1
|
Ayalew BD, Rodoshi ZN, Patel VK, Alresheq A, Babu HM, Aurangzeb RF, Aurangzeb RI, Mdivnishvili M, Rehman A, Shehryar A, Hassan A. Nuclear Cardiology in the Era of Precision Medicine: Tailoring Treatment to the Individual Patient. Cureus 2024; 16:e58960. [PMID: 38800181 PMCID: PMC11127713 DOI: 10.7759/cureus.58960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Nuclear cardiology, employing advanced imaging technologies like positron emission tomography (PET) and single photon emission computed tomography (SPECT), is instrumental in diagnosing, risk stratifying, and managing heart diseases. Concurrently, precision medicine advocates for treatments tailored to each patient's genetic, environmental, and lifestyle specificities, promising a revolution in personalized cardiovascular care. This review explores the synergy between nuclear cardiology and precision medicine, highlighting advancements, potential enhancements in patient outcomes, and the challenges and opportunities of this integration. We examined the evolution of nuclear cardiology technologies, including PET and SPECT, and their role in cardiovascular diagnostics. We also delved into the principles of precision medicine, focusing on genetic and molecular profiling, data analytics, and individualized treatment strategies. The integration of these domains aims to optimize diagnostic accuracy, therapeutic interventions, and prognostic evaluations in cardiovascular care. Advancements in molecular imaging and the application of artificial intelligence in nuclear cardiology have significantly improved the precision of diagnostics and treatment plans. The adoption of precision medicine principles in nuclear cardiology enables the customization of patient care, leveraging genetic information and biomarkers for enhanced therapeutic outcomes. However, challenges such as data integration, accessibility, cost, and the need for specialized expertise persist. The confluence of nuclear cardiology and precision medicine offers a promising pathway toward revolutionizing cardiovascular healthcare, providing more accurate, effective, and personalized patient care. Addressing existing challenges and fostering interdisciplinary collaboration is crucial for realizing the full potential of this integration in improving patient outcomes.
Collapse
Affiliation(s)
- Biruk D Ayalew
- Internal Medicine, Saint Paul's Hospital Millennium Medical College, Addis Ababa, ETH
| | | | | | - Alaa Alresheq
- Primary Care, United Nations for Relief and Works Agency, Ramallah, PSE
| | - Hisham M Babu
- Internal Medicine, Jagadguru Sri Shivarathreeshwara (JSS) Medical College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysore, IND
| | | | | | | | | | | | | |
Collapse
|
2
|
Pelletier-Galarneau M, Dilsizian V. Shining a Radiant Light on Cardiac Amyloidosis With Novel 124I-Evuzamitide PET Imaging. JACC Cardiovasc Imaging 2023; 16:1449-1451. [PMID: 37940324 DOI: 10.1016/j.jcmg.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 11/10/2023]
Affiliation(s)
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
3
|
Edvardsen T, Asch FM, Davidson B, Delgado V, DeMaria A, Dilsizian V, Gaemperli O, Garcia MJ, Kamp O, Lee DC, Neglia D, Neskovic AN, Pellikka PA, Plein S, Sechtem U, Shea E, Sicari R, Villines TC, Lindner JR, Popescu BA. Non-Invasive Imaging in Coronary Syndromes: Recommendations of The European Association of Cardiovascular Imaging and the American Society of Echocardiography, in Collaboration with The American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Cardiovasc Comput Tomogr 2022; 16:362-383. [PMID: 35729014 DOI: 10.1016/j.jcct.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Thor Edvardsen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.
| | - Federico M Asch
- MedStar Health Research Institute, Georgetown University, Washington, District of Columbia
| | - Brian Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; VA Portland Health Care System, Portland, Oregon
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | | | - Mario J Garcia
- Division of Cardiology, Montefiore-Einstein Center for Heart and Vascular Care, Bronx, New York
| | - Otto Kamp
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Daniel C Lee
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Danilo Neglia
- Department of Cardiology, Istituto di Scienze della Vita Scuola Superiore Sant Anna Pisa, Pisa, Italy
| | - Aleksandar N Neskovic
- Faculty of Medicine, Department of Cardiology, Clinical Hospital Center Zemun, University of Belgrade, Belgrade, Serbia
| | - Patricia A Pellikka
- Division of Cardiovascular Ultrasound, Department of Cardiovascular Medicine, Rochester, Minnesota
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Udo Sechtem
- Cardiologicum Stuttgart and Department of Cardiology, Robert Bosch Krankenhaus, Stuttgart, Germany
| | - Elaine Shea
- Alta Bates Summit Medical Center, Berkeley and Oakland, Berkeley, California
| | - Rosa Sicari
- CNR, Institute of Clinical Physiology, Pisa, Italy
| | - Todd C Villines
- Division of Cardiovascular Medicine, University of Virginia Health System, University of Virginia Health Center, Charlottesville, Virginia
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy Carol Davila Euroecolab, Emergency Institute for Cardiovascular Diseases Prof. Dr. C. C. Iliescu, Bucharest, Romania
| |
Collapse
|
4
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Edvardsen T, Asch FM, Davidson B, Delgado V, DeMaria A, Dilsizian V, Gaemperli O, Garcia MJ, Kamp O, Lee DC, Neglia D, Neskovic AN, Pellikka PA, Plein S, Sechtem U, Shea E, Sicari R, Villines TC, Lindner JR, Popescu BA. Non-Invasive Imaging in Coronary Syndromes: Recommendations of The European Association of Cardiovascular Imaging and the American Society of Echocardiography, in Collaboration with The American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 2022; 35:329-354. [PMID: 35379446 DOI: 10.1016/j.echo.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Thor Edvardsen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.
| | - Federico M Asch
- MedStar Health Research Institute, Georgetown University, Washington, District of Columbia
| | - Brian Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; VA Portland Health Care System, Portland, Oregon
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | | | - Mario J Garcia
- Division of Cardiology, Montefiore-Einstein Center for Heart and Vascular Care, Bronx, New York
| | - Otto Kamp
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Daniel C Lee
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Danilo Neglia
- Department of Cardiology, Istituto di Scienze della Vita Scuola Superiore Sant'Anna - Pisa, Pisa, Italy
| | - Aleksandar N Neskovic
- Faculty of Medicine, Department of Cardiology, Clinical Hospital Center Zemun, University of Belgrade, Belgrade, Serbia
| | - Patricia A Pellikka
- Division of Cardiovascular Ultrasound, Department of Cardiovascular Medicine, Rochester, Minnesota
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Udo Sechtem
- Cardiologicum Stuttgart and Department of Cardiology, Robert Bosch Krankenhaus, Stuttgart, Germany
| | - Elaine Shea
- Alta Bates Summit Medical Center, Berkeley and Oakland, Berkeley, California
| | - Rosa Sicari
- CNR, Institute of Clinical Physiology, Pisa, Italy
| | - Todd C Villines
- Division of Cardiovascular Medicine, University of Virginia Health System, University of Virginia Health Center, Charlottesville, Virginia
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila"-Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| |
Collapse
|
6
|
Therapeutic Effects of Lipid Lowering Medications on Myocardial Blood Flow, Inflammation, and Sympathetic Nerve Activity Using Nuclear Techniques. Curr Cardiol Rep 2022; 24:1849-1853. [PMID: 36227406 PMCID: PMC9747860 DOI: 10.1007/s11886-022-01792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Statins are routinely applied in patients with coronary artery disease, as they allow significantly to reduce blood cholesterol levels. Although those drugs are endorsed by current guidelines and prescribed routinely, a substantial portion of patients are still statin-intolerant and image-piloted strategies may then be helpful to identify patients that need further intensified treatment, e.g., to initiate treatment with proprotein convertase subtilisin / kexin type 9 inhibitors (PCSK9i). In addition, it has also been advocated that statins exhibit nonlipid, cardio-protective effects including improved cardiac nerve integrity, blood flow, and anti-inflammatory effects in congestive heart failure (HF) patients. RECENT FINDINGS In subjects after myocardial infarction treated with statins, 123II-metaiodobenzylguanidine (MIBG) scintigraphy has already revealed enhanced cardiac nerve function relative to patients without statins. In addition, all of those aforementioned statin-targeted pathways in HF can be visualized and monitored using dedicated cardiac radiotracers, e.g., 123I-MIBG or 18F-AF78 (for cardiac nerve function), 18F-flurpiridaz (to determine coronary flow) or 68Ga-PentixaFor (to detect inflammation). Statins exhibit various cardio-beneficial effects, including improvement of cardiac nerve function, blood flow, and reduction of inflammation, which can all be imaged using dedicated nuclear cardiac radiotracers. This may allow for in vivo monitoring of statin-induced cardioprotection beyond lipid profiling in HF patients.
Collapse
|
7
|
van der Meulen NP, Strobel K, Lima TVM. New Radionuclides and Technological Advances in SPECT and PET Scanners. Cancers (Basel) 2021; 13:cancers13246183. [PMID: 34944803 PMCID: PMC8699425 DOI: 10.3390/cancers13246183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Advances in nuclear medicine are made by technological and radionuclide improvements. Throughout nuclear medicine’s history, these advances were often intertwined and complementary based on different clinical questions, availability and need. This paper covers some of these developments in radionuclides and instrumentation. Abstract Developments throughout the history of nuclear medicine have involved improvements in both instrumentation and radionuclides, which have been intertwined. Instrumentation developments always occurred during the search to improving devices’ sensitivity and included advances in detector technology (with the introduction of cadmium zinc telluride and digital Positron Emission Tomography—PET-devices with silicon photomultipliers), design (total body PET) and configuration (ring-shaped, Single-Photon Emission Computed Tomography (SPECT), Compton camera). In the field of radionuclide development, we observed the continual changing of clinically used radionuclides, which is sometimes influenced by instrumentation technology but also driven by availability, patient safety and clinical questions. Some areas, such as tumour imaging, have faced challenges when changing radionuclides based on availability, when this produced undesirable clinical findings with the introduction of unclear focal uptakes and unspecific uptakes. On the other end of spectrum, further developments of PET technology have seen a resurgence in its use in nuclear cardiology, with rubidium-82 from strontium-82/rubidium-82 generators being the radionuclide of choice, moving away from SPECT nuclides thallium-201 and technetium-99m. These continuing improvements in both instrumentation and radionuclide development have helped the growth of nuclear medicine and its importance in the ever-evolving range of patient care options.
Collapse
Affiliation(s)
- Nicholas P. van der Meulen
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Laboratory of Radiochemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Correspondence: (N.P.v.d.M.); (T.V.M.L.)
| | - Klaus Strobel
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, 6000 Luzern, Switzerland;
| | - Thiago Viana Miranda Lima
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, 6000 Luzern, Switzerland;
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, 1007 Lausanne, Switzerland
- Correspondence: (N.P.v.d.M.); (T.V.M.L.)
| |
Collapse
|
8
|
Taillefer R. 99mTc-labeled boronic acid derivatives for SPECT myocardial perfusion imaging: Improved version 2.0. J Nucl Cardiol 2021; 28:2697-2699. [PMID: 32385830 DOI: 10.1007/s12350-020-02137-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Raymond Taillefer
- Department of Nuclear Medicine, Hôpital du Haut-Richelieu, CISSS de la Montérégie Centre, 920 Boulevard du Séminaire Nord, Saint-Jean-sur-Richelieu, QC, J3A 1B7, Canada.
| |
Collapse
|
9
|
Edvardsen T, Asch FM, Davidson B, Delgado V, DeMaria A, Dilsizian V, Gaemperli O, Garcia MJ, Kamp O, Lee DC, Neglia D, Neskovic AN, Pellikka PA, Plein S, Sechtem U, Shea E, Sicari R, Villines TC, Lindner JR, Popescu BA. Non-invasive Imaging in Coronary Syndromes - Recommendations of the European Association of Cardiovascular Imaging and the American Society of Echocardiography, in Collaboration with the American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance. Eur Heart J Cardiovasc Imaging 2021; 23:e6-e33. [PMID: 34751391 DOI: 10.1093/ehjci/jeab244] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/14/2022] Open
Abstract
Coronary artery disease (CAD) is one of the major causes of mortality and morbidity worldwide, with a high socioeconomic impact.(1) Non-invasive imaging modalities play a fundamental role in the evaluation and management of patients with known or suspected CAD. Imaging end-points have served as surrogate markers in many observational studies and randomized clinical trials that evaluated the benefits of specific therapies for CAD.(2) A number of guidelines and recommendations have been published about coronary syndromes by cardiology societies and associations, but have not focused on the excellent opportunities with cardiac imaging. The recent European Society of Cardiology (ESC) 2019 guideline on chronic coronary syndromes (CCS) and 2020 guideline on acute coronary syndromes in patients presenting with non-ST-segment elevation (NSTE-ACS) highlight the importance of non-invasive imaging in the diagnosis, treatment, and risk assessment of the disease.(3)(4) The purpose of the current recommendations is to present the significant role of non-invasive imaging in coronary syndromes in more detail. These recommendations have been developed by the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE), in collaboration with the American Society of Nuclear Cardiology, the Society of Cardiovascular Computed Tomography, and the Society for Cardiovascular Magnetic Resonance, all of which have approved the final document.
Collapse
Affiliation(s)
- Thor Edvardsen
- Dept of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo Norway, and University of Oslo, Norway
| | - Federico M Asch
- MedStar Health Research Institute, Georgetown University, Washington, DC, . USA
| | - Brian Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University; VA Portland Health Care System, Portland, OR, USA
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, 2300RC, Leiden, The Netherlands
| | | | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, USA
| | | | - Mario J Garcia
- Division of Cardiology, Montefiore-Einstein Center for Heart and Vascular Care, 111 East 210th Street, Bronx, New York, 10467, USA
| | - Otto Kamp
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, The Netherlands
| | - Daniel C Lee
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Danilo Neglia
- Department of Cardiology, Fondazione Toscana G. Monastrerio, Pisa, Italy
| | - Aleksandar N Neskovic
- Dept of Cardiology, Clinical Hospital Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Patricia A Pellikka
- Division of Cardiovascular Ultrasound, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Udo Sechtem
- Cardiologicum Stuttgart and Department of Cardiology, Robert Bosch Krankenhaus, Stuttgart, Germany
| | - Elaine Shea
- Alta Bates Summit Medical Center, Berkeley and Oakland, California, ., USA
| | - Rosa Sicari
- CNR, Institute of Clinical Physiology, Pisa and Milan, Italy
| | - Todd C Villines
- Division of Cardiovascular Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute and Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila" - Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| |
Collapse
|
10
|
A Comprehensive Review on Seismocardiogram: Current Advancements on Acquisition, Annotation, and Applications. MATHEMATICS 2021. [DOI: 10.3390/math9182243] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, cardiovascular diseases are on the rise, and they entail enormous health burdens on global economies. Cardiac vibrations yield a wide and rich spectrum of essential information regarding the functioning of the heart, and thus it is necessary to take advantage of this data to better monitor cardiac health by way of prevention in early stages. Specifically, seismocardiography (SCG) is a noninvasive technique that can record cardiac vibrations by using new cutting-edge devices as accelerometers. Therefore, providing new and reliable data regarding advancements in the field of SCG, i.e., new devices and tools, is necessary to outperform the current understanding of the State-of-the-Art (SoTA). This paper reviews the SoTA on SCG and concentrates on three critical aspects of the SCG approach, i.e., on the acquisition, annotation, and its current applications. Moreover, this comprehensive overview also presents a detailed summary of recent advancements in SCG, such as the adoption of new techniques based on the artificial intelligence field, e.g., machine learning, deep learning, artificial neural networks, and fuzzy logic. Finally, a discussion on the open issues and future investigations regarding the topic is included.
Collapse
|
11
|
Wahl RL, Chareonthaitawee P, Clarke B, Drzezga A, Lindenberg L, Rahmim A, Thackeray J, Ulaner GA, Weber W, Zukotynski K, Sunderland J. Mars Shot for Nuclear Medicine, Molecular Imaging, and Molecularly Targeted Radiopharmaceutical Therapy. J Nucl Med 2021; 62:6-14. [PMID: 33334911 DOI: 10.2967/jnumed.120.253450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
The Society of Nuclear Medicine and Molecular Imaging created the Value Initiative in 2017 as a major component of its strategic plan to further demonstrate the value of molecular imaging and molecularly targeted radiopharmaceutical therapy to patients, physicians, payers, and funding agencies. The research and discovery domain, 1 of 5 under the Value Initiative, has a goal of advancing the research and development of diagnostic and therapeutic nuclear medicine. Research and discovery efforts and achievements are essential to ensure a bright future for NM and to translate science to practice. Given the remarkable progress in the field, leaders from the research and discovery domain and society councils identified 5 broad areas of opportunity with potential for substantive growth and clinical impact. This article discusses these 5 growth areas, identifying specific areas of particularly high importance for future study and development. As there was an understanding that goals should be both visionary yet achievable, this effort was called the Mars shot for nuclear medicine.
Collapse
Affiliation(s)
- Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University St. Louis, Missouri
| | | | - Bonnie Clarke
- Research and Discovery, Society of Nuclear Medicine and Molecular Imaging, Reston, Virginia
| | - Alexander Drzezga
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany, German Center for Neurodegenerative Diseases, Bonn-Cologne, Germany, and Institute of Neuroscience and Medicine, Molecular Organization of the Brain, Forschungszentrum Jülich, Jülich, Germany
| | - Liza Lindenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - James Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Gary A Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, and Molecular Imaging and Therapy, Hoag Cancer Center, Newport Beach, California
| | - Wolfgang Weber
- Department of Nuclear Medicine, Technical University Munich, Munich, Germany
| | - Katherine Zukotynski
- Departments of Medicine and Radiology, McMaster University, Hamilton, Ontario, Canada; and
| | - John Sunderland
- Departments of Radiology and Physics, University of Iowa, Iowa City, Iowa
| |
Collapse
|
12
|
Dilsizian V. Interpretation and clinical management of patients with "Fixed" myocardial perfusion defects : A call for quantifying endocardial-to-epicardial distribution of blood flow. J Nucl Cardiol 2021; 28:723-728. [PMID: 33415645 DOI: 10.1007/s12350-020-02492-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW PET myocardial perfusion imaging (MPI) is an established modality for the evaluation of ischemic heart disease and quantitation of myocardial blood flow (MBF). New F-18-labelled radiopharmaceuticals have been recently developed to overcome some of the limitations of currently used tracers such as the need of an on-site cyclotron. The characteristics of the new tracers and the clinical results obtained so far will be reviewed. RECENT FINDINGS Most of the interest in the field of 18F-labelled radiotracers for PET MPI has been concentrated on MC-1 inhibitors, the prototype of which is 18F-flurpiridaz. It was shown in experimental and clinical reports that these radiotracers allow good quality rest/stress MPI studies and a reliable quantitation of MBF. Recent evidence suggests that PET MPI with 18F-flurpiridaz may provide a superior diagnostic accuracy for obstructive CAD even if a large comparative clinical trial with SPECT is still ongoing.
Collapse
Affiliation(s)
- Riccardo Liga
- Cardio-Thoracic and Vascular Department, University Hospital of Pisa, Pisa, Italy
| | - Danilo Neglia
- Cardiovascular Department, Fondazione CNR Regione Toscana G. Monasterio, Via G Moruzzi 1, 56124, Pisa, Italy. .,Sant'Anna School of Advanced Studies, Pisa, Italy.
| |
Collapse
|
14
|
Pelletier-Galarneau M, Abikhzer G, Harel F, Dilsizian V. Detection of Native and Prosthetic Valve Endocarditis: Incremental Attributes of Functional FDG PET/CT over Morphologic Imaging. Curr Cardiol Rep 2020; 22:93. [PMID: 32647931 DOI: 10.1007/s11886-020-01334-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The clinical and incremental value of functional imaging with 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (FDG PET/CT) for the diagnosis and management of patients with suspected native and prosthetic valve infective endocarditis (IE). RECENT FINDINGS The diagnosis of IE is challenging because of the highly variable clinical presentations, especially in the case of prosthetic valve endocarditis (PVE). FDG PET/CT has been shown to play an important role for the diagnosis of PVE as a major Duke criterion. Whether FDG PET/CT could play a similar role in patients with suspected native valve endocarditis (NVE) is less well established. It is increasingly recognized that IE is a multisystem disorder, and identification of extra-cardiac manifestations on whole-body FDG PET/CT impacts management and prognosis of patients with IE. Finally, FDG PET/CT provides incremental prognostic value over other clinical and para-clinical parameters, enabling prediction of in-hospital mortality, IE recurrence, hospitalization, and new onset heart failure and embolic events. FDG PET/CT plays a key role in the investigation of patients with suspected IE, enabling detection of valvular infection and extra-cardiac manifestations of the infection which has important prognostic implications.
Collapse
Affiliation(s)
- Matthieu Pelletier-Galarneau
- Department of Medical Imaging, Institut de Cardiologie de Montréal, Université de Montréal, 5000 Bélanger, Montréal, Québec, H1T1C8, Canada. .,Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Gad Abikhzer
- Department of Medical Imaging, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Francois Harel
- Department of Medical Imaging, Institut de Cardiologie de Montréal, Université de Montréal, 5000 Bélanger, Montréal, Québec, H1T1C8, Canada
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Chen W, Dilsizian V. Molecular Imaging of Amyloid Deposits for Early Diagnosis of Cardiac Amyloidosis and Monitoring Treatment Response. JACC Cardiovasc Imaging 2020; 13:1348-1352. [DOI: 10.1016/j.jcmg.2020.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
|
16
|
Pelletier-Galarneau M, Dilsizian V. Microvascular Angina Diagnosed by Absolute PET Myocardial Blood Flow Quantification. Curr Cardiol Rep 2020; 22:9. [DOI: 10.1007/s11886-020-1261-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Quantificação do fluxo sanguíneo miocárdico por tomografia por emissão de positrões – Atualização. Rev Port Cardiol 2020; 39:37-46. [DOI: 10.1016/j.repc.2019.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/03/2019] [Accepted: 05/05/2019] [Indexed: 10/24/2022] Open
|
18
|
Fernandes J, Ferreira MJ, Leite L. Update on myocardial blood flow quantification by positron emission tomography. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.repce.2020.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Gullberg GT, Shrestha UM, Seo Y. Dynamic cardiac PET imaging: Technological improvements advancing future cardiac health. J Nucl Cardiol 2019; 26:1292-1297. [PMID: 29388118 PMCID: PMC6068005 DOI: 10.1007/s12350-018-1201-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Grant T Gullberg
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., Ste 350, San Francisco, CA, 94143-0946, USA.
| | - Uttam M Shrestha
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., Ste 350, San Francisco, CA, 94143-0946, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, 185 Berry St., Ste 350, San Francisco, CA, 94143-0946, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF THE REVIEW Cardiorenal syndrome (CRS), defined as concomitant heart and kidney disease, has been a focus of attention for nearly a decade. As more patients survive severe acute and chronic heart and kidney diseases, CRS has emerged as an "epidemic" of modern medicine. Significant advances have been made in unraveling the complex mechanisms that underlie CRS based on classification of the condition into five pathophysiologic subtypes. In types 1 and 2, acute or chronic heart disease results in renal dysfunction, while in types 3 and 4, acute or chronic kidney diseases are the inciting factors for heart disease. Type 5 CRS is defined as concomitant heart and kidney dysfunction as part of a systemic condition such as sepsis or autoimmune disease. RECENT FINDINGS There are ongoing efforts to better define subtypes of CRS based on historical information, clinical manifestations, laboratory data (including biomarkers), and imaging characteristics. Systematic evaluation of CRS by advanced cardiac imaging, however, has been limited in scope and mostly focused on type 4 CRS. This is in part related to lack of clinical trials applying advanced cardiac imaging in the acute setting and exclusion of patients with significant renal disease from studies of such techniques in chronic HF. Advanced cardiac nuclear imaging is well poised for assessment of the pathophysiology of CRS by offering a myriad of molecular probes without the need for nephrotoxic contrast agents. In this review, we examine the current or potential future application of advanced cardiac imaging to evaluation of myocardial perfusion, metabolism, and innervation in patients with CRS.
Collapse
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, Ostrum Street, Bethlehem, PA, 18015, USA.
| | - Srinidhi Meera
- Department of Cardiology, St. Luke's University Health Network, Bethlehem, Ostrum Street, Bethlehem, PA, 18015, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
21
|
Al-Haddad R, Ismailani US, Rotstein BH. Current and Future Cardiovascular PET Radiopharmaceuticals. PET Clin 2019; 14:293-305. [DOI: 10.1016/j.cpet.2018.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Abstract
PURPOSE OF REVIEW The aim of this review is to provide an update on quantification of myocardial blood flow (MBF) with positron emission tomography (PET) imaging. Technical and clinical aspects of flow quantification with PET are reviewed. RECENT FINDINGS The diagnostic and prognostic values of myocardial flow quantification have been established in numerous studies and in various populations. MBF quantification has also shown itself to be particularly useful in the assessment of coronary microvascular dysfunction and in evaluation of cardiac allograft vasculopathy. Overall, myocardial flow reserve (MFR) and hyperemic MBF can lead to improved risk stratification by providing information complementary to that of other markers of disease severity, such as fractional flow reserve. Flow quantification enhances MPI's ability to detect both significant epicardial disease and microvascular dysfunction. With recent technological and methodological advances, flow quantification with PET is no longer restricted to cyclotron-equipped academic centers.
Collapse
Affiliation(s)
- Matthieu Pelletier-Galarneau
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Medical Imaging, Montreal Heart Institute, Montreal, Quebec, Canada
| | - Patrick Martineau
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Radiology, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Levin DC, Parker L, Halpern EJ, Rao VM. Coronary CT Angiography: Reversal of Earlier Utilization Trends. J Am Coll Radiol 2018; 16:147-155. [PMID: 30158087 DOI: 10.1016/j.jacr.2018.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE To assess recent trends in utilization of coronary CT angiography (CCTA), based upon place of service and provider specialty. MATERIALS AND METHODS The nationwide Medicare Part B master files for 2006 through 2016 were the data source. Current Procedural Terminology, version 4 codes for CCTA were selected. The files provided procedure volume for each code. Utilization rates per 100,000 Medicare fee-for-service enrollees were then calculated. Medicare's place-of-service codes were used to identify CCTAs performed in private offices, hospital outpatient departments (HOPDs), emergency departments (EDs), and inpatient settings. Physician specialty codes were used to identify CCTAs interpreted by radiologists, cardiologists, and all other physicians as a group. Medicare practice share was defined as the percent of total Medicare utilization that was billed by each specialty. RESULTS The total utilization rate of CCTA in the Medicare population rose sharply from 2006 to 2007, peaking at 210.3 per 100,000 enrollees in 2007. Radiologists' CCTA practice share in 2007 was 32%, compared with 60% for cardiologists. The overall utilization rate then declined to a nadir of 107.1 per 100,000 enrollees in 2013, but subsequently increased to 131.0 by 2016. By that year, radiologists' share of CCTA practice had risen to 58%, compared with 38% for cardiologists. HOPD utilization increased sharply since 2010, primarily among radiologists. In EDs and inpatient settings, greater utilization has also occurred recently, primarily among radiologists. By contrast, private office utilization has dropped sharply since 2007. CONCLUSION After years of declining utilization, the utilization rate of CCTA is now increasing, predominantly among radiologists.
Collapse
Affiliation(s)
- David C Levin
- Department of Radiology, Center for Research on Utilization of Imaging Services (CRUISE), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania; HealthHelp, Inc, Houston, Texas.
| | - Laurence Parker
- Department of Radiology, Center for Research on Utilization of Imaging Services (CRUISE), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Ethan J Halpern
- Department of Radiology, Center for Research on Utilization of Imaging Services (CRUISE), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Vijay M Rao
- Department of Radiology, Center for Research on Utilization of Imaging Services (CRUISE), Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Taillefer R, Harel F. Radiopharmaceuticals for cardiac imaging: Current status and future trends. J Nucl Cardiol 2018; 25:1242-1246. [PMID: 29417412 DOI: 10.1007/s12350-018-1194-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Raymond Taillefer
- Département d'imagerie médicale, Hôpital du Haut-Richelieu du CISSS Montérégie-Centre, Saint-Jean-sur-Richelieu, QC, Canada.
| | - Francois Harel
- Département d'imagerie médicale, Institut de Cardiologie de Montréal, Montreal, QC, Canada
| |
Collapse
|
25
|
Kazakauskaitė E, Žaliaduonytė-Pekšienė D, Rumbinaitė E, Keršulis J, Kulakienė I, Jurkevičius R. Positron Emission Tomography in the Diagnosis and Management of Coronary Artery Disease. MEDICINA (KAUNAS, LITHUANIA) 2018; 54:medicina54030047. [PMID: 30344278 PMCID: PMC6122121 DOI: 10.3390/medicina54030047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 11/16/2022]
Abstract
Cardiac positron emission tomography (PET) and positron emission tomography/computed tomography (PET/CT) are encouraging precise non-invasive imaging modalities that allow imaging of the cellular function of the heart, while other non-invasive cardiovascular imaging modalities are considered to be techniques for imaging the anatomy, morphology, structure, function and tissue characteristics. The role of cardiac PET has been growing rapidly and providing high diagnostic accuracy of coronary artery disease (CAD). Clinical cardiology has established PET as a criterion for the assessment of myocardial viability and is recommended for the proper management of reduced left ventricle (LV) function and ischemic cardiomyopathy. Hybrid PET/CT imaging has enabled simultaneous integration of the coronary anatomy with myocardial perfusion and metabolism and has improved characterization of dysfunctional areas in chronic CAD. Also, the availability of quantitative myocardial blood flow (MBF) evaluation with various PET perfusion tracers provides additional prognostic information and enhances the diagnostic performance of nuclear imaging.
Collapse
Affiliation(s)
- Eglė Kazakauskaitė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| | - Diana Žaliaduonytė-Pekšienė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| | - Eglė Rumbinaitė
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| | - Justas Keršulis
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| | - Ilona Kulakienė
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| | - Renaldas Jurkevičius
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas LT-50161, Lithuania.
| |
Collapse
|
26
|
Massalha S, Clarkin O, Thornhill R, Wells G, Chow BJW. Decision Support Tools, Systems, and Artificial Intelligence in Cardiac Imaging. Can J Cardiol 2018; 34:827-838. [PMID: 29960612 DOI: 10.1016/j.cjca.2018.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/22/2022] Open
Abstract
Noninvasive cardiac imaging is widely used for the diagnosis and management of cardiac patients. The increasing demand for cardiac imaging begins to exceed the number of available interpreting physicians, leaving less time to interpret studies. In addition, the busy clinician is facing the increasingly daunting task of keeping abreast of current medical advancements and the ongoing changes in disease diagnosis and therapy. Committing to memory and recalling such large volumes of information is challenging and is responsible for difficulties in adopting the rapid changes in imaging practice, and is likely partially responsible for errors in patient diagnosis and management. Diagnostic errors rank high in the cause of death in the United States, and are more common than any other medical error and are responsible for most malpractice claims. Most of these errors are related to cognitive errors. The use of artificial intelligence systems that can serve as complementary methods to assist humans with decision making can potentially prevent these errors. The past decades witnessed the development and integration of these tools, which can assist physicians with image interpretation. These tools work to optimize image quality for better visualization and accompany all imaging modalities, starting from patient selection for the appropriate test, patient preparation, image acquisition, processing, and finally interpretation. Current and future directions for technologies that support cardiac imaging physicians are discussed in this review.
Collapse
Affiliation(s)
- Samia Massalha
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Owen Clarkin
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Rebecca Thornhill
- Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Glenn Wells
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Benjamin J W Chow
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
27
|
Coronary CT Angiography: Use in Patients With Chest Pain Presenting to Emergency Departments. AJR Am J Roentgenol 2018; 210:816-820. [PMID: 29446681 DOI: 10.2214/ajr.17.18740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Previously published reports have shown that coronary CT angiography (CCTA) is a more efficient method of diagnosis than myocardial perfusion imaging (MPI) and stress echocardiography for patients presenting to emergency departments (EDs) with acute chest pain. In light of this evidence, the objective of this study was to examine recent trends in the use of these techniques in EDs. MATERIALS AND METHODS The nationwide Medicare Part B databases for 2006-2015 were the data source. The Current Procedural Terminology, version 4, codes for CCTA, MPI, and stress echocardiography were selected. Medicare place-of-service codes were used to determine procedure volumes in EDs. Medicare specialty codes were used to ascertain how many of these examinations were interpreted by radiologists, cardiologists, and other physicians as a group. RESULTS From 2006 to 2015, there was essentially no change in the number of MPI examinations performed in EDs for patients using Medicare (22,342 in 2006, 22,338 in 2015) or in the number of stress echocardiograms (3544 in 2006, 3520 in 2015). By contrast, the number of CCTA examinations increased rapidly, from 126 in 2006 to 1919 in 2015 (compound annual growth rate, 35%). Despite this rapid growth, patients in EDs underwent 11.6 times as many MPI as CCTA examinations in 2015. In that last year of the study, radiologists interpreted 78% of ED MPI and 83% of ED CCTA examinations. CONCLUSION Use of CCTA in EDs has increased rapidly, but far more MPI examinations are still being performed. This finding suggests that recently acquired evidence is not yet being fully acted upon.
Collapse
|
28
|
Ferreira MJ, Cerqueira MD. Responsible growth of nuclear cardiology in Spain. J Nucl Cardiol 2017; 24:2141-2143. [PMID: 28695404 DOI: 10.1007/s12350-017-0976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Maria João Ferreira
- Faculdade de Medicina, Centro Hospitalar e Universitário de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Manuel D Cerqueira
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 444195, USA.
- Department of Nuclear Medicine, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA.
- Heart and vascular Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
29
|
Dilsizian V. Challenging Nuclear Cardiology Research: Stimulating Discovery, Validation, and Clinical Relevance. J Nucl Med 2017; 59:13-14. [PMID: 29146697 DOI: 10.2967/jnumed.117.203042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 11/16/2022] Open
|
30
|
Gewirtz H, Dilsizian V. Myocardial Viability: Survival Mechanisms and Molecular Imaging Targets in Acute and Chronic Ischemia. Circ Res 2017; 120:1197-1212. [PMID: 28360350 DOI: 10.1161/circresaha.116.307898] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Myocardial responses to acute ischemia/reperfusion and to chronic ischemic conditions have been studied extensively at all levels of organization. These include subcellular (eg, mitochondria in vitro); intact, large animal models (eg, swine with chronic coronary stenosis); as well as human subjects. Investigations in humans have used positron emission tomographic metabolic and myocardial blood flow measurements, assessment of gene expression and anatomic description of myocardium obtained at the time of coronary artery revascularization, ventricular assist device placement, or heart transplantation. A multitude of genetic, molecular, and metabolic pathways have been identified, which may promote either myocyte survival or death or, most interestingly, both. Many of these potential mediators in both acute ischemia/reperfusion and adaptations to chronic ischemic conditions involve the mitochondria, which play a central role in cellular energy production and homeostasis. The present review is focused on operative survival mechanisms and potential myocardial viability molecular imaging targets in acute and chronic ischemia, especially those which impact mitochondrial function.
Collapse
Affiliation(s)
- Henry Gewirtz
- From the Department of Medicine (Cardiology Division), Massachusetts General Hospital, Harvard Medical School, Boston (H.G.); and Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore (V.D.)
| | - Vasken Dilsizian
- From the Department of Medicine (Cardiology Division), Massachusetts General Hospital, Harvard Medical School, Boston (H.G.); and Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore (V.D.).
| |
Collapse
|
31
|
Kim JW, Seo S, Kim HS, Kim DY, Lee HY, Kang KW, Lee DS, Bom HS, Min JJ, Lee JS. Comparative evaluation of the algorithms for parametric mapping of the novel myocardial PET imaging agent 18F-FPTP. Ann Nucl Med 2017; 31:469-479. [PMID: 28444503 PMCID: PMC5486518 DOI: 10.1007/s12149-017-1171-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/16/2017] [Indexed: 02/05/2023]
Abstract
Objective (18F-fluoropentyl)triphenylphosphonium salt (18F-FPTP) is a new promising myocardial PET imaging tracer. It shows high accumulation in cardiomyocytes and rapid clearance from liver. We performed compartmental analysis of 18F-FPTP PET images in rat and evaluated two linear analyses: linear least-squares (LLS) and a basis function method (BFM) for generating parametric images. The minimum dynamic scan duration for kinetic analysis was also investigated and computer simulation undertaken. Methods 18F-FPTP dynamic PET (18 min) and CT images were acquired from rats with myocardial infarction (MI) (n = 12). Regions of interest (ROIs) were on the left ventricle, normal myocardium, and MI region. Two-compartment (K1 and k2; 2C2P) and three-compartment (K1–k3; 3C3P) models with irreversible uptake were compared for goodness-of-fit. Partial volume and spillover correction terms (Va and α = 1 − Va) were also incorporated. LLS and BFM were applied to ROI- and voxel-based kinetic parameter estimations. Results were compared with the standard ROI-based nonlinear least-squares (NLS) results of the corresponding compartment model. A simulation explored statistical properties of the estimation methods. Results The 2C2P model was most suitable for describing 18F-FPTP kinetics. Average K1, k2, and Va values were, respectively, 6.8 (ml/min/g), 1.1 (min−1), and 0.44 in normal myocardium and 1.4 (ml/min/g), 1.1 (min−1), and 0.32, in MI tissue. Ten minutes of data was sufficient for the estimation. LLS and BFM estimations correlated well with NLS values for the ROI level (K1: y = 1.06x + 0.13, r2 = 0.96 and y = 1.13x + 0.08, r2 = 0.97) and voxel level (K1: y = 1.22x − 0.30, r2 = 0.90 and y = 1.26x + 0.00, r2 = 0.92). Regional distribution of kinetic parametric images (αK1, K1, k2, Va) was physiologically relevant. LLS and BFM showed more robust characteristics than NLS in the simulation. Conclusions Fast kinetics and highly specific uptake of 18F-FPTP by myocardium enabled quantitative analysis with the 2C2P model using only the initial 10 min of data. LLS and BFM were feasible for estimating voxel-wise parameters. These two methods will be useful for quantitative evaluation of 18F-FPTP distribution in myocardium and in further studies with different conditions, disease models, and species. Electronic supplementary material The online version of this article (doi:10.1007/s12149-017-1171-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji Who Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Seongho Seo
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Hyeon Sik Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Dong-Yeon Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-Gu, Seoul, 08826, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea.,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Daehak-ro 101, Chongnogu, Seoul, 03080, Korea. .,Department of Cardiology, Chonnam National University Hwasun Hospital, 160 Ilsimri, Hwasun, 519-809, Jeonnam, Korea.
| |
Collapse
|
32
|
|
33
|
Shirani J, Singh A, Agrawal S, Dilsizian V. Cardiac molecular imaging to track left ventricular remodeling in heart failure. J Nucl Cardiol 2017; 24:574-590. [PMID: 27480973 DOI: 10.1007/s12350-016-0620-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Cardiac left ventricular (LV) remodeling is the final common pathway of most primary cardiovascular diseases that manifest clinically as heart failure (HF). The more advanced the systolic HF and LV dysfunction, the worse the prognosis. The knowledge of the molecular, cellular, and neurohormonal mechanisms that lead to myocardial dysfunction and symptomatic HF has expanded rapidly and has allowed sophisticated approaches to understanding and management of the disease. New therapeutic targets for pharmacologic intervention in HF have also been identified through discovery of novel cellular and molecular components of membrane-bound receptor-mediated intracellular signal transduction cascades. Despite all advances, however, the prognosis of systolic HF has remained poor in general. This is, at least in part, related to the (1) relatively late institution of treatment due to reliance on gross functional and structural abnormalities that define the "heart failure phenotype" clinically; (2) remarkable genetic-based interindividual variations in the contribution of each of the many molecular components of cardiac remodeling; and (3) inability to monitor the activity of individual pathways to cardiac remodeling in order to estimate the potential benefits of pharmacologic agents, monitor the need for dose titration, and minimize side effects. Imaging of the recognized ultrastructural components of cardiac remodeling can allow redefinition of heart failure based on its "molecular phenotype," and provide a guide to implementation of "personalized" and "evidence-based" evaluation, treatment, and longitudinal monitoring of the disease beyond what is currently available through randomized controlled clinical trials.
Collapse
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA.
| | - Amitoj Singh
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Sahil Agrawal
- Department of Cardiology, St. Luke's University Health Network, 801 Ostrum Street, Bethlehem, PA, USA
| | - Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Ziadi MC. Myocardial flow reserve (MFR) with positron emission tomography (PET)/computed tomography (CT): clinical impact in diagnosis and prognosis. Cardiovasc Diagn Ther 2017; 7:206-218. [PMID: 28540215 DOI: 10.21037/cdt.2017.04.10] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In recent years, radionuclide myocardial perfusion imaging (MPI) using positron emission tomography/computed tomography (PET/CT) has emerged as a robust tool for the diagnosis, risk stratification and management of patients with known or established coronary artery disease (CAD). Cardiac PET/CT imaging affords key advantages compared to single photon emission computed tomography (SPECT) that encompass: (I) improved diagnostic accuracy; (II) decreased radiation exposure due to the utilization of short-lived radiopharmaceuticals, and importantly; (III) the ability to quantify noninvasively myocardial blood flow (MBF) in absolute terms, that is in ml per minute per gram of tissue. Quantitative approaches that measure MBF with PET can facilitate the diagnosis of multivessel CAD and offer the opportunity to monitor responses to lifestyle and/or risk factor modification and to therapeutic interventions. The aim of this review is to focus on the potential clinical utility of MBF and will discuss: (I) basics aspects of PET clinical perfusion tracers and flow quantification parameters; (II) limitations of relative MPI, (III) summarize a classification of diseases where flow quantification may be of use; (IV) specifically, review data on the diagnosis and prognostic value of flow quantification.
Collapse
Affiliation(s)
- Maria Cecilia Ziadi
- Non-Invasive Cardiovascular Imaging Department, Diagnóstico Médico Oroño, Rosario, Santa Fe, Argentina
| |
Collapse
|
35
|
Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, Gropler RJ, Knuuti J, Schelbert HR, Travin MI. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016; 23:1187-1226. [PMID: 27392702 DOI: 10.1007/s12350-016-0522-3] [Citation(s) in RCA: 415] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, South Greene Street, Rm N2W78, Baltimore, MD, 21201-1595, USA.
| | - Stephen L Bacharach
- Department of Radiology, University of California-San Francisco, San Francisco, CA, USA
| | - Rob S Beanlands
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Steven R Bergmann
- Pat and Jim Calhoun Cardiology Center, UConn Health, Farmington, CT, USA
| | - Dominique Delbeke
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sharmila Dorbala
- Division of Nuclear Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert J Gropler
- Division of Nuclear Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Heinrich R Schelbert
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mark I Travin
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
36
|
Olivas Arroyo C. Radiopharmaceuticals in positron emission tomography: present situation and future perspectives. RADIOLOGIA 2016; 58:468-480. [PMID: 27592111 DOI: 10.1016/j.rx.2016.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/08/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
Positron emission tomography (PET) is an imaging technique that has grown greatly in recent years. PET is considered a fundamental tool in oncology, and it also has indications in other fields such as neurology and cardiology. Although 18F-fluorodeoxyglucose (18F-FDG) is the radiopharmaceutical most widely used in PET, the availability of new radiotracers has been a key element in the expansion of the use of PET. These new radiopharmaceuticals have made it possible to study different biological targets that are essential for obtaining greater knowledge and better characterization of different diseases and have thus contributed to the research and development of different therapeutic agents. This article provides a description of different PET radiopharmaceutical, structured according to their areas of application. Some of these radiotracers are already commercially available, whereas others are still under research or pending approval by regulatory bodies.
Collapse
Affiliation(s)
- C Olivas Arroyo
- Unidad de Radiofarmacia, Servicio de Medicina Nuclear, Hospital Universitari i Politècnic La Fe, Valencia, España.
| |
Collapse
|
37
|
Nuclear Imaging for Assessment of Myocardial Perfusion, Metabolism, and Innervation in Hypertrophic Cardiomyopathy. CURRENT CARDIOVASCULAR IMAGING REPORTS 2016. [DOI: 10.1007/s12410-016-9379-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Dilsizian V. Transition from SPECT to PET myocardial perfusion imaging: A desirable change in nuclear cardiology to approach perfection. J Nucl Cardiol 2016; 23:337-8. [PMID: 27016107 DOI: 10.1007/s12350-016-0475-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease. Circulation 2016; 133:2180-96. [DOI: 10.1161/circulationaha.115.018089] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Dilsizian V. Highlights from the Updated Joint ASNC/SNMMI PET Myocardial Perfusion and Metabolism Clinical Imaging Guidelines. J Nucl Med 2016; 57:1327-8. [PMID: 27199358 DOI: 10.2967/jnumed.116.176214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022] Open
|
41
|
Recent Trends in Imaging for Suspected Coronary Artery Disease: What Is the Best Approach? J Am Coll Radiol 2016; 13:381-6. [PMID: 26774887 DOI: 10.1016/j.jacr.2015.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/04/2015] [Accepted: 11/14/2015] [Indexed: 11/22/2022]
Abstract
PURPOSE The aim of this study was to ascertain recent trends in noninvasive imaging utilization for suspected coronary artery disease. METHODS The Medicare Part B databases for 2001 to 2013 were reviewed. Current Procedural Terminology primary codes for radionuclide myocardial perfusion imaging (MPI), stress echocardiography (SE), and coronary CT angiography (CCTA) were selected. Physician specialty codes were used to designate providers as radiologists, cardiologists, and all others as a group. Procedure volumes were tabulated, and utilization rates per 1,000 Medicare beneficiaries were calculated over the period of study. RESULTS Total MPI utilization rates per 1,000 rose rapidly from 63.4 in 2001 to a peak of 88.0 in 2006 but declined every year thereafter, dropping to 61.9 in 2013. SE rates generally held steady around 12 to 13 from 2001 to 2010 but then began to decline, reaching 10.8 in 2013. Cardiologists predominate in both MPI and SE. CCTA rates were far lower. They peaked at 2.1 in 2007, but then dropped before leveling off at 1.07 in both 2012 and 2013. Radiologists and cardiologists have approximately equal roles in this procedure. CONCLUSIONS Both MPI and SE seem to be declining in use in recent years. This is likely due to unfavorable reimbursement trends caused by code bundling and resulting in the closure of many private cardiology offices. CCTA use is far lower than the two other types of imaging and has also declined in recent years. This is puzzling, as it is a new and promising procedure that has some advantages over MPI and SE. In 2013, 58 times as many MPI studies as CCTA studies were performed.
Collapse
|
42
|
Prediction Models for Cardiac Risk Classification with Nuclear Cardiology Techniques. CURRENT CARDIOVASCULAR IMAGING REPORTS 2016. [DOI: 10.1007/s12410-015-9365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Dilsizian V, Gewirtz H, Paivanas N, Kitsiou AN, Hage FG, Crone NE, Schwartz RG. Serious and potentially life threatening complications of cardiac stress testing: Physiological mechanisms and management strategies. J Nucl Cardiol 2015; 22:1198-213; quiz 1195-7. [PMID: 25975944 DOI: 10.1007/s12350-015-0141-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Henry Gewirtz
- Department of Medicine (Cardiology Division), Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas Paivanas
- Department of Medicine (Division of Cardiology), University of Rochester Medical Center, Rochester, NY, USA
| | | | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham and Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald G Schwartz
- Departments of Medicine (Division of Cardiology) and Imaging Sciences (Nuclear Medicine), University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
44
|
Dilsizian V, Eckelman WC. Myocardial Blood Flow and Innervation Measures from a Single Scan: An Appealing Concept but a Challenging Paradigm. J Nucl Med 2015; 56:1645-6. [PMID: 26315831 DOI: 10.2967/jnumed.115.164251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland; and
| | | |
Collapse
|
45
|
Abstract
PET myocardial perfusion imaging (MPI) is increasingly being used for noninvasive detection and evaluation of coronary artery disease. However, the widespread use of PET MPI has been limited by the shortcomings of the current PET perfusion tracers. The availability of these tracers is limited by the need for an onsite ((15)O water and (13)N ammonia) or nearby ((13)N ammonia) cyclotron or commitment to costly generators ((82)Rb). Owing to the short half-lives, such as 76 seconds for (82)Rb, 2.06 minutes for (15)O water, and 9.96 minutes for (13)N ammonia, their use in conjunction with treadmill exercise stress testing is either not possible ((82)Rb and (15)O water) or not practical ((13)N ammonia). Furthermore, the long positron range of (82)Rb makes image resolution suboptimal and its low myocardial extraction limits its defect resolution. In recent years, development of an (18)F-labeled PET perfusion tracer has gathered considerable interest. The longer half-life of (18)F (109 minutes) would make the tracer available as a unit dose from regional cyclotrons and allow use in conjunction with treadmill exercise testing. Furthermore, the short positron range of (18)F would result in better image resolution. Flurpiridaz F 18 is by far the most thoroughly studied in animal models and is the only (18)F-based PET MPI radiotracer currently undergoing clinical evaluation. Preclinical and clinical experience with Flurpiridaz F 18 demonstrated a high myocardial extraction fraction, high image and defect resolution, high myocardial uptake, slow myocardial clearance, and high myocardial-to-background contrast that was stable over time-important properties of an ideal PET MPI radiotracer. Preclinical data from other (18)F-labeled myocardial perfusion tracers are encouraging.
Collapse
Affiliation(s)
- Jamshid Maddahi
- Division of Cardiology, Department of Medicine, University of California at Los Angeles (UCLA) School of Medicine, Los Angeles, CA; Division of Nuclear Medicine, Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA.
| | - René R S Packard
- Division of Cardiology, Department of Medicine, University of California at Los Angeles (UCLA) School of Medicine, Los Angeles, CA
| |
Collapse
|
46
|
Abstract
Positron-emitting myocardial flow radiotracers such as (15)O-water, (13)N-ammonia and (82)Rubidium in conjunction with positron-emission-tomography (PET) are increasingly applied in clinical routine for coronary artery disease (CAD) detection, yielding high diagnostic accuracy, while providing valuable information on cardiovascular (CV) outcome. Owing to a cyclotron dependency of (15)O-water and (13)N-ammonia, their clinical use for PET myocardial perfusion imaging is limited to a few centers. This limitation could be overcome by the increasing use of (82)Rubidium as it can be eluted from a commercially available (82)Strontium generator and, thus, is independent of a nearby cyclotron. Another novel F-18-labeled myocardial flow radiotracer is flurpiridaz which has attracted increasing interest due to its excellent radiotracer characteristics for perfusion and flow imaging with PET. In particular, the relatively long half-life of 109 minutes of flurpiridaz may afford a general application of this radiotracer for PET perfusion imaging comparable to technetium-99m-labeled single-photon emission computed tomography (SPECT). The ability of PET in conjunction with several radiotracers to assess myocardial blood flow (MBF) in ml/g/min at rest and during vasomotor stress has contributed to unravel pathophysiological mechanisms underlying coronary artery disease (CAD), to improve the detection and characterization of CAD burden in multivessel disease, and to provide incremental prognostic information in individuals with subclinical and clinically-manifest CAD. The concurrent evaluation of myocardial perfusion and MBF may lead to a new era of a personalized, image-guided therapy approach that may offer potential to further improve clinical outcome in CV disease patients but needing validation in large-scale clinical trials.
Collapse
Affiliation(s)
- Thomas H Schindler
- Division of Nuclear Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
PET-determined hyperemic myocardial blood flow: further progress to clinical application. J Am Coll Cardiol 2015; 64:1476-8. [PMID: 25277619 DOI: 10.1016/j.jacc.2014.04.086] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 11/20/2022]
|
48
|
Nakazato R, Heo R, Leipsic J, Min JK. CFR and FFR assessment with PET and CTA: strengths and limitations. Curr Cardiol Rep 2014; 16:484. [PMID: 24652346 DOI: 10.1007/s11886-014-0484-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positron emission tomography (PET) myocardial perfusion imaging (MPI) has high diagnostic accuracy and prognostic value. PET-MPI can also be used to quantitatively evaluate regional myocardial blood flow (MBF). This technique also allows the calculation of the coronary flow reserve (CFR)/myocardial flow reserve (MFR), which is the ratio of MBF at peak hyperemia to resting MBF. Coronary computed tomography angiography (CTA) is a non-invasive method for accurate detection and exclusion of high-grade coronary stenoses, when compared to an invasive coronary angiography reference standard. However, CTA assessment of coronary stenoses tends toward overestimation, and CTA cannot determine physiologic significance of lesions. Recent advances in computational fluid dynamics and image-based modeling permit calculation of non-invasive fractional flow reserve derived from CT (FFRCT), without the need for additional imaging, modification of acquisition protocols, or administration of medications. In this review, we cover the CFR/MFR assessment by PET and FFR assessment by CT.
Collapse
|
49
|
Abstract
Angiotensin II (AII), an octapeptide member of the renin-angiotensin system (RAS), is formed by the enzyme angiotensin converting enzyme (ACE) and exerts adverse cellular effects through an interaction with its type 1 receptor (AT1R). Both ACE inhibitors and angiotensin receptor blockers (ARB) mitigate the vasoconstrictive, proliferative, proinflammatory, proapoptotic, and profibrotic effects of AII and are widely used as effective anti-remodeling agents in clinical practice. Prediction of individual response to these agents, however, remains problematic and is influenced by many factors including race, gender, and genotype. In addition, systemic and tissue RAS activity do not correlate closely. This report summarizes the results of on-going attempts to noninvasively determine tissue ACE activity and AT1R expression using novel nuclear tracers. It is hoped that the availability of such imaging techniques improve treatment of heart failure through more selective pharmacologic intervention and better dose titration of available drugs.
Collapse
|
50
|
Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr Cardiol Rep 2014; 16:441. [PMID: 24338557 DOI: 10.1007/s11886-013-0441-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although advances in information technology in the past decade have come in quantum leaps in nearly every aspect of our lives, they seem to be coming at a slower pace in the field of medicine. However, the implementation of electronic health records (EHR) in hospitals is increasing rapidly, accelerated by the meaningful use initiatives associated with the Center for Medicare & Medicaid Services EHR Incentive Programs. The transition to electronic medical records and availability of patient data has been associated with increases in the volume and complexity of patient information, as well as an increase in medical alerts, with resulting "alert fatigue" and increased expectations for rapid and accurate diagnosis and treatment. Unfortunately, these increased demands on health care providers create greater risk for diagnostic and therapeutic errors. In the near future, artificial intelligence (AI)/machine learning will likely assist physicians with differential diagnosis of disease, treatment options suggestions, and recommendations, and, in the case of medical imaging, with cues in image interpretation. Mining and advanced analysis of "big data" in health care provide the potential not only to perform "in silico" research but also to provide "real time" diagnostic and (potentially) therapeutic recommendations based on empirical data. "On demand" access to high-performance computing and large health care databases will support and sustain our ability to achieve personalized medicine. The IBM Jeopardy! Challenge, which pitted the best all-time human players against the Watson computer, captured the imagination of millions of people across the world and demonstrated the potential to apply AI approaches to a wide variety of subject matter, including medicine. The combination of AI, big data, and massively parallel computing offers the potential to create a revolutionary way of practicing evidence-based, personalized medicine.
Collapse
|