dependent effect. In addition, the dose of the microorganism used as well as host characteristics are other parameters that should be consider when advocating the use of probiotics to treat viral infections. This review addresses the scientific evidence of the efficacy of probiotics in clinical strains perspective in viral infectious diseases in the last 10 years.
Collapse
|
19
|
Lin TL, Cheng C, Zeng WT, Duan F, Pei YH, Liu XP, Shang F, Wu KL. Anti-viral activity of Staphylococcus aureus lysates against herpes simplex virus type-I infection: an in vitro and in vivo study. Int J Ophthalmol 2021; 14:1463-1472. [PMID: 34667721 DOI: 10.18240/ijo.2021.10.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
AIM To investigate the effect of Staphylococcus aureus (S. aures) lysates (SALs) on herpes simplex virus type-I (HSV1) infection in human corneal epithelial (HCE) cells and in a mouse model of HSV1 keratitis. METHODS HCE, Vero, HeLa, and BV2 cells were infected with HSV1 [HSV1 f strain, HSV1f; HSV-1-H129 with green fluorescent protein (GFP) knock-in, HSV1g]. Pre- or post-infection, SAL at various concentrations was added to the culture medium for 24h. GFP fluorescence in HSV1g or plaque formation by HSV1f were examined. The effects of heat-treated SAL, precooled acetone-precipitated SAL, and SAL subjected to ultrafiltration (100 kDa) were evaluated. The effects of other bacterial components and lysates on HSV1 infection were also tested, including lipoteichoic acid (LTA), peptidoglycan (PGN), staphylococcal protein A (SPA), and α-hemolysin from S. aureus (α-toxin) as well as lysates from a wild-type S. aureus strain, S. epidermidis, and Escherichia coli (W-SAL, SEL, and ECL, respectively). In addition, SAL eye drops were applied topically to BALB/c mice with HSV1 keratitis, followed by in vivo observations. RESULTS The cytopathic effect, plaque formation (HSV1f), and GFP expression (HSV1g) in infected cells were inhibited by SAL in a dose-dependent manner. The active component of SAL (≥100 kDa) was heat-sensitive and retained activity after acetone precipitation. In HSV1g-infected cells, treatment with LTA-sa, α-toxin, PGN-sa, or SPA did not inhibit GFP expression. SAL, W-SAL, and SEL (but not ECL) decreased GFP expression. In mice with HSV1 keratitis, SAL reduced corneal lesions by 71%. CONCLUSION The results of this study demonstrate that SAL can be used to inhibit HSV1 infection, particularly keratitis. Further studies are needed to determine the active components and mechanism underlying the effects of SAL.
Collapse
Affiliation(s)
- Tian-Lan Lin
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Chao Cheng
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Wei-Ting Zeng
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Fang Duan
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Yin-Hui Pei
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xiu-Ping Liu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Fu Shang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Kai-Li Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
20
|
Cazorla-Luna R, Ruiz-Caro R, Veiga MD, Malcolm RK, Lamprou DA. Recent advances in electrospun nanofiber vaginal formulations for women's sexual and reproductive health. Int J Pharm 2021; 607:121040. [PMID: 34450222 DOI: 10.1016/j.ijpharm.2021.121040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
Electrospinning is an innovative technique that allows production of nanofibers and microfibers by applying a high voltage to polymer solutions of melts. The properties of these fibers - which include high surface area, high drug loading capacity, and ability to be manufactured from mucoadhesive polymers - may be particularly useful in a myriad of drug delivery and tissue engineering applications. The last decade has witnessed a surge of interest in the application of electrospinning technology for the fabrication of vaginal drug delivery systems for the treatment and prevention of diseases associated with women's sexual and reproductive health, including sexually transmitted infections (e.g. infection with human immunodeficiency virus and herpes simplex virus) vaginitis, preterm birth, contraception, multipurpose prevention technology strategies, cervicovaginal cancer, and general maintenance of vaginal health. Due to their excellent mechanical properties, electrospun scaffolds are also being investigated as next-generation materials in the surgical treatment of pelvic organ prolapse. In this article, we review the latest advances in the field.
Collapse
Affiliation(s)
- Raúl Cazorla-Luna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Roberto Ruiz-Caro
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Dolores Veiga
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - R Karl Malcolm
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
21
|
Screening of Lactic Acid Bacterial Strains with Antiviral Activity Against Porcine Epidemic Diarrhea. Probiotics Antimicrob Proteins 2021; 14:546-559. [PMID: 34350565 DOI: 10.1007/s12602-021-09829-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Newly emerging and re-emerging viral infectious diseases cause significant economic losses in swine production. Efficacious vaccines have not yet been developed for several major swine infectious diseases, including porcine epidemic diarrhea virus (PEDV). We used the PEDV-infected Vero cell model to screen lactic acid bacteria (LAB) strains with antiviral activity. Sixty LAB strains were isolated from the feces of nursing piglets. After the elimination of LAB strains with high cytotoxicity to Vero cells, the protective effects of the remaining 6 strains against PEDV infection were determined. Vero cells pretreated with the intracellular extracts or cell wall fractions of YM22 and YM33 strains for 24 h before infection with PEDV showed significantly higher cell viabilities and lower mRNA expression of PEDV nucleocapsid (PEDV-N) than the unpretreated cells, indicating that the intracellular extracts and cell wall fractions of YM22 and YM33 possessed prophylactic effects on Vero cells against PEDV infection. PEDV-infection significantly increased the mRNA expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8) in Vero cells. However, pretreatment of Vero cells with the cell wall fractions of YM22 and YM33 decreased the mRNA expression of TNF-α and IL-8, which could be a mechanism associated with the protective effects of YM22 and YM33 against PEDV. Based on the biochemical characteristics and phylogenetic analyses, YM22 and YM33 were identified as Ligilactobacillus agilis (basonym: Lactobacillus agilis) and Ligilactobacillus salivarius (basonym: Lactobacillus salivarius), respectively. These findings suggest that L. agilis YM22 and L. salivarius YM33 could provide some levels of protective effects against PEDV infections.
Collapse
|
22
|
Han Y, Liu Z, Chen T. Role of Vaginal Microbiota Dysbiosis in Gynecological Diseases and the Potential Interventions. Front Microbiol 2021; 12:643422. [PMID: 34220737 PMCID: PMC8249587 DOI: 10.3389/fmicb.2021.643422] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Vaginal microbiota dysbiosis, characterized by the loss of Lactobacillus dominance and increase of microbial diversity, is closely related to gynecological diseases; thus, intervention on microbiota composition is significant and promising in the treatment of gynecological diseases. Currently, antibiotics and/or probiotics are the mainstay of treatment, which show favorable therapeutic effects but also bring problems such as drug resistance and high recurrence. In this review, we discuss the role of vaginal microbiota dysbiosis in various gynecological infectious and non-infectious diseases, as well as the current and potential interventions.
Collapse
Affiliation(s)
- Yiwen Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Hamida RS, Shami A, Ali MA, Almohawes ZN, Mohammed AE, Bin-Meferij MM. Kefir: A protective dietary supplementation against viral infection. Biomed Pharmacother 2021; 133:110974. [PMID: 33186795 PMCID: PMC7655491 DOI: 10.1016/j.biopha.2020.110974] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a recently discovered coronavirus termed 'severe acute respiratory syndrome coronavirus 2' (SARS-CoV-2). Several scholars have tested antiviral drugs and compounds to overcome COVID-19. 'Kefir' is a fermented milk drink similar to a thin yogurt that is made from kefir grains. Kefir and its probiotic contents can modulate the immune system to suppress infections from viruses (e.g., Zika, hepatitis C, influenza, rotaviruses). The antiviral mechanisms of kefir involve enhancement of macrophage production, increasing phagocytosis, boosting production of cluster of differentiation-positive (CD4+), CD8+, immunoglobulin (Ig)G+ and IgA+ B cells, T cells, neutrophils, as well as cytokines (e.g., interleukin (IL)-2, IL-12, interferon gamma-γ). Kefir can act as an anti-inflammatory agent by reducing expression of IL-6, IL-1, TNF-α, and interferon-γ. Hence, kefir might be a significant inhibitor of the 'cytokine storm' that contributes to COVID-19. Here, we review several studies with a particular emphasis on the effect of kefir consumption and their microbial composition against viral infection, as well as discussing the further development of kefir as a protective supplementary dietary against SARS-CoV-2 infection via modulating the immune response.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Egypt.
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia.
| | - Zakiah Nasser Almohawes
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
24
|
Baghbani T, Nikzad H, Azadbakht J, Izadpanah F, Haddad Kashani H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb Cell Fact 2020; 19:217. [PMID: 33243230 PMCID: PMC7689646 DOI: 10.1186/s12934-020-01483-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
All of humans and other mammalian species are colonized by some types of microorganisms such as bacteria, archaea, unicellular eukaryotes like fungi and protozoa, multicellular eukaryotes like helminths, and viruses, which in whole are called microbiota. These microorganisms have multiple different types of interaction with each other. A plethora of evidence suggests that they can regulate immune and digestive systems and also play roles in various diseases, such as mental, cardiovascular, metabolic and some skin diseases. In addition, they take-part in some current health problems like diabetes mellitus, obesity, cancers and infections. Viral infection is one of the most common and problematic health care issues, particularly in recent years that pandemics like SARS and COVID-19 caused a lot of financial and physical damage to the world. There are plenty of articles investigating the interaction between microbiota and infectious diseases. We focused on stimulatory to suppressive effects of microbiota on viral infections, hoping to find a solution to overcome this current pandemic. Then we reviewed mechanistically the effects of both microbiota and probiotics on most of the viruses. But unlike previous studies which concentrated on intestinal microbiota and infection, our focus is on respiratory system's microbiota and respiratory viral infection, bearing in mind that respiratory system is a proper entry site and residence for viruses, and whereby infection, can lead to asymptomatic, mild, self-limiting, severe or even fatal infection. Finally, we overgeneralize the effects of microbiota on COVID-19 infection. In addition, we reviewed the articles about effects of the microbiota on coronaviruses and suggest some new therapeutic measures.
Collapse
Affiliation(s)
- Taha Baghbani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Azadbakht
- Department of Radiology, Faculty of Medicin, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Izadpanah
- Food and Drug Laboratory Research Center and Food and Drug Reference Control Laboratories Center, Food & Drug Administration of Iran, MOH & ME, Tehran, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
25
|
Gupta P, Singh MP, Goyal K. Diversity of Vaginal Microbiome in Pregnancy: Deciphering the Obscurity. Front Public Health 2020; 8:326. [PMID: 32793540 PMCID: PMC7393601 DOI: 10.3389/fpubh.2020.00326] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Human microbiota plays an indispensable role in physiology, nutrition and most significantly, in imparting immunity. The role of microbiota has remained cryptic for years, until recently meticulous studies revealed the interaction and dynamics of these microbial communities. This diversified state is governed by hormonal, behavioral and physio-chemical changes in the genital tract. Many inclusive studies have revealed "Lactobacillus" to be the most dominant member of vaginal flora in most of the healthy, reproductive age group and pregnant females. A total of five community state types have been described, out of which four are dominated by Lactobacillus while the fifth one by facultative or strict anaerobic species. A variation between species stability and gestational age has also been revealed. Studies have divulged a significant higher stability of vaginal microbiota in early stages of pregnancy and the same increased subsequently. Inter-species and racial variation has shown women belonging to White, Asian, and Caucasian race to harbor more of the anaerobic flora. The vaginal microbiome in pregnancy play a significant role in preterm and spontaneous labor. This Lactobacillus-rich microbiome falls tremendously, becoming more diverse in post-partum period. Apart from these known bacterial communities in human vagina, other microbial communities have also been traced. The major fragment is constituted by vaginal viral virome and very little information exists in relation to vaginal mycobiome. Studies have revealed the abundance of ds DNA viruses in vaginal microbiome, followed by ssDNA, and few unidentified viruses. The eukaryotic viruses detected were very few, with Herpesvirales, and Papillomaviridae being the only pathogenic ones. This flora is transmitted to infants either via maternal gut, vagina or breast milk. Recent studies have given an insight for vaginal microbiome, dissociating the old concept of "healthy" and "diseased." However, more extensive studies are required to study evolution of virome and mycobiome in relation to their association with bacterial communities; to establish and decode full array of vaginal virome under the influence of genotypic and environmental factors, using novel bioinformatic, multi-omic, statistical model, and CRISPR/Cas approaches.
Collapse
|
26
|
Chang-Liao WP, Lee A, Chiu YH, Chang HW, Liu JR. Isolation of a Leuconostoc mesenteroides Strain With Anti-Porcine Epidemic Diarrhea Virus Activities From Kefir Grains. Front Microbiol 2020; 11:1578. [PMID: 32760370 PMCID: PMC7373756 DOI: 10.3389/fmicb.2020.01578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Swine grown under commercial conditions are vulnerable to environmental exposure to several viruses, which may cause infectious diseases and spread easily and rapidly, resulting in significant economic losses in animal husbandry. Previous studies have suggested that probiotics seem to be a new and promising alternative to vaccinations to protect animals against potential viral infections. In this study, we used the Vero cell culture model of infection to study porcine epidemic diarrhea virus (PEDV). We screened lactic acid bacteria (LAB) with anti-PEDV potential from kefir grains, which are starter cultures used to ferment milk into kefir. Twenty-nine LAB strains were isolated and identified as Enterococcus durans, Lactobacillus kefiri, Lactococcus lactis, and Leuconostoc mesenteroides, according to 16S ribosomal RNA (rRNA) and rpoA gene sequence analyses. The anti-PEDV activities of the LAB intracellular extracts were compared, and the intracellular extracts of Ln. mesenteroides showed higher anti-PEDV activities than that of the other species. Among the Ln. mesenteroides strains, a strain designated YPK30 showed a higher growth rate than that of the other strains and was further evaluated for its anti-PEDV activity. The results showed that the intracellular extracts of Ln. mesenteroides YPK30 possessed in vitro prophylactic, therapeutic, and direct-inhibitory effects against PEDV in the Vero cell model. The expression levels of Type 1 interferon (IFN)-dependent genes, including Myxovirus resistance 1 (MX1) and interferon-stimulated gene 15 (ISG15), were significantly increased after treatment with intracellular extracts of Ln. mesenteroides YPK30 for 24 h. Such expression suggests that the anti-PEDV activity of Ln. mesenteroides YPK30 could be attributed to its up-regulatory effect on the expression of MX1 and ISG15 genes. These results suggested that Ln. mesenteroides YPK30 has the potential to provide some levels of host protection against PEDV infections.
Collapse
Affiliation(s)
| | - An Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Yu-Han Chiu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
27
|
Campisciano G, Gheit T, De Seta F, Cason C, Zanotta N, Delbue S, Ricci G, Ferrante P, Tommasino M, Comar M. Oncogenic Virome Benefits from the Different Vaginal Microbiome-Immune Axes. Microorganisms 2019; 7:E414. [PMID: 31581600 PMCID: PMC6843784 DOI: 10.3390/microorganisms7100414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
The picture of dynamic interaction between oncogenic viruses and the vaginal bacteria-immune host milieu is incomplete. We evaluated the impact of Polyomaviridae, Papillomaviridae, and Herpesviridae oncoviruses on the vaginal Community State Types (CSTs) and host immune response in reproductive-age women. In our cohort, only Polyomaviridae and Papillomaviridae were detected and were associated with changes in the resident bacteria of CST I and IV (p < 0.05). Lactobacillus crispatus increased in CST I while Prevotella timonensis and Sneathia sanguinegens increased in CST IV. Conversely, CST II and III showed an alteration of the immune response, with the decrease of Eotaxin, MCP-1, IL-7, IL-9, and IL-15 (p < 0.05), leading to reduced antiviral efficacy. An efficient viral clearance was observed only in women from CST I, dominated by Lactobacillus crispatus. Our in vivo study begins to address the knowledge gap with respect to the role of vaginal bacteria and immune response in susceptibility to oncoviral infections.
Collapse
Affiliation(s)
- Giuseppina Campisciano
- Advanced Laboratory of Translational Microbiology, Institute for maternal and child health "IRCCS Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy.
| | - Tarik Gheit
- Infections and Cancer Biology Group, IARC, 150 Cours Albert Thomas, 69008 Lyon, France.
| | - Francesco De Seta
- Advanced Laboratory of Translational Microbiology, Institute for maternal and child health "IRCCS Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy.
- Obstetrics and Gynecology, Institute for maternal and child health "IRCCS Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy.
| | - Carolina Cason
- Advanced Laboratory of Translational Microbiology, Institute for maternal and child health "IRCCS Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy.
- Department of Medical Sciences, UNITS Cattinara Hospital, Strada di Fiume 447, 34149 Trieste, Italy.
| | - Nunzia Zanotta
- Advanced Laboratory of Translational Microbiology, Institute for maternal and child health "IRCCS Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy.
| | - Serena Delbue
- Laboratory of Translational Research, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Carlo Pascal, 36, 20133 Milano, Italy.
| | - Giuseppe Ricci
- Advanced Laboratory of Translational Microbiology, Institute for maternal and child health "IRCCS Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy.
- Obstetrics and Gynecology, Institute for maternal and child health "IRCCS Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy.
| | - Pasquale Ferrante
- Laboratory of Translational Research, Department of Biomedical, Surgical and Dental Sciences, University of Milano, Via Carlo Pascal, 36, 20133 Milano, Italy.
| | - Massimo Tommasino
- Infections and Cancer Biology Group, IARC, 150 Cours Albert Thomas, 69008 Lyon, France.
| | - Manola Comar
- Advanced Laboratory of Translational Microbiology, Institute for maternal and child health "IRCCS Burlo Garofolo", Via dell'Istria 65, 34137 Trieste, Italy.
- Department of Medical Sciences, UNITS Cattinara Hospital, Strada di Fiume 447, 34149 Trieste, Italy.
| |
Collapse
|
28
|
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
| | - Fa-Kung Lee
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
29
|
Interactions Between Genital Microbiota and Viral Sexually Transmitted Infections: Transmission, Prevention, and Treatment. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|