1
|
Barmin RA, Dasgupta A, Rix A, Weiler M, Appold L, Rütten S, Padilla F, Kuehne AJC, Pich A, De Laporte L, Kiessling F, Pallares RM, Lammers T. Enhanced Stable Cavitation and Nonlinear Acoustic Properties of Poly(butyl cyanoacrylate) Polymeric Microbubbles after Bioconjugation. ACS Biomater Sci Eng 2024; 10:75-81. [PMID: 36315422 DOI: 10.1021/acsbiomaterials.2c01021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microbubbles (MB) are used as ultrasound (US) contrast agents in clinical settings because of their ability to oscillate upon exposure to acoustic pulses and generate nonlinear responses with a stable cavitation profile. Polymeric MB have recently attracted increasing attention as molecular imaging probes and drug delivery agents based on their tailorable acoustic responses, high drug loading capacity, and surface functionalization capabilities. While many of these applications require MB to be functionalized with biological ligands, the impact of bioconjugation on polymeric MB cavitation and acoustic properties remains poorly understood. Hence, we here evaluated the effects of MB shell hydrolysis and subsequent streptavidin conjugation on the acoustic behavior of poly(butyl cyanoacrylate) (PBCA) MB. We show that upon biofunctionalization, MB display higher acoustic stability, stronger stable cavitation, and enhanced second harmonic generation. Furthermore, functionalized MB preserve the binding capabilities of streptavidin conjugated on their surface. These findings provide insights into the effects of bioconjugation chemistry on polymeric MB acoustic properties, and they contribute to improving the performance of polymer-based US imaging and theranostic agents.
Collapse
Affiliation(s)
- Roman A Barmin
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Anshuman Dasgupta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Marek Weiler
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Lia Appold
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Stephan Rütten
- Electron Microscope Facility, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Frederic Padilla
- Focused Ultrasound Foundation, Charlottesville, Virginia 22903, United States
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon F-69003, France
- Department of Radiology, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Alexander J C Kuehne
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, 6167 RD Geleen, The Netherlands
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
- Institute of Applied Medical Engineering, Department of Advanced Materials for Biomedicine, RWTH Aachen University, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
2
|
Wirth G, Juusola G, Tarvainen S, Laakkonen JP, Korpisalo P, Ylä-Herttuala S. Capillary Dynamics Regulate Post-Ischemic Muscle Damage and Regeneration in Experimental Hindlimb Ischemia. Cells 2023; 12:2060. [PMID: 37626870 PMCID: PMC10453415 DOI: 10.3390/cells12162060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to show the significance of capillary function in post-ischemic recovery from the perspective of physiological parameters, such as blood flow, hemoglobin oxygenation and tissue regeneration. Muscle-level microvascular alterations of blood flow and hemoglobin oxygenation, and post-ischemic myofiber and capillary responses were analyzed in aged, healthy C57Bl/6J mice (n = 48) and aged, hyperlipidemic LDLR-/-ApoB100/100 mice (n = 69) after the induction of acute hindlimb ischemia using contrast ultrasound, photoacoustic imaging and histological analyses, respectively. The capillary responses that led to successful post-ischemic muscle repair in C57Bl/6J mice included an early capillary dilation phase, preceding the return of arterial driving pressure, followed by an increase in capillary density that further supported satellite cell-induced muscle regeneration. Initial capillary enlargement was absent in the LDLR-/-ApoB100/100 mice with lifelong moderate hypercholesterolemia and led to an inability to recover arterial driving pressure, with a resulting increase in distal necrosis, chronic tissue damage and a delay in the overall recovery after ischemia. To conclude, this manuscript highlights, beyond arterial collateralization, the importance of the proper function of the capillary endothelium in post-ischemic recovery and displays how post-ischemic capillary dynamics associate beyond tissue blood flow to both hemoglobin oxygenation and tissue regeneration.
Collapse
Affiliation(s)
- Galina Wirth
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Greta Juusola
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Santeri Tarvainen
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Petra Korpisalo
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, FI-70200 Kuopio, Finland (P.K.)
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
3
|
Becker AB, Chen L, Ning B, Hu S, Hossack JA, Klibanov AL, Annex BH, French BA. Contrast-Enhanced Ultrasound Reveals Partial Perfusion Recovery After Hindlimb Ischemia as Opposed to Full Recovery by Laser Doppler Perfusion Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1058-1069. [PMID: 35287996 PMCID: PMC9872654 DOI: 10.1016/j.ultrasmedbio.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 06/03/2023]
Abstract
Mouse models are critical in developing new therapeutic approaches to treat peripheral arterial disease (PAD). Despite decades of research and numerous clinical trials, the efficacy of available therapies is limited. This may suggest shortcomings in our current animal models and/or methods of assessment. We evaluated perfusion measurement methods in a mouse model of PAD by comparing laser Doppler perfusion imaging (LDPI, the most common technique), contrast-enhanced ultrasound (CEUS, an emerging technique) and fluorescent microspheres (conventional standard). Mice undergoing a femoral artery ligation were assessed by LDPI and CEUS at baseline and 1, 4, 7, 14, 28, 60, 90 and 150 d post-surgery to evaluate perfusion recovery in the ischemic hindlimb. Fourteen days after surgery, additional mice were measured with fluorescent microspheres, LDPI, and CEUS. LDPI and CEUS resulted in broadly similar trends of perfusion recovery until 7 d post-surgery. However, by day 14, LDPI indicated full recovery of perfusion, whereas CEUS indicated ∼50% recovery, which failed to improve even after 5 mo. In agreement with the CEUS results, fluorescent microspheres at day 14 post-surgery confirmed that perfusion recovery was incomplete. Histopathology and photoacoustic microscopy provided further evidence of sustained vascular abnormalities.
Collapse
Affiliation(s)
- Alyssa B Becker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Lanlin Chen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Bo Ning
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - John A Hossack
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Alexander L Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, Virginia, USA
| | - Brian H Annex
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, Virginia, USA
| | - Brent A French
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
4
|
Zheng BW, Wu T, Ju JX, Wu LL, Zhang HJ, Lian YF, Tong G, Li QJ, Qiu C, Zhou HC, Zheng RQ, Ren J. Contrast-Enhanced Ultrasound for Biliary Ischemia: A Possible New Clinical Indication. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:1927-1934. [PMID: 33270273 DOI: 10.1002/jum.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Biliary perfusion is considered to contribute to biliary diseases, but routine imaging methods are insufficient to show it. This research investigated the ability of contrast-enhanced ultrasound (CEUS) for biliary perfusion in a biliary ischemia model. METHODS This research consisted of 2 parts. First, to determine whether CEUS enhancement of the tiny biliary wall represents biliary perfusion, a vascular tracer was used as a reference to evaluate the consistency with the enhancement of the biliary wall on CEUS and the staining by the vascular tracer under the conditions of occluded and recovered biliary perfusion. In the second part, the ability of CEUS for biliary ischemia was further evaluated with microvascular density measurement as a reference. The enhancement patterns were assigned CEUS scores, in which higher scores meant more decreased enhancement, and the diagnostic ability of CEUS was assessed by a receiver operating characteristic curve analysis. RESULTS The biliary wall was unstained by the vascular tracer and nonenhanced on CEUS when biliary perfusion was interrupted and was stained blue and enhanced after recovery. The biliary wall in the ischemia surgery group showed lower microvascular density measurements (P < .001), decreased enhancement levels (P < .001), and higher CEUS scores (P < .001). When a CEUS score of 3 or higher (obvious decrease of the biliary wall to hypoenhancement or nonenhancement in the arterial phase or rapid wash-out to nonenhancement in the portal venous phase) was applied, CEUS had sensitivity of 87.8%, specificity of 98.3%, accuracy of 93.8%, and an area under the receiver operating characteristic curve of 0.98. CONCLUSIONS Contrast enhancement of the biliary wall on CEUS represents biliary perfusion and has reasonably good diagnostic performance for biliary ischemia in an experimental animal setting.
Collapse
Affiliation(s)
- Bo-Wen Zheng
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Tao Wu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Jin-Xiu Ju
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Li-Li Wu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Hong-Jun Zhang
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Yu-Fan Lian
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Ge Tong
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Qiao-Jia Li
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Chen Qiu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Hui-Chao Zhou
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Rong-Qin Zheng
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| | - Jie Ren
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University, Guangdong Province Key Laboratory of Hepatology Research, Guangzhou, China
| |
Collapse
|
5
|
Leikas AJ, Laham-Karam N, Agtereek E, Peltonen HM, Selander T, Korpisalo P, Holappa L, Hartikainen JEK, Heikura T, Ylä-Herttuala S. Efficacy and Safety of Clinical-Grade Human Vascular Endothelial Growth Factor-D ΔNΔC Gene Therapy Containing Residual Replication-Competent Adenoviruses. Hum Gene Ther 2021; 32:761-770. [PMID: 33371775 DOI: 10.1089/hum.2020.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Biological bypass through induced angiogenesis by vascular endothelial growth factor D (VEGF-D) gene therapy (GT) is a new concept for the treatment of cardiac ischemia. Serotype 5 adenoviruses are used in the clinical trials for transferring the VEGF-D cDNA into the ischemic myocardium. However, the presence of replication-competent vectors in the adenovirus products is a widely recognized problem that may pose a potential safety risk to the treated patients. We compared three different VEGF-D GT production lots containing different levels of replication-competent adenoviruses (RCA) tested in 3 × 1010 viral particles (vp): <10 RCA (VEGF-D L-RCA1), 10-100 RCA (VEGF-D H-RCA2), and 100-200 RCA (VEGF-D H-RCA3), as measured by a novel droplet digital polymerase chain reaction (PCR) RCA assay in a preclinical rabbit model (n = 21). β-galactosidase encoding nonclinical-grade preparation was used as a nonangiogenic control. Each preparation was injected into the right semimembranosus muscle using dose of 1 × 1011 vp. Efficacy of the products was tested by the combination of contrast pulse sequencing ultrasound and modified Miles assay as well as quantifying the total cross-sectional area of capillaries. Safety, immunogenicity, toxicity, biodistribution, and shedding were assessed by general histology, serial measurements of C-reactive protein, white blood cell count and body temperature as well as using quantitative real-time PCR with primers targeted to the VEGF-D and replication-permitting E1 sequences. We found no significant differences in the efficacy or safety between the study groups. Most importantly, no detectable presence of RCA-specific E1 sequence was found in any samples tested, indicating that no detectable vector replication took place in vivo. We conclude that relatively low levels of RCA in adenoviral GT products may not be as important major safety issue as previously anticipated.
Collapse
Affiliation(s)
- Aleksi J Leikas
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eline Agtereek
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Tuomas Selander
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Petra Korpisalo
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Lari Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha E K Hartikainen
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Tommi Heikura
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, Kuopio, Finland.,A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
6
|
Soliman MA, Guccione J, Reiter AM, Moawad AW, Etchison A, Kamel S, Khatchikian AD, Elsayes KM. Current Concepts in Multi-Modality Imaging of Solid Tumor Angiogenesis. Cancers (Basel) 2020; 12:cancers12113239. [PMID: 33153067 PMCID: PMC7692820 DOI: 10.3390/cancers12113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The recent increase in the use of targeted molecular therapy including anti-angiogenetic agents in cancer treatment necessitate the use of robust tools to assess and guide treatment. Angiogenesis, the formation of new disorganized blood vessels, is used by tumor cells to grow and spread using different mechanisms that could be targeted by anti-angiogenetic agents. In this review, we discuss the biological principles of tumor angiogenesis and the imaging modalities that could provide information beyond gross tumor size and morphology to capture the efficacy of anti-angiogenetic therapeutic response. Abstract There have been rapid advancements in cancer treatment in recent years, including targeted molecular therapy and the emergence of anti-angiogenic agents, which necessitate the need to quickly and accurately assess treatment response. The ideal tool is robust and non-invasive so that the treatment can be rapidly adjusted or discontinued based on efficacy. Since targeted therapies primarily affect tumor angiogenesis, morphological assessment based on tumor size alone may be insufficient, and other imaging modalities and features may be more helpful in assessing response. This review aims to discuss the biological principles of tumor angiogenesis and the multi-modality imaging evaluation of anti-angiogenic therapeutic responses.
Collapse
Affiliation(s)
- Moataz A. Soliman
- Department of Diagnostic Radiology, Northwestern University, Evanston, IL 60201, USA;
| | - Jeffrey Guccione
- Department of Diagnostic and Interventional Imaging, The University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA;
| | - Anna M. Reiter
- School of Medicine, University of Texas Southwestern, Dallas, TX 75390, USA;
| | - Ahmed W. Moawad
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ashley Etchison
- Department of Diagnostic Radiology, Baylor College of Medicine, Houston, TX 76798, USA;
| | - Serageldin Kamel
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Aline D. Khatchikian
- Department of Diagnostic Radiology, McGill University, Montreal, QC H3G 1A4, Canada;
| | - Khaled M. Elsayes
- Department of Diagnostic Radiology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence:
| |
Collapse
|
7
|
Hytönen JP, Leppänen O, Taavitsainen J, Korpisalo P, Laidinen S, Alitalo K, Wadström J, Rissanen TT, Ylä-Herttuala S. Improved endothelialization of small-diameter ePTFE vascular grafts through growth factor therapy. VASCULAR BIOLOGY 2019; 1:1-9. [PMID: 32923945 PMCID: PMC7449264 DOI: 10.1530/vb-18-0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023]
Abstract
Background Prosthetic vascular grafts in humans characteristically lack confluent endothelialization regardless of the duration of implantation. Use of high-porosity grafts has been proposed as a way to induce endothelialization through transgraft capillarization, although early experiments failed to show increased healing in man. Objectives We hypothesized that transduction of tissues around the prosthetic conduit with vectors encoding VEGF receptor-2 (VEGFR2) ligands would augment transinterstitial capillarization and induce luminal endothelialization of high-porosity ePTFE grafts. Methods Fifty-two NZW rabbits received 87 ePTFE uni- or bilateral end-to-end interposition grafts in carotid arteries. Rabbits were randomized to local therapy with adenoviruses encoding AdVEGF-A165, AdVEGF-A109 or control AdLacZ and analyzed at 6 and 28 days after surgery by contrast-enhanced ultrasound and histology. Results AdVEGF-A165 and AdVEGF-A109 dramatically increased perfusion in perigraft tissues at 6 days (14.2 ± 3.6 or 16.7 ± 2.6-fold increases, P < 0.05 and P < 0.01). At 28 days, the effect was no longer significantly higher than baseline. At 6 days, no luminal endothelialization was observed in any of the groups. At 28 days, AdVEGF-A109- and AdVEGF-A165-treated animals showed enhanced ingrowth of transinterstitial capillaries (66.0 ± 13.7% and 77.4 ± 15.7% of graft thickness vs 44.7 ± 24.4% in controls, P < 0.05) and improved luminal endothelialization (11.2 ± 26.3% and 11.4 ± 22.2%, AdVEGF-A109 and AdVEGF-A165 vs 0% in controls, P < 0.05). No increased stenosis was observed in the treatment groups as compared to LacZ controls. Conclusions This study suggests that transient local overexpression of VEGFR2 ligands in the peri-implant tissues at the time of graft implantation is a novel strategy to increase endothelialization of high-porosity ePTFE vascular grafts and improve the patency of small-diameter vascular prostheses.
Collapse
Affiliation(s)
- Jarkko P Hytönen
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Leppänen
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jouni Taavitsainen
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Petra Korpisalo
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Svetlana Laidinen
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kari Alitalo
- Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, Helsinki, Finland
| | - Jonas Wadström
- Department of Transplantation Surgery, Karolinska Hospital Huddinge, Karolinska Institute, Stockholm, Sweden
| | | | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute of Molecular Medicine, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
8
|
Super-resolution ultrasound imaging method for microvasculature in vivo with a high temporal accuracy. Sci Rep 2018; 8:13918. [PMID: 30224779 PMCID: PMC6141566 DOI: 10.1038/s41598-018-32235-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Traditional ultrasound imaging techniques are limited in spatial resolution to visualize angiogenic vasa vasorum that is considered as an important marker for atherosclerotic plaque progression and vulnerability. The recently introduced super-resolution imaging technique based on microbubble center localization has shown potential to achieve unprecedented high spatial resolution beyond the acoustic diffraction limit. However, a major drawback of the current super-resolution imaging approach is low temporal resolution because it requires a large number of imaging frames. In this study, a new imaging sequence and signal processing approach for super-resolution ultrasound imaging are presented to improve temporal resolution by employing deconvolution and spatio-temporal-interframe-correlation based data acquisition. In vivo feasibility of the developed technology is demonstrated and evaluated in imaging vasa vasorum in the rabbit atherosclerosis model. The proposed method not only identifies a tiny vessel with a diameter of 41 μm, 5 times higher spatial resolution than the acoustic diffraction limit at 7.7 MHz, but also significantly improves temporal resolution that allows for imaging vessels over cardiac motion.
Collapse
|
9
|
Groppa E, Brkic S, Uccelli A, Wirth G, Korpisalo-Pirinen P, Filippova M, Dasen B, Sacchi V, Muraro MG, Trani M, Reginato S, Gianni-Barrera R, Ylä-Herttuala S, Banfi A. EphrinB2/EphB4 signaling regulates non-sprouting angiogenesis by VEGF. EMBO Rep 2018; 19:embr.201745054. [PMID: 29643120 PMCID: PMC5934775 DOI: 10.15252/embr.201745054] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis, whose best-understood mechanism is sprouting. However, therapeutic VEGF delivery to ischemic muscle induces angiogenesis by the alternative process of intussusception, or vascular splitting, whose molecular regulation is essentially unknown. Here, we identify ephrinB2/EphB4 signaling as a key regulator of intussusceptive angiogenesis and its outcome under therapeutically relevant conditions. EphB4 signaling fine-tunes the degree of endothelial proliferation induced by specific VEGF doses during the initial stage of circumferential enlargement of vessels, thereby limiting their size and subsequently enabling successful splitting into normal capillary networks. Mechanistically, EphB4 neither inhibits VEGF-R2 activation by VEGF nor its internalization, but it modulates VEGF-R2 downstream signaling through phospho-ERK1/2. In vivo inhibitor experiments show that ERK1/2 activity is required for EphB4 regulation of VEGF-induced intussusceptive angiogenesis. Lastly, after clinically relevant VEGF gene delivery with adenoviral vectors, pharmacological stimulation of EphB4 normalizes dysfunctional vascular growth in both normoxic and ischemic muscle. These results identify EphB4 as a druggable target to modulate the outcome of VEGF gene delivery and support further investigation of its therapeutic potential.
Collapse
Affiliation(s)
- Elena Groppa
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Sime Brkic
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Andrea Uccelli
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Galina Wirth
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Maria Filippova
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Boris Dasen
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Veronica Sacchi
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Manuele Giuseppe Muraro
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Marianna Trani
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Silvia Reginato
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Roberto Gianni-Barrera
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital, Basel, Switzerland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Andrea Banfi
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland .,Department of Surgery, University Hospital, Basel, Switzerland
| |
Collapse
|
10
|
Shelton SE, Lindsey BD, Dayton PA, Lee YZ. First-in-Human Study of Acoustic Angiography in the Breast and Peripheral Vasculature. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2939-2946. [PMID: 28982628 PMCID: PMC6267932 DOI: 10.1016/j.ultrasmedbio.2017.08.1881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 05/07/2023]
Abstract
Screening with mammography has been found to increase breast cancer survival rates by about 20%. However, the current system in which mammography is used to direct patients toward biopsy or surgical excision also results in relatively high rates of unnecessary biopsy, as 66.8% of biopsies are benign. A non-ionizing radiation imaging approach with increased specificity might reduce the rate of unnecessary biopsies. Quantifying the vascular characteristics within and surrounding lesions represents one potential target for assessing likelihood of malignancy via imaging. In this clinical note, we describe the translation of a contrast-enhanced ultrasound technique, acoustic angiography, to human imaging. We illustrate the feasibility of this technique with initial studies in imaging the hand, wrist and breast using Definity microbubble contrast agent and a mechanically steered prototype dual-frequency transducer in healthy volunteers. Finally, this approach was used to image pre-biopsy Breast Imaging Reporting and Data System (BI-RADS) 4 and 5 lesions <2 cm in depth in 11 patients. Results indicate that sensitivity and spatial resolution are sufficient to image vessels as small as 0.2 mm in diameter at depths of ~15 mm in the human breast. Challenges observed include motion artifacts, as well as limited depth of field and sensitivity, which could be improved by correction algorithms and improved transducer technologies.
Collapse
Affiliation(s)
- Sarah E Shelton
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA; Biomedical Research Imaging Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.
| | - Yueh Z Lee
- Biomedical Research Imaging Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA; Department of Radiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Toivanen PI, Nieminen T, Laakkonen JP, Heikura T, Kaikkonen MU, Ylä-Herttuala S. Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling. Sci Rep 2017; 7:5525. [PMID: 28717175 PMCID: PMC5514023 DOI: 10.1038/s41598-017-05876-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/05/2017] [Indexed: 01/13/2023] Open
Abstract
Vascular Endothelial Growth Factors (VEGFs) are promising molecules for the treatment of ischemic diseases by pro-angiogenic therapy. Snake venom VEGFs are a novel subgroup with unique receptor binding profiles and as such are potential new therapeutic agents. We determined the ligand-receptor interactions, gene regulation and angiogenic properties of Vipera ammodytes venom VEGF, Vammin, and compared it to the canonical angiogenic factor VEGF-A to evaluate the use of Vammin for therapeutic angiogenesis. Vammin efficiently induced VEGFR-2 mediated proliferation and expression of genes associated with proliferation, migration and angiogenesis. VEGF-A165 and especially VEGF-A109 induced less pronounced effects. Vammin regulates a number of signaling pathways by inducing the expression of NR4A family nuclear receptors and regulators of calcium signaling and MAP kinase pathways. Interestingly, MARC1, which encodes an enzyme discovered to catalyze reduction of nitrate to NO, was identified as a novel VEGFR-2 regulated gene. In rabbit skeletal muscle adenoviral delivery of Vammin induced prominent angiogenic responses. Both the vector dose and the co-receptor binding of the ligand were critical parameters controlling the type of angiogenic response from sprouting angiogenesis to vessel enlargement. Vammin induced VEGFR-2/NRP-1 mediated signaling more effectively than VEGF-A, consequently it is a promising candidate for development of pro-angiogenic therapies.
Collapse
Affiliation(s)
- Pyry I Toivanen
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna P Laakkonen
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tommi Heikura
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U Kaikkonen
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland. .,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
12
|
Lindsey BD, Shelton SE, Martin KH, Ozgun KA, Rojas JD, Foster FS, Dayton PA. High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography. Ann Biomed Eng 2016; 45:939-948. [PMID: 27832421 DOI: 10.1007/s10439-016-1753-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
Mapping blood perfusion quantitatively allows localization of abnormal physiology and can improve understanding of disease progression. Dynamic contrast-enhanced ultrasound is a low-cost, real-time technique for imaging perfusion dynamics with microbubble contrast agents. Previously, we have demonstrated another contrast agent-specific ultrasound imaging technique, acoustic angiography, which forms static anatomical images of the superharmonic signal produced by microbubbles. In this work, we seek to determine whether acoustic angiography can be utilized for high resolution perfusion imaging in vivo by examining the effect of acquisition rate on superharmonic imaging at low flow rates and demonstrating the feasibility of dynamic contrast-enhanced superharmonic perfusion imaging for the first time. Results in the chorioallantoic membrane model indicate that frame rate and frame averaging do not affect the measured diameter of individual vessels observed, but that frame rate does influence the detection of vessels near and below the resolution limit. The highest number of resolvable vessels was observed at an intermediate frame rate of 3 Hz using a mechanically-steered prototype transducer. We also demonstrate the feasibility of quantitatively mapping perfusion rate in 2D in a mouse model with spatial resolution of ~100 μm. This type of imaging could provide non-invasive, high resolution quantification of microvascular function at penetration depths of several centimeters.
Collapse
Affiliation(s)
- Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Sarah E Shelton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - K Heath Martin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Kathryn A Ozgun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | | | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA. .,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Kalmuk J, Folaron M, Buchinger J, Pili R, Seshadri M. Multimodal imaging guided preclinical trials of vascular targeting in prostate cancer. Oncotarget 2016. [PMID: 26203773 PMCID: PMC4695192 DOI: 10.18632/oncotarget.4463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The high mortality rate associated with castration-resistant prostate cancer (CRPC) underscores the need for improving therapeutic options for this patient population. The purpose of this study was to examine the potential of vascular targeting in prostate cancer. Experimental studies were carried out in subcutaneous and orthotopic Myc-CaP prostate tumors implanted into male FVB mice to examine the efficacy of a novel microtubule targeted vascular disrupting agent (VDA), EPC2407 (Crolibulin™). A non-invasive multimodality imaging approach based on magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and ultrasound (US) was utilized to guide preclinical trial design and monitor tumor response to therapy. Imaging results were correlated with histopathologic assessment, tumor growth and survival analysis. Contrast-enhanced MRI revealed potent antivascular activity of EPC2407 against subcutaneous and orthotopic Myc-CaP tumors. Longitudinal BLI of Myc-CaP tumors expressing luciferase under the androgen response element (Myc-CaP/ARE-luc) revealed changes in AR signaling and reduction in intratumoral delivery of luciferin substrate following castration suggestive of reduced blood flow. This reduction in blood flow was validated by US and MRI. Combination treatment resulted in sustained vascular suppression, inhibition of tumor regrowth and conferred a survival benefit in both models. These results demonstrate the therapeutic potential of vascular targeting in combination with androgen deprivation against prostate cancer.
Collapse
Affiliation(s)
- James Kalmuk
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Current address: SUNY Upstate Medical University, Syracuse, NY, USA
| | - Margaret Folaron
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Julian Buchinger
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Current address: University at Buffalo - School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Roberto Pili
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
14
|
Avigo C, Flori A, Armanetti P, Di Lascio N, Kusmic C, Jose J, Losi P, Soldani G, Faita F, Menichetti L. Strategies for non-invasive imaging of polymeric biomaterial in vascular tissue engineering and regenerative medicine using ultrasound and photoacoustic techniques. POLYM INT 2016. [DOI: 10.1002/pi.5113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Cinzia Avigo
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Alessandra Flori
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Paolo Armanetti
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Nicole Di Lascio
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Jithin Jose
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Paola Losi
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Giorgio Soldani
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Francesco Faita
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Luca Menichetti
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
15
|
Herteman N, Bullone M, Lavoie JP. Endoscopic Evaluation of Angiogenesis in the Large Airways of Horses with Heaves Using Narrow Band Imaging. J Vet Intern Med 2016; 30:671-4. [PMID: 26926661 PMCID: PMC4913588 DOI: 10.1111/jvim.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 01/04/2023] Open
Abstract
Background Heaves is a severe debilitating condition of horses, characterized by lower airway inflammation and permanent structural changes of the bronchial wall. Chronic inflammation promotes the formation of new vessels, a phenomenon known as angiogenesis. Narrow band imaging (NBI) endoscopy is a noninvasive technique that enhances the visualization of submucosal vessels, and commonly is employed for the study of angiogenesis in human patients. Objectives Using NBI, we aimed to determine whether or not the central airways of horses with heaves undergo angiogenesis. Animals Horses with heaves during exacerbation of the disease (n = 5) and healthy controls (n = 6). Methods A library of NBI images was established from previously recorded videoendoscopies. Images were acquired by an operator blinded to horse ID. Images were obtained from 3 sites: 130 from the trachea (14 ± 9.3 [mean ± SD] images per horse with heaves and 10 ± 5.4 from controls; P = .45), 58 from the carina (5.4 ± 3.2 from horses with heaves and 5.2 ± 2.8 fromn controls; P > .99) and 167 from the intermediate bronchi (17.8 ± 6.7 from horses with heaves and 13 ± 5.6 from controls; P = .17). Using dedicated stereology software (NewCAST, Visiopharm; Denmark), the volume density of superficial and deep vessels was calculated blindly by point counting at each site for all horses. Results In the trachea, the volume density of superficial vessels was increased in horses with heaves compared to controls (P = .02). No difference was found between groups for the volume density of both superficial and deep vessels at the carina or intermediate bronchi. Conclusion and Clinical Relevance NBI imaging of the airways was easily performed in standing sedated horses.
Collapse
Affiliation(s)
- N Herteman
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - M Bullone
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - J-P Lavoie
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
16
|
Rizzo G, Raffeiner B, Coran A, Ciprian L, Fiocco U, Botsios C, Stramare R, Grisan E. Pixel-based approach to assess contrast-enhanced ultrasound kinetics parameters for differential diagnosis of rheumatoid arthritis. J Med Imaging (Bellingham) 2015; 2:034503. [PMID: 27014713 DOI: 10.1117/1.jmi.2.3.034503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022] Open
Abstract
Inflammatory rheumatic diseases are the leading causes of disability and constitute a frequent medical disorder, leading to inability to work, high comorbidity, and increased mortality. The standard for diagnosing and differentiating arthritis is based on clinical examination, laboratory exams, and imaging findings, such as synovitis, bone edema, or joint erosions. Contrast-enhanced ultrasound (CEUS) examination of the small joints is emerging as a sensitive tool for assessing vascularization and disease activity. Quantitative assessment is mostly performed at the region of interest level, where the mean intensity curve is fitted with an exponential function. We showed that using a more physiologically motivated perfusion curve, and by estimating the kinetic parameters separately pixel by pixel, the quantitative information gathered is able to more effectively characterize the different perfusion patterns. In particular, we demonstrated that a random forest classifier based on pixelwise quantification of the kinetic contrast agent perfusion features can discriminate rheumatoid arthritis from different arthritis forms (psoriatic arthritis, spondyloarthritis, and arthritis in connective tissue disease) with an average accuracy of 97%. On the contrary, clinical evaluation (DAS28), semiquantitative CEUS assessment, serological markers, or region-based parameters do not allow such a high diagnostic accuracy.
Collapse
Affiliation(s)
- Gaia Rizzo
- University of Padova , Department of Information Engineering, G. Gradenigo 6/A, Padova 35131, Italy
| | - Bernd Raffeiner
- General Hospital of Bolzano , Rheumatology Unit, Via Lorenz Boehler 5, Bolzano 39100, Italy
| | - Alessandro Coran
- University of Padova , Department of Medicine, Via Giustiniani 2, Padova 35128, Italy
| | - Luca Ciprian
- Nursing Home Giovanni XXIII , Via Giovanni XXIII 7, Monastier di Treviso (TV) 31050, Italy
| | - Ugo Fiocco
- University of Padova , Department of Medicine, Via Giustiniani 2, Padova 35128, Italy
| | - Costantino Botsios
- University of Padova , Department of Medicine, Via Giustiniani 2, Padova 35128, Italy
| | - Roberto Stramare
- University of Padova , Department of Medicine, Via Giustiniani 2, Padova 35128, Italy
| | - Enrico Grisan
- University of Padova , Department of Information Engineering, G. Gradenigo 6/A, Padova 35131, Italy
| |
Collapse
|
17
|
Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. J Control Release 2015. [PMID: 26216396 DOI: 10.1016/j.jconrel.2015.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dexamethasone-releasing PLGA poly(lactic-co-glycolic acid) microsphere/PVA (polyvinyl alcohol) hydrogel composite coatings have been shown to prevent the foreign body reaction (FBR) to subcutaneous implants in small and large animal models. Such coatings were developed to extend the lifetime of implantable biosensors. However, long-term exposure of tissue to low levels of dexamethasone results in a reduction in blood vessel density due to the anti-angiogenic effect of dexamethasone. This mild effect, while not threatening to the subject's health, may interfere with analyte detection and the sensor response time over the long-term. The present work is focused on the development of coatings that deliver combinations of three tissue response modifiers (TRMs): dexamethasone, VEGF (vascular endothelial growth factor) and PDGF (platelet derived growth factor). Dexamethasone, VEGF and PDGF prevent the FBR, increase angiogenesis and promote blood vessel maturation (which increases blood flow), respectively. To minimize any potential interference among these three TRMs (for example, PDGF increases fibrosis), the relative doses of dexamethasone, VEGF and PDGF were adjusted. It was determined that: a) all three TRMs are required for maximum promotion of angiogenesis, blood vessel maturation and prevention of the FBR; b) VEGF has to be administered at higher doses than PDGF; c) an increase in dexamethasone dosing must be accompanied by a proportional increase in growth factor dosing; and d) modification of the TRM ratio can achieve a constant capillary density throughout the implantation period which is important for applications such as biosensors to maintain sensitivity and a stable sensor baseline. Moreover, an osmosis-driven process for encapsulation of proteins in PLGA microspheres that showed low burst release was developed.
Collapse
|
18
|
Nieminen T, Toivanen PI, Laakkonen JP, Heikura T, Kaikkonen MU, Airenne KJ, Ylä-Herttuala S. Slit2 modifies VEGF-induced angiogenic responses in rabbit skeletal muscle via reduced eNOS activity. Cardiovasc Res 2015; 107:267-76. [DOI: 10.1093/cvr/cvv161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/17/2015] [Indexed: 01/31/2023] Open
|
19
|
Eo S, Kwon C, Lee H, Cho S, Kim J, Baek G, Yeo J, Lim C. Quantification of the effect of Lipo-PGE1 on angiogenesis. J Plast Reconstr Aesthet Surg 2014; 68:104-12. [PMID: 25448364 DOI: 10.1016/j.bjps.2014.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/07/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Fifteen rabbits were used to assess the effect of Lipo-PGE1 on neovascularization. Merocel(®) and Alloderm(®) of the same size were implanted separately under the back skin to act as matrices for vessel growth. Lipo-PGE1 was injected intravenously for 2 weeks in an experimental group of eight rabbits, and they were compared with a control group of seven untreated animals. Blood flow was measured using the (99m)TcO4(-) clearance technique. The mean blood clearance halftime (T1/2) and washout radioactivity were measured. Newly formed vessels were counted by CD31. The mean clearance halftime was 4005 ± 2161.3 and 13840 ± 4644.6 s in the experimental and control group, respectively, in the 1 × 2 × 1.5-cm-sized implants (p = 0.0125), and 1560 ± 1174.7 and 3405 ± 807.03 s, respectively, in the 2 × 2 × 1.5-cm-sized implants (p = 0.0413). Histological examinations revealed that the mean numbers of newly formed vessels in the experimental and control groups were 11 ± 1.58 and 7.8 ± 1.71, respectively, in the 1 × 2 × 1.5-cm-sized implants (p = 0.0501), and 20.19 ± 12.47 and 12.33 ± 3.25, respectively, in the 2 × 2 × 1.5-cm-sized implants (p = 0.02679). Lipo-PGE1 was found to be effective in promoting angiogenesis in a rabbit matrix model.
Collapse
Affiliation(s)
- SuRak Eo
- Department of Plastic and Reconstructive Surgery, DongGuk University Graduate School of Medicine, Seoul, South Korea.
| | - Chan Kwon
- Department of Plastic and Reconstructive Surgery, DongGuk University Graduate School of Medicine, Seoul, South Korea
| | - HyunJic Lee
- Department of Plastic and Reconstructive Surgery, DongGuk University Graduate School of Medicine, Seoul, South Korea
| | - SangHun Cho
- Department of Plastic and Reconstructive Surgery, DongGuk University Graduate School of Medicine, Seoul, South Korea
| | - JinYoung Kim
- Department of Orthopaedic Surgery, DongGuk University Graduate School of Medicine, Seoul, South Korea
| | - GooHyun Baek
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, South Korea
| | - JeongSeok Yeo
- Department of Nuclear Medicine, DongGuk University Graduate School of Medicine, Seoul, South Korea
| | - ChiYeon Lim
- Department of Clinical Trial Test, DongGuk University Graduate School of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Korpisalo P, Hytönen JP, Laitinen JTT, Närväinen J, Rissanen TT, Gröhn OH, Ylä-Herttuala S. Ultrasound imaging with bolus delivered contrast agent for the detection of angiogenesis and blood flow irregularities. Am J Physiol Heart Circ Physiol 2014; 307:H1226-32. [DOI: 10.1152/ajpheart.00315.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Highly increased blood flow and vascularity after angiogenic gene therapy have raised concerns of shunting and hemangioma-like blood pool formation that might decrease effective perfusion and ruin the beneficial effects of the therapy. Contrast enhanced ultrasound is a promising noninvasive tool for studying skeletal muscle perfusion. The objectives of the present study were to test bolus and infusion administrations of ultrasound microbubble contrast media in imaging vascular growth in skeletal muscle and assess the functionality of vessels grown with angiogenic gene therapy. Contrast enhanced ultrasound was used to study changes in skeletal muscle perfusion in normal and gene-transduced rabbit hindlimbs 6 days after gene transfer. Adenoviral gene transfer of VEGF (10 e9–10 e11 viral particles) or β-galactosidase control gene (10 e11 viral particles) was done under anesthesia and induced up to 16-fold increases in relative tissue perfusion. Contrast intensity versus time curves were plotted and analyzed for contrast kinetics. Bolus administration of the contrast media was highly feasible in analyzing skeletal muscle blood flow and its kinetics. Maximal signal intensity of the bolus signal reflected relative changes in both blood flow and volume equally to the infusion method. Flow irregularities were detected after angiogenic gene therapy. In conclusion, bolus delivery of ultrasound contrast agent is highly feasible for the relative analysis of both quantity and quality of blood flow after angiogenic gene therapy. The kinetics of blood flow can and should be studied more extensively in both preclinical and clinical trials of angiogenic gene therapy since there is increasing evidence of flow irregularities in angiogenic vessels.
Collapse
Affiliation(s)
- Petra Korpisalo
- Department of Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Jarkko P. Hytönen
- Department of Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Johannes T. T. Laitinen
- Department of Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Johanna Närväinen
- Department of Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Tuomas T. Rissanen
- Department of Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Olli H. Gröhn
- Biomedical Imaging Unit, Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Molecular Medicine, A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Science Service Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
21
|
Pysz MA, Machtaler SB, Seeley ES, Lee JJ, Brentnall TA, Rosenberg J, Tranquart F, Willmann JK. Vascular endothelial growth factor receptor type 2-targeted contrast-enhanced US of pancreatic cancer neovasculature in a genetically engineered mouse model: potential for earlier detection. Radiology 2014; 274:790-9. [PMID: 25322341 DOI: 10.1148/radiol.14140568] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE To test ultrasonographic (US) imaging with vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted microbubble contrast material for the detection of pancreatic ductal adenocarcinoma (PDAC) in a transgenic mouse model of pancreatic cancer development. MATERIALS AND METHODS Experiments involving animals were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. Transgenic mice (n = 44; Pdx1-Cre, KRas(G12D), Ink4a(-/-)) that spontaneously develop PDAC starting at 4 weeks of age were imaged by using a dedicated small-animal US system after intravenous injection of 5 × 10(7) clinical-grade VEGFR2-targeted microbubble contrast material. The pancreata in wild-type (WT) mice (n = 64) were scanned as controls. Pancreatic tissue was analyzed ex vivo by means of histologic examination (with hematoxylin-eosin staining) and immunostaining of vascular endothelial cell marker CD31 and VEGFR2. The Wilcoxon rank sum test and linear mixed-effects model were used for statistical analysis. RESULTS VEGFR2-targeted US of PDAC showed significantly higher signal intensities (26.8-fold higher; mean intensity ± standard deviation, 6.7 linear arbitrary units [lau] ± 8.5; P < .001) in transgenic mice compared with normal, control pancreata of WT mice (mean intensity, 0.25 lau ± 0.25). The highest VEGFR2-targeted US signal intensities were observed in smaller tumors, less than 3 mm in diameter (30.8-fold higher than control tissue with mean intensity of 7.7 lau ± 9.3 [P < .001]; and 1.7-fold higher than lesions larger than 3 mm in diameter with mean intensity of 4.6 lau ± 5.8 [P < .024]). Ex vivo quantitative VEGFR2 immunofluorescence demonstrated that VEGFR2 expression was significantly higher in pancreatic tumors (P < .001; mean fluorescent intensity, 499.4 arbitrary units [au] ± 179.1) compared with normal pancreas (mean fluorescent intensity, 232.9 au ± 83.7). CONCLUSION US with clinical-grade VEGFR2-targeted microbubbles allows detection of small foci of PDAC in transgenic mice.
Collapse
Affiliation(s)
- Marybeth A Pysz
- From the Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford University, 300 Pasteur Dr, Room H1307, Stanford, CA 94305 (M.A.P., S.B.M., J.R., J.K.W.); Department of Pathology, University of California at San Francisco, San Francisco, Calif (E.S.S.); Department of Developmental Biology, Institute for Stem Cell Biology and Regenerative Medicine, Howard Hughes Medical Institute, Stanford School of Medicine, Stanford University, Stanford, Calif (J.J.L.); Department of Medicine, University of Washington, Seattle, Wash (T.A.B.); and Bracco Suisse SA, Geneva, Switzerland (F.T.)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Niemi H, Honkonen K, Korpisalo P, Huusko J, Kansanen E, Merentie M, Rissanen TT, André H, Pereira T, Poellinger L, Alitalo K, Ylä-Herttuala S. HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery. Eur J Clin Invest 2014; 44:989-99. [PMID: 25208310 DOI: 10.1111/eci.12333] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/29/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cardiovascular patients suffer from reduced blood flow leading to ischaemia and impaired tissue metabolism. Unfortunately, an increasing group of elderly patients cannot be treated with current revascularization methods. Thus, new treatment strategies are urgently needed. Hypoxia-inducible factors (HIFs) upregulate the expression of angiogenic mediators together with genes involved in energy metabolism and recovery of ischaemic tissues. Especially, HIF-2α is a novel factor, and only limited information is available about its therapeutic potential. METHODS Gene transfers with adenoviral HIF-1α and HIF-2α were performed into the mouse heart and rabbit ischaemic hindlimbs. Angiogenesis was evaluated by histology. Left ventricle function was analysed with echocardiography. Perfusion in rabbit skeletal muscles and energy recovery after electrical stimulation-induced exercise were measured with ultrasound and (31)P-magnetic resonance spectroscopy ((31)P-MRS), respectively. RESULTS HIF-1α and HIF-2α gene transfers increased capillary size up to fivefold in myocardium and ischaemic skeletal muscles. Perfusion in skeletal muscles was increased by fourfold without oedema. Especially, AdHIF-1α enhanced the recovery of ischaemic muscles from electrical stimulation-induced energy depletion. Special characteristic of HIF-2α gene transfer was a strong capillary growth in muscle connective tissue and that HIF-2α gene transfer maintained left ventricle function. CONCLUSIONS We conclude that both AdHIF-1α and AdHIF-2α gene transfers induced beneficial angiogenesis in vivo. Transient moderate increases in angiogenesis improved energy recovery after exercise in ischaemic muscles. This study shows for the first time that a moderate increase in angiogenesis is enough to improve tissue energy metabolism, which is potentially a very useful feature for cardiovascular gene therapy.
Collapse
Affiliation(s)
- Henna Niemi
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ye Z, Huang P, Zhou X, Huang Q, Hu Q, Shui Y, Shen L, Lai E, Wei Q. Parametric contrast-enhanced ultrasound as an early predictor of radiation-based therapeutic response for lymph node metastases of nasopharyngeal carcinoma. Mol Clin Oncol 2014; 2:666-672. [PMID: 25054029 DOI: 10.3892/mco.2014.331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/15/2014] [Indexed: 02/01/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common type of cancer in South East Asia with peculiar epidemiology, pathology, clinical behavior and response to treatment characteristics. To the best of our knowledge, this is the first study to investigate the use of a contrast-enhanced ultrasound (CEUS) as a predictor for the therapeutic response in lymph node metastases of NPC patients treated with radiation-based therapy. Sixty-seven NPC patients with lymph node metastases underwent the lymph nodes CEUS examination twice; pre- and in-treatment (at the 5th fraction radiotherapy), respectively. The CEUS parameters were acquired through Qontrast_4.0 software and mainly included peak intensity (PI) and time to peak (TTP). The response assessment at the lymph nodes revealed a complete response (CR) in 48 patients and partial response (PR) in 19 patients. There was a significant difference in pre-treatment PI (PIpre) between the patients who showed CR or PR, but the predicted sensitivity and specificity of PIpre was low. The mean in-treatment PI (PIin) value of the lymph nodes that achieved a CR was 34.24±3.78%, which was significantly higher than the PIin value for PR, 25.62±2.30% (P<0.001). Furthermore, the PIratio, a PI-quotient, was calculated by dividing the PIin by the corresponding PIpre. The higher PIratio was also observed in CR lymph nodes (0.81±0.01 vs. 0.66±0.01; P=0.001), and the mean change in PI (PIΔ; PIΔ = PIpre-PIin) was smaller in the patients with CR nodes compared to the patients with PR nodes (7.79±3.28 vs. 13.77±1.90%; P=0.000). No difference was observed in TTPpre or TTPin between the CR or PR lymph nodes patients. A receiver operating characteristic curve was constructed to assess the accuracy of the parameters for the prediction of the therapeutic responses. The sensitivity and specificity of PIin in predicting the therapeutic response was 94.3 and 88.2%, and the corresponding figures of the PIratio were 92.5 and 83.8%, respectively. The CEUS parameters during the early course of radiation-based therapy, PIin and PIratio, are associated with the therapeutic response of NPC lymph node metastases, with a high predicted sensitivity and specificity, thus yielding the conceivable predictors with the potential to individualize treatment.
Collapse
Affiliation(s)
- Zhimin Ye
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P.R. China
| | - Pintong Huang
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P.R. China
| | - Xiaofeng Zhou
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P.R. China
| | - Qian Huang
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Qiongge Hu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P.R. China
| | - Yongjie Shui
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P.R. China
| | - Li Shen
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P.R. China
| | - Enyin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, P.R. China ; National Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Zhejiang University School of Medicine, Hangzhou 310009, P.R. China
| |
Collapse
|
24
|
Perfusion estimation using contrast-enhanced 3-dimensional subharmonic ultrasound imaging: an in vivo study. Invest Radiol 2014; 48:654-60. [PMID: 23695085 DOI: 10.1097/rli.0b013e3182925160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The ability to estimate tissue perfusion (in milliliter per minute per gram) in vivo using contrast-enhanced 3-dimensional (3D) harmonic and subharmonic ultrasound imaging was investigated. MATERIALS AND METHODS A LOGIQ™ 9 scanner (GE Healthcare, Milwaukee, WI) equipped with a 4D10L probe was modified to perform 3D harmonic imaging (HI; f(transmit), 5 MHz and f(receive), 10 MHz) and subharmonic imaging (SHI; f(transmit), 5.8 MHz and f(receive), 2.9 MHz). In vivo imaging was performed in the lower pole of both kidneys in 5 open-abdomen canines after injection of the ultrasound contrast agent (UCA) Definity (Lantheus Medical Imaging, N Billerica, MA). The canines received a 5-μL/kg bolus injection of Definity for HI and a 20-μL/kg bolus for SHI in triplicate for each kidney. Ultrasound data acquisition was started just before the injection of UCA (to capture the wash-in) and continued until washout. A microvascular staining technique based on stable (nonradioactive) isotope-labeled microspheres (Biophysics Assay Laboratory, Inc, Worcester, MA) was used to quantify the degree of perfusion in each kidney (the reference standard). Ligating a surgically exposed branch of the renal arteries induced lower perfusion rates. This was followed by additional contrast-enhanced imaging and microsphere injections to measure post-ligation perfusion. Slice data were extracted from the 3D ultrasound volumes and used to generate time-intensity curves offline in the regions corresponding to the tissue samples used for microvascular staining. The midline plane was also selected from the 3D volume (as a quasi-2-dimensional [2D] image) and compared with the 3D imaging modes. Perfusion was estimated from the initial slope of the fractional blood volume uptake (for both HI and SHI) and compared with the reference standard using linear regression analysis. RESULTS Both 3D HI and SHI were able to provide visualization of flow and, thus, perfusion in the kidneys. However, SHI provided near-complete tissue suppression and improved visualization of the UCA flow. Microsphere perfusion data were available for 4 canines (1 was excluded because of an error with the reference blood sample) and showed a mean (SD) perfusion of 9.30 (6.60) and 5.15 (3.42) mL/min per gram before and after the ligation, respectively. The reference standard showed significant correlation with the overall 3D HI perfusion estimates (r = 0.38; P = 0.007), but it correlated more strongly with 3D SHI (r = 0.62; P < 0.001). In addition, these results showed an improvement over the quasi-2D HI and SHI perfusion estimates (r = -0.05 and r = 0.14) and 2D SHI perfusion estimates previously reported by our group (r = 0.57). CONCLUSIONS In this preliminary study, 3D contrast-enhanced nonlinear ultrasound was able to quantify perfusion in vivo. Three-dimensional SHI resulted in better overall agreement with the reference standard than 3D HI did and was superior to previously reported 2D SHI results. Three-dimensional SHI outperforms the other methods for estimating blood perfusion because of the improved visualization of the complete perfused vascular networks.
Collapse
|
25
|
Assessment of peripheral skeletal muscle microperfusion in a porcine model of peripheral arterial stenosis by steady-state contrast-enhanced ultrasound and Doppler flow measurement. J Vasc Surg 2014; 61:1312-20. [PMID: 24418637 DOI: 10.1016/j.jvs.2013.11.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/26/2013] [Accepted: 11/29/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Noninvasive measurement of peripheral muscle microperfusion could potentially improve diagnosis, management, and treatment of peripheral arterial disease (PAD) and thus improve patient care. Contrast-enhanced ultrasound (CEUS) as a noninvasive diagnostic tool allows quantification of muscle perfusion. Increasing data on bolus technique CEUS reflecting microperfusion are becoming available, but only limited data on steady-state CEUS for assessment of muscle microperfusion are available. Therefore, the aim of this study was to evaluate steady-state CEUS for assessment of peripheral muscle microperfusion in a PAD animal model. METHODS In a porcine animal model, peripheral muscle microperfusion was quantified by steady-state CEUS replenishment kinetics (mean transit time [mTT] and wash-in rate [WiR]) of the biceps femoris muscle during intravenous steady-state infusion of INN-sulfur hexafluoride (SonoVue; Bracco, Geneva, Switzerland). In addition, macroperfusion was quantified at the external femoral artery with a Doppler flow probe. Peripheral muscle microperfusion and Doppler flow measurements were performed bilaterally at rest and under adenosine stress (70 μg/kg body weight) before and after unilateral creation of a moderate external iliac artery stenosis. RESULTS All measurements could be performed completely in 10 pigs. Compared with baseline measurements, peripheral muscle microperfusion decreased significantly during adenosine stress (rest vs adenosine stress: mTT, 7.8 ± 3.3 vs 21.2 ± 17.8 s, P = .0006; WiR, 58.4 ± 38.1 vs 25.3 ± 15.6 arbitrary units [a.u.]/s, P < .0001; Doppler flow, 122.3 ± 31.4 vs 83.6 ± 28.1 mL/min, P = .0067) and after stenosis creation (no stenosis vs stenosis: mTT, 8.1 ± 3.1 vs 29.2 ± 18.0 s, P = .0469; WiR, 53.0 ± 22.7 vs 13.6 ± 8.4 a.u./s, P = .0156; Doppler flow, 124.2 ± 41.8 vs 65.9 ± 40.0 mL/min, P = .0313). After stenosis creation, adenosine stress led to a further significant decrease of peripheral muscle microperfusion but had no effect on macroperfusion (mTT, 29.2 ± 18.0 vs 56.3 ± 38.7 s, P = .0078; WiR, 13.6 ± 8.4 vs 6.0 ± 4.1 a.u./s, P = .0078; Doppler flow, 65.9 ± 40.0 vs 79.2 ± 29.6 mL/min, P = .8125). Receiver operating characteristic curves for the presence of inflow stenosis showed an excellent area under the curve of 0.93 for mTT at rest and 0.86 for Doppler flow. CONCLUSIONS Peripheral muscle microperfusion measurement by steady-state CEUS with replenishment kinetics is feasible and allows detection of muscle microperfusion changes caused by vasodilative stress alone or in combination with a moderate inflow stenosis. Steady-state CEUS offers superior diagnostic performance compared with Doppler flow measurements. Therefore, steady-state CEUS may prove to be a useful tool in diagnosis of PAD and for evaluation of new therapies.
Collapse
|
26
|
Ajib K. Perioperative Echocardiography. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2013. [DOI: 10.1177/8756479313493668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Echocardiography has been utilized perioperatively since the 1970s and many studies have been conducted to prove its efficacy. Epicardiac echocardiography (EE) is the modality of choice when transesophageal echocardiography (TEE) is contraindicated or when aortic atherosclerosis is suspected. Perioperative TEE has shown to be an excellent tool in the operating room for assessment, diagnosis, surgical guidance, and outcome evaluation. Pediatric surgery has also shown better surgical outcomes for congenital disease states with the guidance of TEE. The cardiac Sonographer’s role in the operating room is a very important one because it involves operating the ultrasound machine and communicating image interpretations to surgeons in a timely and efficient manner. Cardiac Sonographers eager to progress in their careers can take advantage of this opportunity to enhance their clinical and educational qualifications. Technology is advancing quickly with the breakthrough of 3D and 4D TEE, where images are captured in real time, providing improved diagnoses and prognosis. This article discusses the evolution of echocardiography in the operating room and its future impact on perioperative evaluation, with attention paid to the role of cardiac Sonographers and the future clinical progression in their scope of practice.
Collapse
Affiliation(s)
- Kholoud Ajib
- Florida Hospital College of Health Sciences, Orlando, FL, USA
| |
Collapse
|
27
|
Lotfi S, Patel AS, Mattock K, Egginton S, Smith A, Modarai B. Towards a more relevant hind limb model of muscle ischaemia. Atherosclerosis 2013. [DOI: 10.1016/j.atherosclerosis.2012.10.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Jiji RS, Pollak AW, Epstein FH, Antkowiak PF, Meyer CH, Weltman AL, Lopez D, DiMaria JM, Hunter JR, Christopher JM, Kramer CM. Reproducibility of rest and exercise stress contrast-enhanced calf perfusion magnetic resonance imaging in peripheral arterial disease. J Cardiovasc Magn Reson 2013; 15:14. [PMID: 23343398 PMCID: PMC3562222 DOI: 10.1186/1532-429x-15-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose was to determine the reproducibility and utility of rest, exercise, and perfusion reserve (PR) measures by contrast-enhanced (CE) calf perfusion magnetic resonance imaging (MRI) of the calf in normal subjects (NL) and patients with peripheral arterial disease (PAD). METHODS Eleven PAD patients with claudication (ankle-brachial index 0.67 ±0.14) and 16 age-matched NL underwent symptom-limited CE-MRI using a pedal ergometer. Tissue perfusion and arterial input were measured at rest and peak exercise after injection of 0.1 mM/kg of gadolinium-diethylnetriamine pentaacetic acid (Gd-DTPA). Tissue function (TF) and arterial input function (AIF) measurements were made from the slope of time-intensity curves in muscle and artery, respectively, and normalized to proton density signal to correct for coil inhomogeneity. Perfusion index (PI) = TF/AIF. Perfusion reserve (PR) = exercise TF/ rest TF. Intraclass correlation coefficient (ICC) was calculated from 11 NL and 10 PAD with repeated MRI on a different day. RESULTS Resting TF was low in NL and PAD (mean ± SD 0.25 ± 0.18 vs 0.35 ± 0.71, p = 0.59) but reproducible (ICC 0.76). Exercise TF was higher in NL than PAD (5.5 ± 3.2 vs. 3.4 ± 1.6, p = 0.04). Perfusion reserve was similar between groups and highly variable (28.6 ± 19.8 vs. 42.6 ± 41.0, p = 0.26). Exercise TF and PI were reproducible measures (ICC 0.63 and 0.60, respectively). CONCLUSION Although rest measures are reproducible, they are quite low, do not distinguish NL from PAD, and lead to variability in perfusion reserve measures. Exercise TF and PI are the most reproducible MRI perfusion measures in PAD for use in clinical trials.
Collapse
Affiliation(s)
- Ronny S Jiji
- Departments of Medicine and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Amy W Pollak
- Departments of Medicine and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Frederick H Epstein
- Departments of Radiology and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
- Biomedical Engineering and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Patrick F Antkowiak
- Biomedical Engineering and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Craig H Meyer
- Biomedical Engineering and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Arthur L Weltman
- Departments of Medicine and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - David Lopez
- Departments of Medicine and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Joseph M DiMaria
- Departments of Radiology and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Jennifer R Hunter
- Departments of Radiology and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - John M Christopher
- Departments of Radiology and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
| | - Christopher M Kramer
- Departments of Medicine and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
- Departments of Radiology and the Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, VA, USA
- Departments of Medicine and Radiology, University of Virginia Health System, Lee Street, Box 800170, Charlottesville, VA, 22908, USA
| |
Collapse
|
29
|
Hoogi A, Akkus Z, van den Oord SCH, ten Kate GL, Schinkel AFL, Bosch JG, de Jong N, Adam D, van der Steen AFW. Quantitative analysis of ultrasound contrast flow behavior in carotid plaque neovasculature. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:2072-2083. [PMID: 23062375 DOI: 10.1016/j.ultrasmedbio.2012.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/27/2012] [Accepted: 08/01/2012] [Indexed: 06/01/2023]
Abstract
Intraplaque neovascularization is considered as an important indication for plaque vulnerability. We propose a semiautomatic algorithm for quantification of neovasculature, thus, enabling assessment of plaque vulnerability. The algorithm detects and tracks contrast spots using multidimensional dynamic programming. Classification of contrast tracks into blood vessels and artifacts was performed. The results were compared with manual tracking, visual classification and maximal intensity projection. In 28 plaques, 97% of the contrast spots were detected. In 89% of the objects, the automatic tracking determined the contrast motion with an average distance of less than 0.5 mm from the manual marking. Furthermore, 75% were correctly classified into artifacts and vessels. The automated neovascularization grading agreed within 1 grade with visual analysis in 91% of the cases, which was comparable to the interobserver variability of visual grading. These results show that the method can successfully quantify features that are linked to vulnerability of the carotid plaque.
Collapse
Affiliation(s)
- Assaf Hoogi
- Thoraxcenter Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Heikura T, Nieminen T, Roschier MM, Karvinen H, Kaikkonen MU, Mähönen AJ, Lesch HP, Rissanen TT, Laitinen OH, Airenne KJ, Ylä-Herttuala S. Baculovirus-mediated vascular endothelial growth factor-D(ΔNΔC) gene transfer induces angiogenesis in rabbit skeletal muscle. J Gene Med 2012; 14:35-43. [PMID: 22162149 DOI: 10.1002/jgm.1637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Occluded arteries and ischemic tissues cannot always be treated by angioplasty, stenting or by-pass-surgery. Under such circumstances, viral gene therapy may be useful in inducing increased blood supply to ischemic area. There is evidence of improved blood flow in ischemic skeletal muscle and myocardium in both animal and human studies using adenoviral vascular endothelial growth factor (VEGF) gene therapy. However, the expression is transient and repeated gene transfers with the same vector are inefficient due to immune responses. METHODS Different baculoviral vectors pseudotyped with or without vesicular stomatitis virus glycoprotein (VSV-G) and/or carrying woodchuck hepatitis virus post-transcriptional regulatory element (Wpre) were tested both in vitro and in vivo. VEGF-D(ΔNΔC) was used as therapeutic transgene and lacZ as a control. In vivo efficacy was evaluated as capillary enlargement and transgene expression in New Zealand White (NZW) rabbit skeletal muscle. RESULTS A statistically significant capillary enlargement was detected 6 days after gene transfer in transduced areas compared to the control gene transfers with baculovirus and adenovirus encoding β-galactosidase (lacZ). Substantially improved gene transfer efficiency was achieved with a modified baculovirus pseudotyped with VSV-G and carrying Wpre. Dose escalation experiments revealed that either too large volume or too many virus particles caused inflammation and necrosis in the target tissue, whereas 10(9) plaque forming units injected in multiple aliquots resulted in transgene expression with only mild immune reactions. CONCLUSIONS We show the first evidence of biologically significant baculoviral gene transfer in skeletal muscle of NZW rabbits using VEGF-D(ΔNΔC) as a therapeutic transgene.
Collapse
Affiliation(s)
- Tommi Heikura
- Department of Biotechnology and Molecular Medicine, AI Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Robust quantification of microvascular transit times via linear dynamical systems using two-photon fluorescence microscopy data. J Cereb Blood Flow Metab 2012; 32:1718-24. [PMID: 22714047 PMCID: PMC3434637 DOI: 10.1038/jcbfm.2012.86] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vascular transit time is an important indicator of microcirculatory health. We present a second-order-plus-dead-time (SOPDT) model for robust estimation of kinetic parameters characterizing microvascular bolus passage using two-photon fluorescence microscopy (2PFM) in anesthetized rats receiving somatosensory stimulation. This methodology enables quantification of transit time, time-to-peak, overshoot, and rate of bolus passage through the microvascular network. The overall transit time during stimulation, of 2.2 ± 0.1 seconds, was shorter (P ~ 0.0008) than that at rest (2.7 ± 0.2 seconds). When compared with conventional γ-variate modeling, the SOPDT modeling yielded better quality of fit both at rest (P<0.0001) and on activation (P<0.001).
Collapse
|
32
|
Cutchins A, Harmon DB, Kirby JL, Doran AC, Oldham SN, Skaflen M, Klibanov AL, Meller N, Keller SR, Garmey J, McNamara CA. Inhibitor of differentiation-3 mediates high fat diet-induced visceral fat expansion. Arterioscler Thromb Vasc Biol 2011; 32:317-24. [PMID: 22075252 DOI: 10.1161/atvbaha.111.234856] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Inhibitor of differentiation-3 (Id3) has been implicated in promoting angiogenesis, a key determinant of high-fat diet (HFD)-induced visceral adiposity. Yet the role of Id3 in HFD-induced angiogenesis and visceral adipose expansion is unknown. METHODS AND RESULTS Id3(-/-) mice demonstrated a significant attenuation of HFD-induced visceral fat depot expansion compared to wild type littermate controls. Importantly, unlike other Id proteins, loss of Id3 did not affect adipose depot size in young mice fed chow diet or differentiation of adipocytes in vitro or in vivo. Contrast enhanced ultrasound revealed a significant attenuation of visceral fat microvascular blood volume in HFD-fed mice null for Id3 compared to wild type controls. HFD induced Id3 and VEGFA expression in the visceral stromal vascular fraction and Id3(-/-) mice had significantly lower levels of VEGFA protein in visceral adipose tissue compared to wild type. Furthermore, HFD-induced VEGFA expression in visceral adipose tissue was completely abolished by loss of Id3. Consistent with this effect, Id3 abolished E12-mediated repression of VEGFA promoter activity. CONCLUSIONS Results identify Id3 as an important regulator of HFD-induced visceral adipose VEGFA expression, microvascular blood volume, and depot expansion. Inhibition of Id3 may have potential as a therapeutic strategy to limit visceral adiposity.
Collapse
Affiliation(s)
- Alexis Cutchins
- MR5 G133, Robert M. Berne Cardiovascular Research Center, 415 Lane Rd, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Deshpande N, Lutz AM, Ren Y, Foygel K, Tian L, Schneider M, Pai R, Pasricha PJ, Willmann JK. Quantification and monitoring of inflammation in murine inflammatory bowel disease with targeted contrast-enhanced US. Radiology 2011; 262:172-80. [PMID: 22056689 DOI: 10.1148/radiol.11110323] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate ultrasonography (US) by using contrast agent microbubbles (MBs) targeted to P-selectin (MB(P-selectin)) to quantify P-selectin expression levels in inflamed tissue and to monitor response to therapy in a murine model of chemically induced inflammatory bowel disease (IBD). MATERIALS AND METHODS All procedures in which laboratory animals were used were approved by the institutional administrative panel on laboratory animal care. Binding affinity and specificity of MB(P-selectin) were tested in cell culture experiments under flow shear stress conditions and compared with control MBs (MB(Control)). In vivo binding specificity of MB(P-selectin) to P-selectin was tested in mice with trinitrobenzenesulfonic acid-induced colitis (n = 22) and control mice (n = 10). Monitoring of anti-tumor necrosis factor α antibody therapy was performed over 5 days in an additional 30 mice with colitis by using P-selectin-targeted US imaging, by measuring bowel wall thickness and perfusion, and by using a clinical disease activity index score. In vivo targeted contrast material-enhanced US signal was quantitatively correlated with ex vivo expression levels of P-selectin as assessed by quantitative immunofluorescence. RESULTS Attachment of MB(P-selectin) to endothelial cells was significantly (P = .0001) higher than attachment of MB(Control) and significantly (ρ = 0.83, P = .04) correlated with expression levels of P-selectin on endothelial cells. In vivo US signal in mice with colitis was significantly higher (P = .0001) with MB(P-selectin) than with MB(Control). In treated mice, in vivo US signal decreased significantly (P = .0001) compared with that in nontreated mice and correlated well with ex vivo P-selectin expression levels (ρ = 0.69; P = .04). Colonic wall thickness (P ≥ .06), bowel wall perfusion (P ≥ .85), and clinical disease activity scoring (P ≥ .06) were not significantly different between treated and nontreated mice at any time. CONCLUSION Targeted contrast-enhanced US imaging enables noninvasive in vivo quantification and monitoring of P-selectin expression in inflammation in murine IBD.
Collapse
Affiliation(s)
- Nirupama Deshpande
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305-5621, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang Y, Tang P, Zhang L, Wan W, He C, Tang J. Gray-scale contrast-enhanced ultrasonography for quantitative evaluation of the blood perfusion of the sciatic nerves with crush injury. Acad Radiol 2011; 18:1285-91. [PMID: 21784669 DOI: 10.1016/j.acra.2011.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 12/24/2022]
Abstract
RATIONALE AND OBJECTIVES Blood perfusion of peripheral nerves plays an important role in regeneration after nerve injury. Functional recovery after a peripheral nerve injury depends not only on the survival of the affected neurons but also on the recovered blood perfusion. Previous studies have shown that it is possible to quantitatively assess blood perfusion of tissue using contrast-enhanced ultrasound (CEUS). The aim of this study was to evaluate the usefulness of CEUS for the quantitative evaluation of blood perfusion of the sciatic nerves with crush injury. MATERIALS AND METHODS Crush injuries were created in the left sciatic nerve of 30 New Zealand white rabbits. CEUS of the bilateral sciatic nerves was performed in six experimental rabbits at 3 days, 1 week, 2 weeks, 4 weeks, and 8 weeks after injury. Pulse-inversion harmonic imaging was used for real-time CEUS. The other six rabbits were used as a control group. Serial laser Doppler measurements of blood flow and quantitative histologic evaluation were performed parallel to CEUS on all animals. RESULTS Quantitative analysis of CEUS showed that the perfusion index of the crushed sciatic nerves was increased at 3 days after injury, with a peak at 1 week after injury (P = .000). The area under the curve for the crushed sites was increased at 3 days after injury, with a peak at 2 weeks after injury (P = .000). The mean transit time and maximum intensity of the crushed site of the left sciatic nerves were not significantly changed during the 2 months after injury (P = .335 and P = .157 respectively). The perfusion indices measured by CEUS correlated well with those measured by laser Doppler (r = 0.791, P = .000). Marked Wallerian degeneration was found at the crushed site of sciatic nerves at 3 days after injury. The percentage of degenerated myelinated axons was increased during the first 2 weeks after injury and then decreased during the following period. Regenerated axons with small diameter and thin myelin sheaths were found at 2 weeks after injury and during the following period. CONCLUSIONS CEUS may provide a new imaging method to quantitatively analyze blood perfusion of injured peripheral nerves.
Collapse
Affiliation(s)
- Yuexiang Wang
- Department of Ultrasound, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
35
|
Long-term VEGF-A expression promotes aberrant angiogenesis and fibrosis in skeletal muscle. Gene Ther 2011; 18:1166-72. [DOI: 10.1038/gt.2011.66] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Kalén M, Heikura T, Karvinen H, Nitzsche A, Weber H, Esser N, Ylä-Herttuala S, Hellström M. Gamma-secretase inhibitor treatment promotes VEGF-A-driven blood vessel growth and vascular leakage but disrupts neovascular perfusion. PLoS One 2011; 6:e18709. [PMID: 21533193 PMCID: PMC3077402 DOI: 10.1371/journal.pone.0018709] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 03/16/2011] [Indexed: 12/18/2022] Open
Abstract
The Notch signaling pathway is essential for normal development due to its role in control of cell differentiation, proliferation and survival. It is also critically involved in tumorigenesis and cancer progression. A key enzyme in the activation of Notch signaling is the gamma-secretase protein complex and therefore, gamma-secretase inhibitors (GSIs)—originally developed for Alzheimer's disease—are now being evaluated in clinical trials for human malignancies. It is also clear that Notch plays an important role in angiogenesis driven by Vascular Endothelial Growth Factor A (VEGF-A)—a process instrumental for tumor growth and metastasis. The effect of GSIs on tumor vasculature has not been conclusively determined. Here we report that Compound X (CX), a GSI previously reported to potently inhibit Notch signaling in vitro and in vivo, promotes angiogenic sprouting in vitro and during developmental angiogenesis in mice. Furthermore, CX treatment suppresses tumor growth in a mouse model of renal carcinoma, leads to the formation of abnormal vessels and an increased tumor vascular density. Using a rabbit model of VEGF-A-driven angiogenesis in skeletal muscle, we demonstrate that CX treatment promotes abnormal blood vessel growth characterized by vessel occlusion, disrupted blood flow, and increased vascular leakage. Based on these findings, we propose a model for how GSIs and other Notch inhibitors disrupt tumor blood vessel perfusion, which might be useful for understanding this new class of anti-cancer agents.
Collapse
Affiliation(s)
- Mattias Kalén
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Tommi Heikura
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henna Karvinen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anja Nitzsche
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mats Hellström
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
37
|
Korpisalo P, Hytönen JP, Laitinen JTT, Laidinen S, Parviainen H, Karvinen H, Siponen J, Marjomäki V, Vajanto I, Rissanen TT, Ylä-Herttuala S. Capillary enlargement, not sprouting angiogenesis, determines beneficial therapeutic effects and side effects of angiogenic gene therapy. Eur Heart J 2010; 32:1664-72. [PMID: 21138938 DOI: 10.1093/eurheartj/ehq433] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Currently, it is still unclear which mechanisms drive metabolic benefits after angiogenic gene therapy. The side-effect profile of efficient angiogenic gene therapy is also currently incompletely understood. In this study, the effects of increasing doses of adenoviral (Ad) vascular endothelial growth factor-A (VEGF-A) were evaluated on vascular growth, metabolic benefits, and systemic side effects. METHODS AND RESULTS Adenoviral vascular endothelial growth factor-A or AdLacZ control was injected intramuscularly (10(9)-10(11) vp/mL) or intra-arterially (5 × 10(11) vp/mL) into rabbit (n = 102) hindlimb muscles and examined 6 or 14 days later. Blood flow, tissue oedema, metabolic benefits, and the structure of angiogenic vessels were assessed using ultrasound imaging, modified Miles assay, arterial blood gas and metabolite analyses, and light and confocal microscopy, respectively. Safety analyses included cardiac ultrasound, electrocardiograms, and blood and tissue samples. Sprouting angiogenesis was already induced with low AdVEGF-A concentrations, whereas higher concentrations were needed to reach efficient capillary enlargement and increases in target muscle perfusion. Interestingly, metabolic benefits, such as improved aerobic energy metabolism and decreased metabolic acidosis during exercise, after AdVEGF-A administration were highly correlated to the level of capillary enlargement but not to sprouting angiogenesis. Several systemic dose-dependent side effects, including transient increases in liver, kidney, and pancreatic enzymes, and signs of cardiac effects were observed. CONCLUSION Efficient capillary enlargement leading to significant increases in tissue perfusion is needed to gain metabolic benefits after angiogenic gene therapy. However, the risk of systemic side effects can increase as the efficiency of angiogenic gene therapy is improved. Importantly, the unstable wall structure of the newly formed vessels seems not to compromise the metabolic benefits.
Collapse
Affiliation(s)
- Petra Korpisalo
- Department of Molecular Medicine, A.I. Virtanen Institute, University of Eastern-Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang Y, Tang P, Zhang L, Guo Y, Wan W. Quantitative evaluation of the peripheral nerve blood perfusion with high frequency contrast-enhanced ultrasound. Acad Radiol 2010; 17:1492-7. [PMID: 20926318 DOI: 10.1016/j.acra.2010.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 02/06/2023]
Abstract
RATIONALE AND OBJECTIVES The blood perfusion of peripheral nerves plays an important role in regeneration after nerve injury. Previous studies have shown that it is possible to quantitatively assess the blood perfusion of the tissue using contrast-enhanced ultrasound (CEUS). The aim of this study was to evaluate the feasibility of CEUS for quantitative assessment of the blood perfusion of the sciatic nerve in normal New Zealand white rabbits and to compare these parameters to those of surrounding skeletal muscle and the main artery in the thigh. MATERIALS AND METHODS CEUS of the bilateral sciatic nerves was performed in 12 normal New Zealand white rabbits after a bolus injection of SonoVue (0.13 mL/kg). Pulse-inversion harmonic imaging was used for real-time CEUS. The blood perfusion of the left sciatic nerve was compared to that of its surrounding muscle, the arterial branch in the thigh, and the contralateral side. RESULTS The supplying arteries in the sciatic nerve could be demonstrated during the early phase of CEUS, followed by the homogeneous enhancement of the whole nerve. The area under the curve and the perfusion index of the sciatic nerve were higher than those of the surrounding muscle and lower than those of the arterial branch in the thigh (both P values = .000). The maximum intensity of the sciatic nerve was similar to that of skeletal muscle and lower than that of the arterial branch. The time to peak was not significantly different among the sciatic nerve, skeletal muscle, and arterial branch (P = .551). There were no differences in area under the curve, mean transit time, perfusion index, maximum intensity, and time to peak between the left and right sciatic nerves (P > .05). CONCLUSIONS CEUS may be a feasible method for the quantitative assessment of blood perfusion of the peripheral nerves.
Collapse
|
39
|
Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivosmall animal imaging: Current status and future prospects. Med Phys 2010; 37:6421-42. [DOI: 10.1118/1.3515456] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
40
|
Korpisalo P, Ylä-Herttuala S. Stimulation of functional vessel growth by gene therapy. Integr Biol (Camb) 2010; 2:102-12. [PMID: 20473388 DOI: 10.1039/b921869f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The process of growing new blood vessels through gene therapy may be difficult but is certainly possible. This review will discuss the most important factors determining the efficacy of angiogenic gene therapy.
Collapse
Affiliation(s)
- Petra Korpisalo
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | |
Collapse
|
41
|
Huusko J, Merentie M, Dijkstra MH, Ryhänen MM, Karvinen H, Rissanen TT, Vanwildemeersch M, Hedman M, Lipponen J, Heinonen SE, Eriksson U, Shibuya M, Ylä-Herttuala S. The effects of VEGF-R1 and VEGF-R2 ligands on angiogenic responses and left ventricular function in mice. Cardiovasc Res 2009; 86:122-30. [PMID: 19955220 DOI: 10.1093/cvr/cvp382] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Vascular endothelial growth factors (VEGFs) and their receptors (VEGF-Rs) are among the most powerful factors regulating vascular growth. However, it has remained unknown whether stimulation of VEGF-R1, VEGF-R2 or both of the receptors produces the best angiogenic responses in myocardium. The aim of this study was to compare the VEGF-R1-specific ligand VEGF-B(186), VEGF-R2-specific ligand VEGF-E and VEGF-A(165,) which stimulates both receptors, regarding their effects on angiogenesis and left ventricular function in mice. METHODS AND RESULTS High-resolution echocardiography was used to guide the closed-chest injections of adenoviral (Ad) vectors expressing VEGF-B(186,) VEGF-E, and VEGF-A(165) into the anterior wall of the left ventricle in C57Bl/6J mice. Angiogenic and functional effects were analysed using histology, ultrasound and perfusion analyses 6 (D6) and 14 (D14) days after the Ad injection. AdVEGF-A(165) induced a strong angiogenic response seen as an enlargement of myocardial capillaries whereas angiogenesis induced by AdVEGF-B(186) and AdVEGF-E seemed more physiological. The increase in the capillary area was accompanied with an increase in myocardial perfusion at D6 after the gene injection. AdVEGF-A(165) and AdVEGF-E induced endothelial-specific proliferation whereas AdVEGF-B(186) mostly induced proliferation of cardiomyocytes. AdVEGF-A(165) induced more pronounced tissue damage than AdVEGF-B(186) and AdVEGF-E. Left ventricular function measured as ejection fraction did not change during the follow-up. AdVEGF-A(165) increased both VEGF-R1 and VEGF-R2 protein expression whereas AdVEGF-B(186) and AdVEGF-E did not affect endogenous receptor expression levels. CONCLUSION AdVEGF-B(186) and AdVEGF-E are equally potent in inducing therapeutic angiogenesis in mouse myocardium and produce less side effects than AdVEGF-A(165).
Collapse
Affiliation(s)
- Jenni Huusko
- Department of Biotechnology and Molecular Medicine, AI Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
van Tongeren RB, Hamming JF, le Cessie S, van Erkel AR, van Bockel JH. Limited value of digital subtraction angiography in the evaluation of cell-based therapy in patients with limb ischemia. Int J Cardiovasc Imaging 2009; 26:19-25. [PMID: 19757148 DOI: 10.1007/s10554-009-9507-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 08/29/2009] [Indexed: 01/11/2023]
Abstract
Cell-based therapy has been proposed as a novel strategy for patients with severe peripheral arterial disease by stimulating vascular growth. In clinical studies of this therapy, the emphasis has been on demonstrating recovery of clinical parameters, rather than on evaluation of blood flow recovery. Angiography is still the gold standard for the assessment of lower leg arteries. Therefore, we studied the usefulness of angiography in the evaluation of cell-based therapy. Sixteen patients with critical leg ischemia (ischemic rest pain or ulcers), or persistent (>12 months) profound disabling claudication were unilaterally treated with autologous bone marrow-derived mononuclear cells. Pre- and 6 months post-treatment digital subtraction angiographies (DSA) were assessed and compared in a blinded fashion twice by a panel of seven vascular surgeons and interventional radiologists. Inter- and intraobserver variability on qualitative (poor/moderate/rich) and semi-quantitative (increase/no difference/decrease) assessment of collateral circulation were evaluated. Agreement was expressed inter- and intraclass correlation coefficients (CC). Inter- and intraobserver agreement was moderate for the qualitative grading of collateral extent (CC = 0.46 and 0.60, respectively). Agreement was moderate (inter-CC = 0.60) to good (intra-CC = 0.73) for comparing pre- and post-treatment DSA. Clinical response was based on limb salvage, pain-free walking distance, ankle-brachial pressure index and pain scores. No difference was observed in the extent of collateral circulation between pre- and post treatment DSA after separate analysis of clinical responding and non-responding patients (P = 0.92). DSA is not a suited modality for the evaluation of therapeutic angiogenesis.
Collapse
Affiliation(s)
- Robert B van Tongeren
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
[Update on cardiac imaging techniques: echocardiography, cardiac magnetic resonance, and multidetector computed tomography]. Rev Esp Cardiol 2009; 62 Suppl 1:129-50. [PMID: 19174056 DOI: 10.1016/s0300-8932(09)70047-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This article contains a review of the most important publications on cardiac imaging that have appeared during 2008. During the year, we assisted with the clinical implementation of three-dimensional real-time transesophageal echocardiography, with the use of echocardiography for selecting patients for and monitoring those who underwent percutaneous aortic valve replacement (the majority of centers performing the technique were still in the learning phase), and with the emergence in the clinic of techniques for studying myocardial deformation. Also reviewed are the most significant developments in the application of echocardiography to coronary heart disease and cardiac resynchronization therapy and in 2 other techniques whose use is constantly increasing: cardiac magnetic resonance and multidetector cardiac computed tomography. The review ends with a description of the current state of the art in contrast echocardiography, with particular emphasis on safety in the context of recommendations made by the US Food and Drug Administration at the end of 2007.
Collapse
|
44
|
Korpisalo P, Karvinen H, Rissanen TT, Kilpijoki J, Marjomäki V, Baluk P, McDonald DM, Cao Y, Eriksson U, Alitalo K, Ylä-Herttuala S. Vascular endothelial growth factor-A and platelet-derived growth factor-B combination gene therapy prolongs angiogenic effects via recruitment of interstitial mononuclear cells and paracrine effects rather than improved pericyte coverage of angiogenic vessels. Circ Res 2008; 103:1092-9. [PMID: 18832750 DOI: 10.1161/circresaha.108.182287] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vessel stabilization and the inhibition of side effects such as tissue edema are essential in angiogenic gene therapy. Thus, combination gene transfers stimulating both endothelial cell and pericyte proliferation have become of interest. However, there is currently little data to support combination gene transfer in large animal models. In this study, we evaluated the potential advantages of such a strategy by combining the transfer of adenoviral (Ad) vascular endothelial growth factor (VEGF)-A and platelet-derived growth factor (PDGF)-B into rabbit hindlimb skeletal muscle. AdLacZ alone or in combination with AdVEGF-A were used as controls. Contrast-enhanced ultrasound, modified Miles assay, and immunohistology were used to quantify perfusion, vascular permeability, and capillary size, respectively. Confocal microscopy was used in the assessment of pericyte-coverage. The transfer of AdPDGF-B alone and in combination with AdVEGF-A induced prominent proliferation of alpha-smooth muscle actin-, CD31-, RAM11-, HAM56-, and VEGF- positive cells. Although, pericyte recruitment to angiogenic vessels was not improved, combination gene transfer induced a longer-lasting increase in perfusion in both intact and ischemic muscles than AdVEGF-A gene transfer alone. In conclusion, intramuscular delivery of AdVEGF-A and AdPDGF-B, combined, resulted in a prolonged angiogenic response. However, the effects were most likely mediated via paracrine mechanisms rather than an increase in vascular pericyte coverage.
Collapse
Affiliation(s)
- Petra Korpisalo
- Department of Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Korpisalo P, Rissanen TT, Bengtsson T, Liimatainen T, Laidinen S, Karvinen H, Markkanen JE, Gröhn OH, Ylä-Herttuala S. Therapeutic angiogenesis with placental growth factor improves exercise tolerance of ischaemic rabbit hindlimbs. Cardiovasc Res 2008; 80:263-70. [DOI: 10.1093/cvr/cvn195] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Sinusas AJ. Targeted Imaging Offers Advantages Over Physiological Imaging for Evaluation of Angiogenic Therapy. JACC Cardiovasc Imaging 2008; 1:511-4. [DOI: 10.1016/j.jcmg.2008.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 10/21/2022]
|