1
|
Pontone G, Rossi A, Gimelli A, Neglia D. Should we choose CT angiography first instead of SPECT/PET first for the diagnosis and management of coronary artery disease? Atherosclerosis 2023; 385:117315. [PMID: 37890440 DOI: 10.1016/j.atherosclerosis.2023.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
In patients presenting with chest pain, current guidelines recommend the use of coronary computed tomography angiography and single-photon emission tomography/positron emission tomography, both with equal class 1 indication and level of evidence A. There is no clear recommendation on which test should be used as a first-line test. The choice of the test should be based on individualized clinical risk assessment, patient characteristics, local expertise/availability, and patient preferences. In this context, it is fair to ask which non-invasive imaging test to choose. The debate reproduced in this article answers this question by summarizing the considerations in selecting present state-of-the-art criteria of the right test for the right patient to ensure efficient resource utilization, minimize unnecessary testing, and maximize diagnostic accuracy and therapeutic efficacy.
Collapse
Affiliation(s)
- Gianluca Pontone
- Department of Periooperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital, Zurich, Switzerland
| | - Alessia Gimelli
- Imaging Department, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Danilo Neglia
- Cardiovascular and Imaging Departments, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
2
|
Haidar A, Taegtmeyer H. Strategies for Imaging Metabolic Remodeling of the Heart in Obesity and Heart Failure. Curr Cardiol Rep 2022; 24:327-335. [PMID: 35107704 PMCID: PMC9074778 DOI: 10.1007/s11886-022-01650-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Define early myocardial metabolic changes among patients with obesity and heart failure, and to describe noninvasive methods and their applications for imaging cardiac metabolic remodeling. RECENT FINDINGS Metabolic remodeling precedes, triggers, and sustains functional and structural remodeling in the stressed heart. Alterations in cardiac metabolism can be assessed by using a variety of molecular probes. The glucose tracer analog, 18F-FDG, and the labeled tracer 11C-palmitate are still the most commonly used tracers to assess glucose and fatty acid metabolism, respectively. The development of new tracer analogs and imaging agents, including those targeting the peroxisome proliferator-activated receptor (PPAR), provides new opportunities for imaging metabolic activities at a molecular level. While the use of cardiac magnetic resonance spectroscopy in the clinical setting is limited to the assessment of intramyocardial and epicardial fat, new technical improvements are likely to increase its usage in the setting of heart failure. Noninvasive imaging methods are an effective tool for the serial assessment of alterations in cardiac metabolism, either during disease progression, or in response to treatment.
Collapse
Affiliation(s)
- Amier Haidar
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 1.220, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Swamy MMM, Zubir MZM, Mutmainah, Tsuboi S, Murai Y, Monde K, Hirano KI, Jin T. A near-infrared fluorescent long-chain fatty acid toward optical imaging of cardiac metabolism in living mice. Analyst 2022; 147:4206-4212. [DOI: 10.1039/d2an00999d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A near infrared fluorescence labelled long-chain fatty acid (FFA), Alexa680-BMPP (BMPP: 15-(4-(3-aminopropyl)phenyl)-3-methyl pentadecanoic acid), was synthesized as a fluorescent probe toward optical imaging of cardiac metabolism.
Collapse
Affiliation(s)
- Mahadeva M. M. Swamy
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Mohamad Zarif Mohd Zubir
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Mutmainah
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Setsuko Tsuboi
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| | - Yuta Murai
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Kenji Monde
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
- Graduate School of Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Ken-ichi Hirano
- Laboratory of Cardiovascular Disease, Novel, Non-invasive, and Nutritional Therapeutics (CNT), Department of Triglyceride Science, Graduate School of Medicine, Osaka University, 6-2-4, Furuedai Suita, Osaka 565-0874, Japan
| | - Takashi Jin
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0874, Japan
| |
Collapse
|
4
|
Dilsizian V, Budde RPJ, Chen W, Mankad SV, Lindner JR, Nieman K. Best Practices for Imaging Cardiac Device-Related Infections and Endocarditis: A JACC: Cardiovascular Imaging Expert Panel Statement. JACC Cardiovasc Imaging 2021; 15:891-911. [PMID: 34922877 DOI: 10.1016/j.jcmg.2021.09.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
The diagnosis of cardiac device infection and, more importantly, accurate localization of the infection site, such as defibrillator pocket, pacemaker lead, along the peripheral driveline or central portion of the left ventricular assist device, prosthetic valve ring abscesses, and perivalvular extensions, remain clinically challenging. Although transthoracic and transesophageal echocardiography are the first-line imaging tests in suspected endocarditis and for assessing hemodynamic complications, recent studies suggest that cardiac computed tomography (CT) or CT angiography and functional imaging with 18F-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) with CT (FDG PET/CT) may have an incremental role in technically limited or inconclusive cases on echocardiography. One of the key benefits of FDG PET/CT is in its detection of inflammatory cells early in the infection process, before morphological damages ensue. However, there are many unanswered questions in the literature. In this document, we provide consensus on best practices among the various imaging studies, which includes the detection of cardiac device infection, differentiation of infection from inflammation, image-guided patient management, and detailed recommendations on patient preparation, image acquisition, processing, interpretation, and standardized reporting.
Collapse
Affiliation(s)
- Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Ricardo P J Budde
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wengen Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sunil V Mankad
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Koen Nieman
- Department of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Yang S, Hu Y, Zhao J, Jing R, Wang J, Gu M, Niu H, Chen L, Hua W. Comprehensive plasma metabolites profiling reveals phosphatidylcholine species as potential predictors for cardiac resynchronization therapy response. ESC Heart Fail 2020; 8:280-290. [PMID: 33211407 PMCID: PMC7835628 DOI: 10.1002/ehf2.13037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/06/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022] Open
Abstract
Aims This study aimed to identify the plasma metabolite fingerprint in patients with heart failure and to develop a prediction tool based on differential metabolites for predicting the response to cardiac resynchronization therapy (CRT). Methods and results We prospectively recruited 32 healthy individuals and 42 consecutive patients with HF who underwent CRT between January 2018 and January 2019. Peripheral venous blood samples, clinical data, and echocardiographic signatures were collected before CRT implantation. Liquid chromatography‐mass spectrometry was used to perform untargeted metabolites profiling for peripheral plasma under ESI+ and ESI− modes. After 6 month follow‐up, patients were categorized as CRT responders or non‐responders based on the alterations of echocardiographic characteristics. Compared with healthy individuals, patients with HF had distinct metabolomic profiles under both ESI+ and ESI− modes, featuring increased free fatty acids, carnitine, β‐hydroxybutyrate, and dysregulated lipids with heterogeneous alterations such as phosphatidylcholines (PCs) and sphingomyelins. Disparities of baseline metabolomics profile were observed between CRT responders and non‐responders under ESI+ mode but not under ESI− mode. Further metabolites analysis revealed that a group of 20 PCs metabolites under ESI+ mode were major contributors to the distinct profiles between the two groups. We utilized LASSO regression model and identified a panel of four PCs metabolites [including PC (20:0/18:4), PC (20:4/20:0), PC 40:4, and PC (20:4/18:0)] as major predictors for CRT response prediction. Among our whole population (n = 42), receive operating characteristics analysis revealed that the four PCs‐based model could nicely discriminate the CRT responders from non‐responders (area under the curve = 0.906) with a sensitivity of 83.3% and a specificity of 90.0%. Cross‐validation analysis also showed a satisfactory and robust performance of the model with the area under the curve of 0.910 in the training dataset and 0.880 in the testing dataset. Conclusions Patients with HF held significantly altered plasma metabolomics profile compared with the healthy individuals. Within the HF group, the non‐responders had a distinct plasma metabolomics profile in contrast to the responders to CRT, which was characterized by increased PCs species. A novel predictive model incorporating four PCs metabolites performed well in identifying CRT non‐responders. These four PCs might severe as potential biomarkers for predicting CRT response. Further validations are needed in multi‐centre studies with larger external cohorts.
Collapse
Affiliation(s)
- Shengwen Yang
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.,Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yiran Hu
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Junhan Zhao
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Ran Jing
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jing Wang
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Min Gu
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Hongxia Niu
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Liang Chen
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.,Department of cardiac surgery,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Wei Hua
- Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| |
Collapse
|
6
|
Li J, Kemp BA, Howell NL, Massey J, Mińczuk K, Huang Q, Chordia MD, Roy RJ, Patrie JT, Davogustto GE, Kramer CM, Epstein FH, Carey RM, Taegtmeyer H, Keller SR, Kundu BK. Metabolic Changes in Spontaneously Hypertensive Rat Hearts Precede Cardiac Dysfunction and Left Ventricular Hypertrophy. J Am Heart Assoc 2020; 8:e010926. [PMID: 30764689 PMCID: PMC6405673 DOI: 10.1161/jaha.118.010926] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Sustained pressure overload leads to changes in cardiac metabolism, function, and structure. Both time course and causal relationships between these changes are not fully understood. Therefore, we studied spontaneously hypertensive rats (SHR) during early hypertension development and compared them to control Wistar Kyoto rats. Methods and Results We serially evaluated myocardial glucose uptake rates (Ki) with dynamic 2‐[18F] fluoro‐2‐deoxy‐D‐glucose positron emission tomography, and ejection fraction and left ventricular mass to body weight ratios with cardiac magnetic resonance imaging in vivo, determined glucose uptake and oxidation rates in isolated perfused hearts, and analyzed metabolites, mammalian target of rapamycin activity and endoplasmic reticulum stress in dissected hearts. When compared with Wistar Kyoto rats, SHR demonstrated increased glucose uptake rates (Ki) in vivo, and reduced ejection fraction as early as 2 months of age when hypertension was established. Isolated perfused SHR hearts showed increased glucose uptake and oxidation rates starting at 1 month. Cardiac metabolite analysis at 2 months of age revealed elevated pyruvate, fatty acyl‐ and branched chain amino acid‐derived carnitines, oxidative stress, and inflammation. Mammalian target of rapamycin activity increased in SHR beginning at 2 months. Left ventricular mass to body weight ratios and endoplasmic reticulum stress were elevated in 5 month‐old SHR. Conclusions Thus, in a genetic hypertension model, chronic cardiac pressure overload promptly leads to increased myocardial glucose uptake and oxidation, and to metabolite abnormalities. These coincide with, or precede, cardiac dysfunction while left ventricular hypertrophy develops only later. Myocardial metabolic changes may thus serve as early diagnostic markers for hypertension‐induced left ventricular hypertrophy.
Collapse
Affiliation(s)
- Jie Li
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA
| | - Brandon A Kemp
- 2 Division of Endocrinology and Metabolism Department of Medicine University of Virginia Charlottesville VA
| | - Nancy L Howell
- 2 Division of Endocrinology and Metabolism Department of Medicine University of Virginia Charlottesville VA
| | - James Massey
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA.,3 Department of Biomedical Engineering University of Virginia Charlottesville VA
| | - Krzysztof Mińczuk
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA
| | - Qiao Huang
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA
| | - Mahendra D Chordia
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA
| | - R Jack Roy
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA
| | - James T Patrie
- 4 Department of Public Health Sciences University of Virginia Charlottesville VA
| | - Giovanni E Davogustto
- 5 McGovern Medical School University of Texas Health Science Center in Houston Houston TX
| | - Christopher M Kramer
- 6 Department of Cardiovascular Medicine University of Virginia Charlottesville VA
| | - Frederick H Epstein
- 3 Department of Biomedical Engineering University of Virginia Charlottesville VA
| | - Robert M Carey
- 2 Division of Endocrinology and Metabolism Department of Medicine University of Virginia Charlottesville VA
| | - Heinrich Taegtmeyer
- 5 McGovern Medical School University of Texas Health Science Center in Houston Houston TX
| | - Susanna R Keller
- 2 Division of Endocrinology and Metabolism Department of Medicine University of Virginia Charlottesville VA
| | - Bijoy K Kundu
- 1 Department of Radiology and Medical Imaging University of Virginia Charlottesville VA.,3 Department of Biomedical Engineering University of Virginia Charlottesville VA.,7 Cardiovascular Research Center University of Virginia Charlottesville VA
| |
Collapse
|
7
|
Abstract
PURPOSE OF THE REVIEW Cardiorenal syndrome (CRS), defined as concomitant heart and kidney disease, has been a focus of attention for nearly a decade. As more patients survive severe acute and chronic heart and kidney diseases, CRS has emerged as an "epidemic" of modern medicine. Significant advances have been made in unraveling the complex mechanisms that underlie CRS based on classification of the condition into five pathophysiologic subtypes. In types 1 and 2, acute or chronic heart disease results in renal dysfunction, while in types 3 and 4, acute or chronic kidney diseases are the inciting factors for heart disease. Type 5 CRS is defined as concomitant heart and kidney dysfunction as part of a systemic condition such as sepsis or autoimmune disease. RECENT FINDINGS There are ongoing efforts to better define subtypes of CRS based on historical information, clinical manifestations, laboratory data (including biomarkers), and imaging characteristics. Systematic evaluation of CRS by advanced cardiac imaging, however, has been limited in scope and mostly focused on type 4 CRS. This is in part related to lack of clinical trials applying advanced cardiac imaging in the acute setting and exclusion of patients with significant renal disease from studies of such techniques in chronic HF. Advanced cardiac nuclear imaging is well poised for assessment of the pathophysiology of CRS by offering a myriad of molecular probes without the need for nephrotoxic contrast agents. In this review, we examine the current or potential future application of advanced cardiac imaging to evaluation of myocardial perfusion, metabolism, and innervation in patients with CRS.
Collapse
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, Ostrum Street, Bethlehem, PA, 18015, USA.
| | - Srinidhi Meera
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, Ostrum Street, Bethlehem, PA, 18015, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
8
|
Davidson CQ, Phenix CP, Tai TC, Khaper N, Lees SJ. Searching for novel PET radiotracers: imaging cardiac perfusion, metabolism and inflammation. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2018; 8:200-227. [PMID: 30042871 PMCID: PMC6056242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Advances in medical imaging technology have led to an increased demand for radiopharmaceuticals for early and accurate diagnosis of cardiac function and diseased states. Myocardial perfusion, metabolism, and hypoxia positron emission tomography (PET) imaging radiotracers for detection of cardiac disease lack specificity for targeting inflammation that can be an early indicator of cardiac disease. Inflammation can occur at all stages of cardiac disease and currently, 18F-fluorodeoxyglucose (FDG), a glucose analog, is the standard for detecting myocardial inflammation. 18F-FDG has many ideal characteristics of a radiotracer but lacks the ability to differentiate between glucose uptake in normal cardiomyocytes and inflammatory cells. Developing a PET radiotracer that differentiates not only between inflammatory cells and normal cardiomyocytes, but between types of immune cells involved in inflammation would be ideal. This article reviews current PET radiotracers used in cardiac imaging, their limitations, and potential radiotracer candidates for imaging cardiac inflammation in early stages of development of acute and chronic cardiac diseases. The select radiotracers reviewed have been tested in animals and/or show potential to be developed as a radiotracer for the detection of cardiac inflammation by targeting the enzymatic activities or subpopulations of macrophages that are recruited to an injured or infected site.
Collapse
Affiliation(s)
| | - Christopher P Phenix
- Department of Chemistry, University of SaskatchewanSaskatoon, Saskatchewan, Canada
| | - TC Tai
- Medical Sciences Division, Northern Ontario School of Medicine, Laurentian UniversitySudbury, Ontario, Canada
| | - Neelam Khaper
- Department of Biology, Lakehead UniversityThunder Bay, Ontario, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead UniversityThunder Bay, Ontario, Canada
| | - Simon J Lees
- Department of Biology, Lakehead UniversityThunder Bay, Ontario, Canada
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead UniversityThunder Bay, Ontario, Canada
| |
Collapse
|
9
|
Timm KN, Miller JJ, Henry JA, Tyler DJ. Cardiac applications of hyperpolarised magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:66-87. [PMID: 31047602 DOI: 10.1016/j.pnmrs.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease is the leading cause of death world-wide. It is increasingly recognised that cardiac pathologies show, or may even be caused by, changes in metabolism, leading to impaired cardiac energetics. The heart turns over 15 times its own weight in ATP every day and thus relies heavily on the availability of substrates and on efficient oxidation to generate this ATP. A number of old and emerging drugs that target different aspects of metabolism are showing promising results with regard to improved cardiac outcomes in patients. A non-invasive imaging technique that could assess the role of different aspects of metabolism in heart disease, as well as measure changes in cardiac energetics due to treatment, would be valuable in the routine clinical care of cardiac patients. Hyperpolarised magnetic resonance spectroscopy and imaging have revolutionised metabolic imaging, allowing real-time metabolic flux assessment in vivo for the first time. In this review we summarise metabolism in the healthy and diseased heart, give an introduction to the hyperpolarisation technique, 'dynamic nuclear polarisation' (DNP), and review the preclinical studies that have thus far explored healthy cardiac metabolism and different models of human heart disease. We furthermore show what advances have been made to translate this technique into the clinic, what technical challenges still remain and what unmet clinical needs and unexplored metabolic substrates still need to be assessed by researchers in this exciting and fast-moving field.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, UK.
| | - John A Henry
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
10
|
Sengupta PP, Kramer CM, Narula J, Dilsizian V. The Potential of Clinical Phenotyping of Heart Failure With Imaging Biomarkers for Guiding Therapies: A Focused Update. JACC Cardiovasc Imaging 2018; 10:1056-1071. [PMID: 28882290 DOI: 10.1016/j.jcmg.2017.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
The need for noninvasive assessment of cardiac volumes and ejection fraction (EF) ushered in the use of cardiac imaging techniques in heart failure (HF) trials that investigated the roles of pharmacological and device-based therapies. However, in contrast to HF with reduced EF (HFrEF), modern HF pharmacotherapy has not improved outcomes in HF with preserved EF (HFpEF), largely attributed to patient heterogeneity and incomplete understanding of pathophysiological insights underlying the clinical presentations of HFpEF. Modern cardiac imaging methods offer insights into many sets of changes in cardiac tissue structure and function that can precisely link cause with cardiac remodeling at organ and tissue levels to clinical presentations in HF. This has inspired investigators to seek a more comprehensive understanding of HF presentations using imaging techniques. This article summarizes the available evidence regarding the role of cardiac imaging in HF. Furthermore, we discuss the value of cardiac imaging techniques in identifying HF patient subtypes who share similar causes and mechanistic pathways that can be targeted using specific HF therapies.
Collapse
Affiliation(s)
- Partho P Sengupta
- Section of Cardiology, West Virginia University Heart and Vascular Institute, West Virginia University, Morgantown, West Virginia.
| | - Christopher M Kramer
- Departments of Medicine and Radiology and Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia
| | - Jagat Narula
- Zena and Michael A. Weiner Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Gewirtz H, Dilsizian V. Myocardial Viability: Survival Mechanisms and Molecular Imaging Targets in Acute and Chronic Ischemia. Circ Res 2017; 120:1197-1212. [PMID: 28360350 DOI: 10.1161/circresaha.116.307898] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Myocardial responses to acute ischemia/reperfusion and to chronic ischemic conditions have been studied extensively at all levels of organization. These include subcellular (eg, mitochondria in vitro); intact, large animal models (eg, swine with chronic coronary stenosis); as well as human subjects. Investigations in humans have used positron emission tomographic metabolic and myocardial blood flow measurements, assessment of gene expression and anatomic description of myocardium obtained at the time of coronary artery revascularization, ventricular assist device placement, or heart transplantation. A multitude of genetic, molecular, and metabolic pathways have been identified, which may promote either myocyte survival or death or, most interestingly, both. Many of these potential mediators in both acute ischemia/reperfusion and adaptations to chronic ischemic conditions involve the mitochondria, which play a central role in cellular energy production and homeostasis. The present review is focused on operative survival mechanisms and potential myocardial viability molecular imaging targets in acute and chronic ischemia, especially those which impact mitochondrial function.
Collapse
Affiliation(s)
- Henry Gewirtz
- From the Department of Medicine (Cardiology Division), Massachusetts General Hospital, Harvard Medical School, Boston (H.G.); and Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore (V.D.)
| | - Vasken Dilsizian
- From the Department of Medicine (Cardiology Division), Massachusetts General Hospital, Harvard Medical School, Boston (H.G.); and Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore (V.D.).
| |
Collapse
|
12
|
Shirani J, Singh A, Agrawal S, Dilsizian V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol 2017; 24:574-590. [PMID: 27480973 DOI: 10.1007/s12350-016-0620-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Cardiac left ventricular (LV) remodeling is the final common pathway of most primary cardiovascular diseases that manifest clinically as heart failure (HF). The more advanced the systolic HF and LV dysfunction, the worse the prognosis. The knowledge of the molecular, cellular, and neurohormonal mechanisms that lead to myocardial dysfunction and symptomatic HF has expanded rapidly and has allowed sophisticated approaches to understanding and management of the disease. New therapeutic targets for pharmacologic intervention in HF have also been identified through discovery of novel cellular and molecular components of membrane-bound receptor-mediated intracellular signal transduction cascades. Despite all advances, however, the prognosis of systolic HF has remained poor in general. This is, at least in part, related to the (1) relatively late institution of treatment due to reliance on gross functional and structural abnormalities that define the "heart failure phenotype" clinically; (2) remarkable genetic-based interindividual variations in the contribution of each of the many molecular components of cardiac remodeling; and (3) inability to monitor the activity of individual pathways to cardiac remodeling in order to estimate the potential benefits of pharmacologic agents, monitor the need for dose titration, and minimize side effects. Imaging of the recognized ultrastructural components of cardiac remodeling can allow redefinition of heart failure based on its "molecular phenotype," and provide a guide to implementation of "personalized" and "evidence-based" evaluation, treatment, and longitudinal monitoring of the disease beyond what is currently available through randomized controlled clinical trials.
Collapse
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA.
| | - Amitoj Singh
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Sahil Agrawal
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Ferda J, Hromádka M, Baxa J. Imaging of the myocardium using 18 F-FDG-PET/MRI. Eur J Radiol 2016; 85:1900-1908. [DOI: 10.1016/j.ejrad.2016.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
|
14
|
Abstract
Metabolic imaging is a field of molecular imaging that focuses and targets changes in metabolic pathways for the evaluation of different clinical conditions. Targeting and quantifying metabolic changes noninvasively is a powerful approach to facilitate diagnosis and evaluate therapeutic response. This review addresses only techniques targeting metabolic pathways. Other molecular imaging strategies, such as affinity or receptor imaging or microenvironment-dependent methods are beyond the scope of this review. Here we describe the current state of the art in clinically translatable metabolic imaging modalities. Specifically, we focus on PET and MR spectroscopy, including conventional (1)H- and (13)C-MR spectroscopy at thermal equilibrium and hyperpolarized MRI. In this article, we first provide an overview of metabolic pathways that are altered in many pathologic conditions and the corresponding probes and techniques used to study those alterations. We then describe the application of metabolic imaging to several common diseases, including cancer, neurodegeneration, cardiac ischemia, and infection or inflammation.
Collapse
Affiliation(s)
- Valentina Di Gialleonardo
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY
| | - David M Wilson
- Department of Radiology and Biomedical Imaging University of California San Francisco (UCSF), San Francisco, CA
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY.
| |
Collapse
|
15
|
Abstract
The heart is a biological pump that converts chemical to mechanical energy. This process of energy conversion is highly regulated to the extent that energy substrate metabolism matches energy use for contraction on a beat-to-beat basis. The biochemistry of cardiac metabolism includes the biochemistry of energy transfer, metabolic regulation, and transcriptional, translational as well as posttranslational control of enzymatic activities. Pathways of energy substrate metabolism in the heart are complex and dynamic, but all of them conform to the First Law of Thermodynamics. The perspectives expand on the overall idea that cardiac metabolism is inextricably linked to both physiology and molecular biology of the heart. The article ends with an outlook on emerging concepts of cardiac metabolism based on new molecular models and new analytical tools. © 2016 American Physiological Society. Compr Physiol 6:1675-1699, 2016.
Collapse
Affiliation(s)
- Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| | - Truong Lam
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| | - Giovanni Davogustto
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center at Houston
| |
Collapse
|
16
|
Nemutlu E, Zhang S, Xu YZ, Terzic A, Zhong L, Dzeja PD, Cha YM. Cardiac resynchronization therapy induces adaptive metabolic transitions in the metabolomic profile of heart failure. J Card Fail 2015; 21:460-9. [PMID: 25911126 DOI: 10.1016/j.cardfail.2015.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/20/2015] [Accepted: 04/10/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Heart failure (HF) is associated with ventricular dyssynchrony and energetic inefficiency, which can be alleviated by cardiac resynchronization therapy (CRT). The aim of this study was to determine the metabolomic signature in HF and its prognostic value regarding the response to CRT. METHODS AND RESULTS This prospective study consisted of 24 patients undergoing CRT for advanced HF and 10 control patients who underwent catheter ablation for supraventricular arrhythmia but not CRT. Blood samples were collected before and 3 months after CRT. Metabolomic profiling of plasma samples was performed with the use of gas chromatography-mass spectrometry and nuclear magnetic resonance. The plasma metabolomic profile was altered in the HF patients, with a distinct panel of metabolites, including Krebs cycle and lipid, amino acid, and nucleotide metabolism. CRT improved the metabolomic profile. The succinate-glutamate ratio, an index of Krebs cycle activity, improved from 0.58 ± 0.13 to 2.84 ± 0.60 (P < .05). The glucose-palmitate ratio, an indicator of the balance between glycolytic and fatty acid metabolism, increased from 0.96 ± 0.05 to 1.54 ± 0.09 (P < .01). Compared with nonresponders to CRT, responders had a distinct baseline plasma metabolomic profile, including higher isoleucine, phenylalanine, leucine, glucose, and valine levels and lower glutamate levels at baseline (P < .05). CONCLUSIONS CRT improves the plasma metabolomic profile of HF patients, indicating harmonization of myocardial energy substrate metabolism. CRT responders may have a favorable metabolomic profile as a potential biomarker for predicting CRT outcome.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; Department of Analytical Chemistry, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey
| | - Song Zhang
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Yi-Zhou Xu
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andre Terzic
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Li Zhong
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Petras D Dzeja
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Yong-Mei Cha
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
17
|
Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H. Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: review of a hypothesis. Cardiology 2015; 130:211-20. [PMID: 25791172 DOI: 10.1159/000369782] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/10/2014] [Indexed: 12/14/2022]
Abstract
When subjected to pressure overload, the ventricular myocardium shifts from fatty acids to glucose as its main source for energy provision and frequently increases its mass. Here, we review the evidence in support of the concept that metabolic remodeling, measured as an increased myocardial glucose uptake using dynamic positron emission tomography (PET) with the glucose analogue 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG), precedes the onset of left ventricular hypertrophy (LVH) and heart failure. Consistent with this, early intervention with propranolol, which attenuates glucose uptake, prevents the maladaptive metabolic response and preserves cardiac function in vivo. We also review ex vivo studies suggesting a link between dysregulated myocardial glucose metabolism, intracellular accumulation of glucose 6-phosphate (G6P) and contractile dysfunction of the heart. G6P levels correlate with activation of mTOR (mechanistic target of rapamycin) and endoplasmic reticulum stress. This sequence of events could be prevented by pretreatment with rapamycin (mTOR inhibition) or metformin (enzyme 5'-AMP-activated protein kinase activation). In conclusion, we propose that metabolic imaging with FDG PET may provide a novel approach to guide the treatment of patients with hypertension-induced LVH.
Collapse
Affiliation(s)
- Bijoy K Kundu
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Va., USA
| | | | | | | | | | | |
Collapse
|
18
|
Köhler D, Arnold R, Loukanov T, Gorenflo M. Right ventricular failure and pathobiology in patients with congenital heart disease - implications for long-term follow-up. Front Pediatr 2013; 1:37. [PMID: 24400283 PMCID: PMC3864255 DOI: 10.3389/fped.2013.00037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/04/2013] [Indexed: 11/13/2022] Open
Abstract
Right ventricular dysfunction represents a common problem in patients with congenital heart defects, such as Tetralogy of Fallot or pulmonary arterial hypertension. Patients with congenital heart defects may present with a pressure or volume overloaded right ventricle (RV) in a bi-ventricular heart or in a single ventricular circulation in which the RV serves as systemic ventricle. Both subsets of patients are at risk of developing right ventricular failure. Obtaining functional and morphological imaging data of the right heart is technically more difficult than imaging of the left ventricle. In contrast to findings on mechanisms of left ventricular dysfunction, very little is known about the pathophysiologic alterations of the right heart. The two main causes of right ventricular dysfunction are pressure and/or volume overload of the RV. Until now, there are no appropriate models available analyzing the effects of pressure and/or volume overload on the RV. This review intends to summarize clinical aspects mainly focusing on the current research in this field. In future, there will be increasing attention to individual care of patients with right heart diseases. Hence, further investigations are essential for understanding the right ventricular pathobiology.
Collapse
Affiliation(s)
- Doreen Köhler
- Department of Pediatric Cardiology, University of Heidelberg , Heidelberg , Germany
| | - Raoul Arnold
- Department of Pediatric Cardiology, University of Heidelberg , Heidelberg , Germany
| | - Tsvetomir Loukanov
- Department of Cardiac Surgery, Division of Congenital Cardiac Surgery, University of Heidelberg , Heidelberg , Germany
| | - Matthias Gorenflo
- Department of Pediatric Cardiology, University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
19
|
|