1
|
Yang G, Li H, Yin J, Yao L, Yang J, Tang J, Wu Y, Zhou M, Luo T, Zhang Y, Zhang J, Yang X, Dong X, Liu Z, Li N. Alleviating tumor hypoxia and immunosuppression via sononeoperfusion: A new Ally for potentiating anti-PD-L1 blockade of solid tumor. ULTRASONICS SONOCHEMISTRY 2024:107115. [PMID: 39482116 DOI: 10.1016/j.ultsonch.2024.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
The hypoxic and immunosuppressive tumor microenvironment (TME) remains a major obstacle to impede cancer immunotherapy. Here, we found that sononeoperfusion-a new effect of tumor perfusion enhancement induced by low mechanical index ultrasound stimulated microbubble cavitation (USMC)-ameliorated tumor tissue oxygenation and induced tumor vascular normalization (TVN). This TVN might be associated with the down-regulation of hypoxia-inducible factor 1-alpha (HIF-1α) and vascular endothelial growth factor (VEGF) within tumors. Moreover, the sononeoperfusion effect reduced the accumulation of immunosuppressive cells, such as regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs) and M2-like tumor-associated macrophages (M2-TAMs), and decreased the production of immune inhibitory factors like transforming growth factor-β1 (TGF-β1), interleukin 10 (IL-10), chemoattractant chemokines CC-chemokine ligand 22 (CCL22), CCL28, adenosine and lactate within tumors. Notably, flow cytometry analysis revealed that sononeoperfusion not only increased the percentage of tumor infiltrating-CD8+ T cells, but also promoted the generation of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) by these cells. Furthermore, the improved immune TME by sononeoperfusion effect sensitized anti-PD-L1 treatment both in MC38 colon cancer and Lewis lung carcinoma mice, resulting in tumor regression and prolonged survival. Mechanically, the enhanced efficacy of combination therapy was mainly based on promoting the infiltration and function of CD8+ T cells within tumors. Together, sononeoperfusion could ameliorate hypoxia and immunosuppression in the TME, thereby potentiating anti-PD-L1 therapy for solid tumors. This novel method of USMC generating sononeoperfusion effect may provide a new therapeutic modality for facilitating cancer immunotherapy.
Collapse
Affiliation(s)
- Guoliang Yang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Hui Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jiabei Yin
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Lei Yao
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jun Yang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jiawei Tang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - You Wu
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Meng Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - TingTing Luo
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Yi Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Jing Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Xuezhi Yang
- Institute of Cancer, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - XiaoXiao Dong
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Zheng Liu
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China.
| | - Ningshan Li
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, China.
| |
Collapse
|
2
|
Wang Z, Jiang N, Jiang Z, Deng Q, Zhou Q, Hu B. Beyond silence: evolving ultrasound strategies in the battle against cardiovascular thrombotic challenges. J Thromb Thrombolysis 2024; 57:1040-1050. [PMID: 38689069 DOI: 10.1007/s11239-024-02989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular thrombotic events have long been a perplexing factor in clinical settings, influencing patient prognoses significantly. Ultrasound-mediated acoustic therapy, an innovative thrombolytic treatment method known for its high efficiency, non-invasiveness, safety, and convenience, has demonstrated promising potential for clinical applications and has gradually become a focal point in cardiovascular thrombotic disease research. The current challenge lies in the technical complexities of preparing ultrasound-responsive carriers with thrombus-targeting capabilities and high thrombolytic efficiency. Additionally, optimizing the corresponding acoustic treatment mode is crucial to markedly enhance the thrombolytic effectiveness of ultrasound-mediated acoustic therapy. In light of the current status, this article provides a comprehensive review of the research progress in innovative ultrasound-mediated acoustic therapy for cardiovascular thrombotic diseases. It explores the impact of technical methods, therapeutic mechanisms, and influencing factors on the thrombolytic efficiency and clinical potential of ultrasound-mediated acoustic therapy. The review places particular emphasis on identifying solutions and key considerations in addressing the challenges associated with this cutting-edge therapeutic approach.
Collapse
Affiliation(s)
- Zhiwen Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Nan Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Zhixin Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing Deng
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Bo Hu
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Callegari S, Feher A, Smolderen KG, Mena-Hurtado C, Sinusas AJ. Multi-modality imaging for assessment of the microcirculation in peripheral artery disease: Bench to clinical practice. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 42:100400. [PMID: 38779485 PMCID: PMC11108852 DOI: 10.1016/j.ahjo.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Peripheral artery disease (PAD) is a highly prevalent disorder with a high risk of mortality and amputation despite the introduction of novel medical and procedural treatments. Microvascular disease (MVD) is common among patients with PAD, and despite the established role as a predictor of amputations and mortality, MVD is not routinely assessed as part of current standard practice. Recent pre-clinical and clinical perfusion and molecular imaging studies have confirmed the important role of MVD in the pathogenesis and outcomes of PAD. The recent advancements in the imaging of the peripheral microcirculation could lead to a better understanding of the pathophysiology of PAD, and result in improved risk stratification, and our evaluation of response to therapies. In this review, we will discuss the current understanding of the anatomy and physiology of peripheral microcirculation, and the role of imaging for assessment of perfusion in PAD, and the latest advancements in molecular imaging. By highlighting the latest advancements in multi-modality imaging of the peripheral microcirculation, we aim to underscore the most promising imaging approaches and highlight potential research opportunities, with the goal of translating these approaches for improved and personalized management of PAD in the future.
Collapse
Affiliation(s)
- Santiago Callegari
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kim G. Smolderen
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Mena-Hurtado
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Wang J, Luo T, Chen J, Liu Z, Wang J, Zhang X, Li H, Ma Y, Zhang F, Ju H, Wang W, Wang Y, Zhu Q. Enhancement of Tumor Perfusion and Antiangiogenic Therapy in Murine Models of Clear Cell Renal Cell Carcinoma Using Ultrasound-Stimulated Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:680-689. [PMID: 38311538 DOI: 10.1016/j.ultrasmedbio.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
OBJECTIVE To explore the effect of ultrasound-stimulated microbubble cavitation (USMC) on enhancing antiangiogenic therapy in clear cell renal cell carcinoma. MATERIALS AND METHODS We explored the effects of USMC with different mechanical indices (MIs) on tumor perfusion, 36 786-O tumor-bearing nude mice were randomly assigned into four groups: (i) control group, (ii) USMC0.25 group (MI = 0.25), (iii) USMC1.4 group (MI = 1.4) (iv) US1.4 group (MI = 1.4). Tumor perfusion was assessed by contrast-enhanced ultrasound (CEUS) before the USMC treatment and 30 min, 4h and 6h after the USMC treatment, respectively. Then we evaluated vascular normalization(VN) induced by low-MI (0.25) USMC treatment, 12 tumor-bearing nude mice were randomly divided into two groups: (i) control group (ii) USMC0.25 group. USMC treatment was performed, and tumor microvascular imaging and blood perfusion were analyzed by MicroFlow imaging (MFI) and CEUS 30 min after each treatment. In combination therapy, a total of 144 tumor-bearing nude mice were randomly assigned to six groups (n = 24): (i) control group, (ii) USMC1.4 group, (iii) USMC0.25 group, (iv) bevacizumab(BEV) group, (v) USMC1.4 +BEV group, (vi) USMC0.25 +BEV group. BEV was injected on the 6th, 10th, 14th, and 18th d after the tumors were inoculated, while USMC treatment was performed 24 h before and after every BEV administration. We examined the effects of the combination therapy through a series of experiments. RESULTS Tumor blood perfusion enhanced by USMC with low MI (0.25)could last for more than 6h, inducing tumor VN and promoting drug delivery. Compared with other groups, USMC0.25+BEV combination therapy had the strongest inhibition on tumor growth, led to the longest survival time of the mice. CONCLUSION The optimized USMC is a promising therapeutic approach that can be combined with antiangiogenic therapy to combat tumor progression.
Collapse
Affiliation(s)
- Juan Wang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jianghong Chen
- Department of Ultrasound, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Juan Wang
- Department of Pathology,The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiiazhuang, Hebei, China
| | - Hui Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yulin Ma
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fan Zhang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Ju
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wengang Wang
- Department of Abdominal Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yueheng Wang
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Wang R, Chen X, Zha D. Long-pulsed ultrasound-mediated microbubble thrombolysis in a rat model of microvascular obstruction. Open Med (Wars) 2024; 19:20240935. [PMID: 38584836 PMCID: PMC10997007 DOI: 10.1515/med-2024-0935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
In up to 30% patients who experience acute myocardial infarction, successful recanalization of the epicardial coronary artery cannot provide adequate microvascular reperfusion. In this study, we sought to determine whether long-pulsed ultrasound (US)-mediated microbubble (MB) cavitation was useful for the treatment of microvascular obstruction, and the therapeutic effects were compared within different long-pulse-length and short-pulsed US. Microvascular obstruction model was established by injecting micro-thrombi into common iliac artery of a rat's hind limb. About 1 MHz US with different long pulse lengths (ranging from 100 to 50,000 cycles) was delivered, compared to short pulse (5 cycles). The control group was given MB only without therapeutic US. Contrast perfusion images were performed at baseline, emboli, and 1, 5, 10 min post-embolization, and peak plateau video intensity (A) was obtained to evaluate the therapeutic effects. Long-tone-burst US showed better thrombolytic effects than short-pulsed US (1,000, 5,000 cycles >500 cycles, >5 cycles, and control) (P < 0.01). 1,000 cycles group showed the optimal thrombolytic effect, but microvascular hemorrhage was observed in 50,000 cycles group. In conclusion, long-tone-burst US-enhanced MB therapy mediated successful thrombolysis and may offer a powerful approach for the treatment for microvascular obstruction within a certain pulse length.
Collapse
Affiliation(s)
- Rui Wang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Ultrasound, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xianghui Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Avenue, Guangzhou, Guangdong, China
| | - Daogang Zha
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Zhang J, Zhang Y, Cai Z, Wei J, Li H, Li P, Dong X, Liu Z. Augmentation of tumour perfusion by ultrasound and microbubbles: A preclinical study. ULTRASONICS 2024; 138:107219. [PMID: 38104380 DOI: 10.1016/j.ultras.2023.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Hypoperfusion and the resulting hypoxia in solid tumours are critical causes of treatment resistance. Ultrasound-stimulated microbubbles (USMB) enhance tumour perfusion in a mechanism named the "sononeoperfusion" effect, which may relieve tumour hypoperfusion and hypoxia. The aim of this study was to determine the optimal mechanical index (MI) and therapeutic ultrasound exposure time for the sononeoperfusion effect and preliminarily explore the mechanism of sononeoperfusion and its effect on tumours. METHODS A total of 155 mice bearing MC38 tumours were included in this study. A modified diagnostic ultrasound and microbubbles (Zhifuxian) was used for USMB treatment. Tumour perfusion was evaluated by contrast-enhanced ultrasound (CEUS) and Hoechst 33342. The therapeutic pulse was operated with MIs of 0.1 to 0.5. The ultrasound exposure time was set from 150 s to 600 s. Endothelial nitric oxide synthase (eNOS) inhibition and NO, ATP, and phospho-eNOS (p-eNOS) detection were performed to explore the mechanisms of sononeoperfusion. Hypoxia-inducible factor-1α (HIF-1α) and tumour oxygen partial pressure (pO2) represent hypoxic tumour conditions. RESULTS Tumour perfusion was increased after USMB treatment at MIs of 0.1-0.4 and ultrasound exposure times of 150 s to 600 s, with optimal augmentation achieved at an MI of 0.3 and ultrasound exposure time of 450 s. The mean fluorescence intensity of Hoechst 33342 after USMB treatment was stronger than that of the control group. Biochemical assays showed a significant increase in ATP, p-eNOS and NO after USMB treatment. PO2 in tumour tissue increased significantly after USMB treatment and was maintained for more than 20 min. CONCLUSIONS The best sononeoperfusion effect was obtained with an MI of 0.3 and an ultrasound exposure time of 450 s. The effect is most likely related to NO and ATP increases. The sononeoperfusion effect might be a novel way to ameliorate tumour hypoperfusion and hypoxia.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University Chongqing, 400037, China
| | - Yi Zhang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University Chongqing, 400037, China
| | - Zhiping Cai
- Department of Ultrasound, Xinqiao Hospital, Army Medical University Chongqing, 400037, China
| | - Junshuai Wei
- Department of Ultrasound, Xinqiao Hospital, Army Medical University Chongqing, 400037, China
| | - Hui Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University Chongqing, 400037, China
| | - Peijing Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University Chongqing, 400037, China
| | - Xiaoxiao Dong
- Department of Ultrasound, Xinqiao Hospital, Army Medical University Chongqing, 400037, China.
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University Chongqing, 400037, China.
| |
Collapse
|
7
|
Zhou S, Li J, Chen X, Huang B, Lu D, Zhang T. Mediation of long-pulsed ultrasound enhanced microbubble recombinant tissue plasminogen activator thrombolysis in a rat model of platelet-rich thrombus. Cardiovasc Diagn Ther 2024; 14:51-58. [PMID: 38434566 PMCID: PMC10904306 DOI: 10.21037/cdt-23-356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 03/05/2024]
Abstract
Background Ultrasound (US)-enhanced microbubble (MB) therapy has been investigated as a therapeutic technique to facilitate the thrombolysis for the treatment of pericardial and microvascular obstruction. This study sought to assess the therapeutic effects of long-pulsed US-assisted MB-mediated recombinant tissue plasminogen activator (rt-PA) thrombolysis in a rat model of platelet-rich thrombus. Methods Ferric chloride (10%) was used to induce total arterial occlusion before formation of platelet-rich thrombi. Therapeutic long-tone-burst US (1 MHz, 0.6 MPa, 1,000-µs pulse length) was used, and 2.9×109/mL of lipid MBs and 1 mg/mL of rt-PA were infused. Subsequently, 42 Sprague-Dawley (SD) male rats were randomly divided into seven groups: (I) control; (II) rt-PA; (III) high duty cycle US + MB; (IV) low duty cycle US + rt-PA; (V) high duty cycle US + rt-PA; (VI) low duty cycle US + rt-PA + MB; and (VII) high duty cycle US + rt-PA + MB. The recanalization grades were evaluated after 20 minutes' treatment. Results Compared to the control, there was significant improvement in recanalization in the US + rt-PA groups (P=0.01 vs. control), US (low duty cycle) + rt-PA + MB (P=0.003 vs. control) and US (high duty cycle) + rt-PA + MB (P<0.001 vs. control) groups, in which recanalization was successfully achieved in all rats. Conclusions Long-pulsed US-enhanced MB-mediated rt-PA thrombolysis offered a powerful approach in the treatment of platelet-rich thrombus.
Collapse
Affiliation(s)
- Shuxuan Zhou
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
- Cardiovascular Center, Hospital of Changan Dongguan, Dongguan, China
| | - Jinhua Li
- Department of Ultrasound, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianghui Chen
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bihan Huang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Belcik JT, Xie A, Muller M, Lindner JR. Influence of Atherosclerotic Risk Factors on the Effectiveness of Therapeutic Ultrasound Cavitation for Flow Augmentation. J Am Soc Echocardiogr 2024; 37:100-107. [PMID: 37678655 DOI: 10.1016/j.echo.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Shear created by inertial cavitation of microbubbles by ultrasound augments limb and myocardial perfusion and can reverse tissue ischemia. Our aim was to determine whether this therapeutic bioeffect is attenuated by atherosclerotic risk factors that are known to impair shear-mediated vasodilation and adversely affect microvascular reactivity. METHODS In mice, lipid-stabilized decafluorobutane microbubbles (2 × 108) were administered intravenously while exposing a proximal hind limb to ultrasound (1.3 MHz, 1.3 mechanical index, pulsing interval 5 seconds) for 10 minutes. Murine strains included wild-type mice and severely hyperlipidemic mice at 15, 35, or 52 weeks of age as a model of aging and elevated cholesterol, and obese db/db mice (≈15 weeks) with severe insulin resistance. Quantitative contrast-enhanced ultrasound perfusion imaging was performed to assess microvascular perfusion in the control and ultrasound-exposed limb. An in situ electrochemical probe and in vivo biophotonic imaging were used to assess limb nitric oxide (NO) and adenosine triphosphosphate concentrations, respectively. RESULTS Microvascular perfusion was significantly increased by several fold in the cavitation-exposed limb versus control limb for all murine strains and ages (P < .001). In wild-type and hyperlipidemic mice, hyperemia from cavitation was attenuated in the 2 older age groups (P < .01). In young mice (15 weeks), perfusion in cavitation-exposed muscle was less in both the hyperlipidemic mice and the obese db/db mice compared with corresponding wild-type mice. Using young hyperlipidemic mice as a model for flow impairment, limb NO production after cavitation was reduced but adenosine triphosphosphate production was unaltered when compared with age-matched wild-type mice. CONCLUSIONS In mice, ultrasound cavitation of microbubbles increases limb perfusion by several fold even in the presence of traditional atherosclerotic risk factors. However, older age, hyperlipidemia, and insulin resistance modestly attenuate the degree of flow augmentation, which could impact the degree of flow response in current clinical trials in patients with critical limb ischemia.
Collapse
Affiliation(s)
- J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Aris Xie
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Matthew Muller
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Jonathan R Lindner
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
9
|
Imtiaz C, Farooqi MA, Bhatti T, Lee J, Moin R, Kang CU, Farooqi HMU. Focused Ultrasound, an Emerging Tool for Atherosclerosis Treatment: A Comprehensive Review. Life (Basel) 2023; 13:1783. [PMID: 37629640 PMCID: PMC10455721 DOI: 10.3390/life13081783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Focused ultrasound (FUS) has emerged as a promising noninvasive therapeutic modality for treating atherosclerotic arterial disease. High-intensity focused ultrasound (HIFU), a noninvasive and precise modality that generates high temperatures at specific target sites within tissues, has shown promising results in reducing plaque burden and improving vascular function. While low-intensity focused ultrasound (LIFU) operates at lower energy levels, promoting mild hyperthermia and stimulating tissue repair processes. This review article provides an overview of the current state of HIFU and LIFU in treating atherosclerosis. It focuses primarily on the therapeutic potential of HIFU due to its higher penetration and ability to achieve atheroma disruption. The review summarizes findings from animal models and human trials, covering the effects of FUS on arterial plaque and arterial wall thrombolysis in carotid, coronary and peripheral arteries. This review also highlights the potential benefits of focused ultrasound, including its noninvasiveness, precise targeting, and real-time monitoring capabilities, making it an attractive approach for the treatment of atherosclerosis and emphasizes the need for further investigations to optimize FUS parameters and advance its clinical application in managing atherosclerotic arterial disease.
Collapse
Affiliation(s)
- Cynthia Imtiaz
- Ocean and Biomedical Ultrasound Laboratory, Department of Ocean System Engineering, Jeju National University, Jeju-si 63243, Republic of Korea; (C.I.)
| | - Muhammad Awais Farooqi
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Theophilus Bhatti
- Interdisciplinary Department of Advanced Convergence Technology and Science, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Jooho Lee
- Ocean and Biomedical Ultrasound Laboratory, Department of Ocean System Engineering, Jeju National University, Jeju-si 63243, Republic of Korea; (C.I.)
| | - Ramsha Moin
- Department of Pediatrics, Elaj Hospital, Gujranwala 52250, Pakistan
| | - Chul Ung Kang
- Department of Mechatronics Engineering, Jeju National University, Jeju-si 63243, Republic of Korea
| | | |
Collapse
|
10
|
Wear KA, Shah A. Nominal Versus Actual Spatial Resolution: Comparison of Directivity and Frequency-Dependent Effective Sensitive Element Size for Membrane, Needle, Capsule, and Fiber-Optic Hydrophones. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:112-119. [PMID: 36178990 DOI: 10.1109/tuffc.2022.3211183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Frequency-dependent effective sensitive element radius [Formula: see text] is a key parameter for elucidating physical mechanisms of hydrophone operation. In addition, it is essential to know [Formula: see text] to correct for hydrophone output voltage reduction due to spatial averaging across the hydrophone sensitive element surface. At low frequencies, [Formula: see text] is greater than geometrical sensitive element radius ag . Consequently, at low frequencies, investigators can overrate their hydrophone spatial resolution. Empirical models for [Formula: see text] for membrane, needle, and fiber-optic hydrophones have been obtained previously. In this article, an empirical model for [Formula: see text] for capsule hydrophones is presented, so that models are now available for the four most common hydrophone types used in biomedical ultrasound. The [Formula: see text] value was estimated from directivity measurements (over the range from 1 to 20 MHz) for five capsule hydrophones (three with [Formula: see text] and two with [Formula: see text]). The results suggest that capsule hydrophones behave according to a "rigid piston" model for k a g ≥ 0.7 ( k = 2π /wavelength). Comparing the four hydrophone types, the low-frequency discrepancy between [Formula: see text] and ag was found to be greatest for membrane hydrophones, followed by capsule hydrophones, and smallest for needle and fiber-optic hydrophones. Empirical models for [Formula: see text] are helpful for choosing an appropriate hydrophone for an experiment and for correcting for spatial averaging (over the sensitive element surface) in pressure and beamwidth measurements. When reporting hydrophone-based pressure measurements, investigators should specify [Formula: see text] at the center frequency (which may be estimated from the models presented here) in addition to ag .
Collapse
|
11
|
Yu FTH, Amjad MW, Mohammed SA, Yu GZ, Chen X, Pacella JJ. Effect of Ultrasound Pulse Length on Sonoreperfusion Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:152-164. [PMID: 36253230 PMCID: PMC9712163 DOI: 10.1016/j.ultrasmedbio.2022.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
In recent years, long- and short-pulse ultrasound (US)-targeted microbubble cavitation (UTMC) has been found to increase perfusion in healthy and ischemic skeletal muscle, in pre-clinical animal models of microvascular obstruction and in the myocardium of patients presenting with acute myocardial infarction. There is evidence that the observed microvascular vasodilation is driven by the nitric oxide pathway and purinergic signaling, but the time course of the response and the dependency on US pulse length are not well elucidated. Because our prior data supported that sonoreperfusion efficacy is enhanced by long-pulse US versus short-pulse US, in this study, we sought to compare long-pulse (5000 cycles) and short-pulse (500 × 10 cycles) US at a pressure of 1.5 MPa with an equivalent total number of acoustical cycles, hence constant acoustic energy, and at the same frequency (1 MHz), in a rodent hind limb model with and without microvascular obstruction (MVO). In quantifying perfusion using burst replenishment contrast-enhanced US imaging, we made three findings: (i) Long and short pulses result in different vasodilation kinetics in an intact hind limb model. The long pulse causes an initial spasmic reduction in flow that spontaneously resolved at 4 min, followed by sustained higher flow rates (approximately twofold) compared with baseline, starting 10 min after therapy (p < 0.05). The short pulse caused a short-lived approximately twofold increase in flow rate that peaked at 4 min (p < 0.05), but without the initial spasm. (ii) The sustained increased response with the long pulse is not simply reactive hyperemia. (iii) Both pulses are effective in reperfusion of MVO in our hindlimb model by restoring blood volume, but only the long pulse caused an increase in flow rate after treatment ii, compared with MVO (p < 0.05). Histological analysis of hind limb muscle post-UTMC with either pulse configuration indicates no evidence of tissue damage or hemorrhage. Our findings indicate that the microbubble oscillation induces vasodilation, and therapeutic efficacy for the treatment of MVO can be tuned by varying pulse length; relative to short-pulse US, longer pulses drive greater microbubble cavitation and more rapid microvascular flow rate restoration after MVO, warranting further optimization of the pulse length for sonoreperfusion therapy.
Collapse
Affiliation(s)
- François T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montréal, Québec, Canada
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Soheb Anwar Mohammed
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary Z Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
12
|
Brahmandam A, Chan SM, Dardik A, Nassiri N, Aboian E. A narrative review on the application of high-intensity focused ultrasound for the treatment of occlusive and thrombotic arterial disease. JVS Vasc Sci 2022; 3:292-305. [PMID: 36276806 PMCID: PMC9579503 DOI: 10.1016/j.jvssci.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives High-intensity focused ultrasound (HIFU) is a noninvasive therapeutic modality with a variety of applications. It is approved for the treatment of essential tremors, ablation of prostate, hepatic, breast, and uterine tumors. Although not approved for use in the treatment of atherosclerotic arterial disease, there is a growing body of evidence investigating applications of HIFU. Currently, percutaneous endovascular techniques are predominant for the treatment of arterial pathology; however, there are no endovascular techniques of HIFU available. This study aims to review the state of current evidence for the application of HIFU in atherosclerotic arterial disease. Methods All English-language articles evaluating the effect of HIFU on arterial occlusive and thrombotic disease until 2021 were reviewed. Both preclinical and human clinical studies were included. Study parameters such as animal or clinical model and outcomes were reviewed. In addition, details pertaining to settings on the HIFU device used were also reviewed. Results In preclinical models, atherosclerotic plaque progression was inhibited by HIFU, through decreases in oxidized low-density lipoprotein cholesterol and increases in macrophage apoptosis. Additionally, HIFU promotes angiogenesis in hindlimb ischemic models by the upregulation of angiogenic and antiapoptotic factors, with increased angiogenesis at higher line densities of HIFU. HIFU also promotes thrombolysis and conversely induces platelet activation at low frequencies and higher intensities. Various clinical studies have attempted to translate some of these properties and demonstrated positive clinical outcomes for arterial recanalization after thrombotic stroke, decreased atherosclerotic plaque burden in carotid arteries, increase in tissue perfusion and a decrease in diameter stenosis in patients with atherosclerotic arterial disease. Conclusions In current preclinical and clinical data, the safety and efficacy of HIFU shows great promise in the treatment of atherosclerotic arterial disease. Future focused studies are warranted to guide the refinement of HIFU settings for more widespread adoption of this technology.
Collapse
|
13
|
Stacy MR. Molecular Imaging of Lower Extremity Peripheral Arterial Disease: An Emerging Field in Nuclear Medicine. Front Med (Lausanne) 2022; 8:793975. [PMID: 35096884 PMCID: PMC8789656 DOI: 10.3389/fmed.2021.793975] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral arterial disease (PAD) is an atherosclerotic disorder of non-coronary arteries that is associated with vascular stenosis and/or occlusion. PAD affecting the lower extremities is characterized by a variety of health-related consequences, including lifestyle-limiting intermittent claudication, ulceration of the limbs and/or feet, increased risk for lower extremity amputation, and increased mortality. The diagnosis of lower extremity PAD is typically established by using non-invasive tests such as the ankle-brachial index, toe-brachial index, duplex ultrasound, and/or angiography imaging studies. While these common diagnostic tools provide hemodynamic and anatomical vascular assessments, the potential for non-invasive physiological assessment of the lower extremities has more recently emerged through the use of magnetic resonance- and nuclear medicine-based approaches, which can provide insight into the functional consequences of PAD-related limb ischemia. This perspectives article specifically highlights and discusses the emerging applications of clinical nuclear medicine techniques for molecular imaging investigations in the setting of lower extremity PAD.
Collapse
Affiliation(s)
- Mitchel R Stacy
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Vascular Diseases and Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
14
|
Contrast Ultrasound, Sonothrombolysis and Sonoperfusion in Cardiovascular Disease: Shifting to Theragnostic Clinical Trials. JACC Cardiovasc Imaging 2022; 15:345-360. [PMID: 34656483 PMCID: PMC8837667 DOI: 10.1016/j.jcmg.2021.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 02/03/2023]
Abstract
Contrast ultrasound has a variety of applications in cardiovascular medicine, both in diagnosing cardiovascular disease as well as providing prognostic information. Visualization of intravascular contrast microbubbles is based on acoustic cavitation, the characteristic oscillation that results in changes in the reflected ultrasound waves. At high power, this acoustic response generates sufficient shear that is capable of enhancing endothelium-dependent perfusion in atherothrombotic cardiovascular disease (sonoperfusion). The oscillation and collapse of microbubbles in response to ultrasound also induces microstreaming and jetting that can fragment thrombus (sonothrombolysis). Several preclinical studies have focused on identifying optimal diagnostic ultrasound settings and treatment regimens. Clinical trials have been performed in acute myocardial infarction, stroke, and peripheral arterial disease often with improved outcome. In the coming years, results of ongoing clinical trials along with innovation and improvements in sonothrombolysis and sonoperfusion will determine whether this theragnostic technique will become a valuable addition to reperfusion therapy.
Collapse
|
15
|
Zhu Q, Zhang Y, Tang J, Tang N, He Y, Chen X, Gao S, Xu Y, Liu Z. Ultrasound-Targeted Microbubble Destruction Accelerates Angiogenesis and Ameliorates Left Ventricular Dysfunction after Myocardial Infarction in Mice. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2692-2701. [PMID: 34130882 DOI: 10.1016/j.ultrasmedbio.2021.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/25/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Failure of coronary recanalization within 12 h or no flow in the myocardium after percutaneous coronary intervention is associated with high mortality from myocardial infarction, and insufficient angiogenesis in the border zone results in the expansion of infarct area. In this study, we examined the effects of ultrasound-targeted microbubble destruction (UTMD) on angiogenesis and left ventricular dysfunction in a mouse model of myocardial infarction. Fifty-four mice with MI were treated with no UTMD, ultrasound (US) alone or UTMD four times (days 1, 3, 5 and 7), and another 18 mice underwent sham operation and therapy. Therapeutic US was generated with a linear transducer connected to a commercial diagnostic US system (VINNO70). UTMD was performed with the VINNO70 at a peak negative pressure of 0.8 MPa and lipid microbubbles. Transthoracic echocardiography was performed on the first and seventh days. The results indicated that UTMD decreased the infarct size ratio from 78.1 ± 5.3% (untreated) to 43.3 ± 6.4%, accelerated angiogenesis and ameliorated left ventricular dysfunction. The ejection fraction increased from 25.05 ± 8.52% (untreated) to 42.83 ± 9.44% (UTMD). Compared with that in other groups, expression of vascular endothelial growth factor and endothelial nitric oxide synthase and release of nitric oxide were significantly upregulated after UTMD treatment, indicating angiogenesis. Therefore, UTMD is a potential physical approach in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Zhang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiawei Tang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Najiao Tang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ying He
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoqin Chen
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shunji Gao
- Department of Ultrasound, General Hospital of Central Theater Command, Wuhan, China
| | - Yali Xu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW High mechanical index impulses from a diagnostic transducer are utilized in myocardial perfusion imaging, but can also be utilized therapeutically in three cardiovascular applications: (a) thrombus dissolution (sonothrombolysis), (b) improving microvascular flow in ischemic territories (sonoperfusion), and (c) targeted drug and nucleic acid delivery. The targeted therapeutic effect appears to be based on acoustic cavitation of the intravascular microbubbles which results in endothelial shear and pore formation, as well as mechanical destruction of thrombi. RECENT FINDINGS Within the last 5 years, clinical trials have been performed in acute myocardial infarction demonstrating successful reductions in myocardial infarct size with sonothrombolysis added to current guideline-based treatment. In patients with severe peripheral arterial disease, brief improvements in calf microvascular blood flow have been observed for 1 h after 10 min of sonoperfusion therapy. Targeted ultrasound therapies are developing for prevention of microvascular obstruction in acute coronary syndromes and peripheral vascular disease.
Collapse
|
17
|
Muller MA, Ozawa K, Hodovan J, Hagen MW, Giraud DSH, Qi Y, Xie A, Hobbs TR, Sheeran PS, Lindner JR. Treatment of Limb Ischemia with Conducted Effects of Catheter-Based Endovascular Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2277-2285. [PMID: 33934942 PMCID: PMC8243793 DOI: 10.1016/j.ultrasmedbio.2021.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 06/03/2023]
Abstract
Ultrasound (US) is known to stimulate endogenous shear-dependent pathways, and can lower microvascular resistance through mediators that are conducted downstream from US exposure. We hypothesized that endovascular US, already in use for thrombolysis in humans, can improve tissue perfusion in the setting of acute limb ischemia through downstream-conducted effects. Models of severe peripheral arterial disease were developed in mice and in rhesus macaques. An endovascular US catheter (2.3 MHz, 0.5-1.1 MPa) was used to expose the limb adductor in mice for 10 min or the femoral artery distal to stenosis in macaques for 15 min. Quantitative contrast-enhanced ultrasound perfusion imaging was performed to assess flow augmentation in the adductor muscle of mice and the calf muscle of macaques. Microvascular blood flow in the ischemic limb relative to the contralateral control limb was reduced to 22 ± 8% in mice and 36 ± 20% in macaques. US produced immediate 2.3- and 3-fold increases (p < 0.05) in the murine and macaque ischemic limbs, respectively. In macaques, perfusion in the ischemic limb was increased to a normal level. We conclude that non-cavitating US produced by endovascular catheters that are used to enhance thrombolysis in humans can reduce vascular resistance and increase limb perfusion in the setting of acute ischemia.
Collapse
Affiliation(s)
- Matthew A Muller
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Koya Ozawa
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew W Hagen
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - David S H Giraud
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Yue Qi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Theodore R Hobbs
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | | | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
18
|
Keller SB, Sheeran PS, Averkiou MA. Cavitation Therapy Monitoring of Commercial Microbubbles With a Clinical Scanner. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1144-1154. [PMID: 33112743 DOI: 10.1109/tuffc.2020.3034532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to monitor cavitation activity during ultrasound and microbubble-mediated procedures is of high clinical value. However, there has been little reported literature comparing the cavitation characteristics of different clinical microbubbles, nor have current clinical scanners been used to perform passive cavitation detection in real time. The goal of this work was to investigate and characterize standard microbubble formulations (Optison, Sonovue, Sonazoid, and a custom microbubble made with similar components as Definity) with a custom passive cavitation detector (two confocal single-element focused transducers) and with a Philips EPIQ scanner with a C5-1 curvilinear probe passively listening. We evaluated three different methods for investigating cavitation thresholds, two from previously reported work and one developed in this work. For all three techniques, it was observed that the inertial cavitation thresholds were between 0.1 and 0.3 MPa for all agents when detected with both systems. Notably, we found that most microbubble formulations in bulk solution behaved generally similarly, with some differences. We show that these characteristics and thresholds are maintained when using a diagnostic ultrasound system for detecting cavitation activity. We believe that a systematic evaluation of the frequency response of the cavitation activity of different microbubbles in order to inform real-time therapy monitoring using a clinical ultrasound device could make an immediate clinical impact.
Collapse
|
19
|
Muller MA, Belcik T, Hodovan J, Ozawa K, Brown E, Powers J, Sheeran PS, Lindner JR. Augmentation of Tissue Perfusion with Contrast Ultrasound: Influence of Three-Dimensional Beam Geometry and Conducted Vasodilation. J Am Soc Echocardiogr 2021; 34:887-895. [PMID: 33711457 DOI: 10.1016/j.echo.2021.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cavitation of microbubble contrast agents with ultrasound produces shear-mediated vasodilation and an increase in tissue perfusion. We investigated the influence of the size of the cavitation volume by comparing flow augmentation produced by two-dimensional (2D) versus three-dimensional (3D) therapeutic ultrasound. We also hypothesized that cavitation could augment flow beyond the ultrasound field through release of vasodilators that are carried downstream. METHODS In 11 rhesus macaques, cavitation of intravenously administered lipid-shelled microbubbles was performed in the proximal forearm flexor muscles unilaterally for 10 min. Ultrasound cavitation (1.3 MHz, 1.5 MPa peak negative pressure) was performed with 2D or 3D transmission with beam elevations of 5 and 25 mm, respectively, and pulsing intervals (PIs) sufficient to allow complete postdestruction refill (5 and 12 sec for 2D and 3D, respectively). Contrast ultrasound perfusion imaging was performed before and after cavitation, using multiplane assessment within and beyond the cavitation field in 1.5-cm increments. Cavitation in the hindlimb of mice using 2D ultrasound at a PI of 1 or 5 sec was performed to examine microvascular flow changes from cavitation in only arteries versus the microcirculation. RESULTS In primates, the degree of muscle flow augmentation in the center of the cavitation field was similar for 2D and 3D conditions (five- to sixfold increase for both, P < .01 vs baseline). The spatial extent of flow augmentation was only modestly greater for 3D cavitation because of an increase in perfusion with 2D transmission that was detected outside of the cavitation field. In mice, cavitation in the microvascular compartment (PI 5 sec) produced the greatest degree of flow augmentation, yet cavitation in the arterial compartment (PI 1 sec) still produced a three- to fourfold increase in flow (P < .001 vs control). The mechanism for flow augmentation beyond the cavitation zone was investigated by in vitro studies that demonstrated cavitation-related release of vasodilators, including adenosine triphosphate and nitric oxide, from erythrocytes and endothelial cells. CONCLUSIONS Compared with 2D transmission, 3D cavitation of microbubbles generates a similar degree of muscle flow augmentation, possibly because of a trade-off between volume of cavitation and PI, and only modestly increases the spatial extent of flow augmentation because of the ability of cavitation to produce conducted effects beyond the ultrasound field.
Collapse
Affiliation(s)
- Matthew A Muller
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Todd Belcik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Koya Ozawa
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Eran Brown
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | | | | | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
20
|
Albulushi A, Olson J, Xie F, Qian L, Mathers D, Aboeata A, Porter TR. Effect of Intermittent High-Mechanical Index Impulses on Left Ventricular Strain. J Am Soc Echocardiogr 2020; 34:370-376. [PMID: 33253816 DOI: 10.1016/j.echo.2020.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 11/19/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Intermittent high-mechanical index (MI) impulses from a transthoracic ultrasound transducer are recommended for regional wall motion analysis and assessment of myocardial perfusion following intravenous administration of ultrasound enhancing agents (UEAs). High-MI impulses (>1.0) applied in this setting have also been shown to increase microvascular blood flow through a purinergic signaling pathway, but their effects on left ventricular (LV) myocardial function are unknown. Therefore, the aim of this study was to investigate the effect of transthoracic intermittent high-MI impulses during intravenous UEA infusion in patients with normal and abnormal resting systolic function. METHODS Fifty patients referred for echocardiography to evaluate LV systolic function during continuous infusion of UEAs (Definity 3% infusion) were prospectively assigned to low-MI (<0.2) imaging alone (group 1) or low-MI (<0.2) imaging with intermittent high-MI impulses (five frames, 1.8 MHz, MI = 1.0-1.2) applied at least two times in each apical window to clear myocardial contrast (group 2). Global longitudinal strain (GLS) measurements were obtained at baseline before UEA administration and at 5-min intervals up to 10-min after infusion completion. RESULTS There were no differences between groups with respect to age, gender, resting GLS, biplane LV ejection fraction, or cardiac risk factors. Resting GLS in group 1 was -15.5 ± 5.2% before UEA infusion and -15.5 ± 5.4% at 10 min after UEA infusion. In comparison, GLS increased in group 2 (-15.3 ± 5.0 before infusion and -16.8 ± 4.8% at 10 min, P < .00001). Improvements in GLS were seen in patients with normal and abnormal systolic function. Regional analysis demonstrated that the increase in strain in patients with abnormal LV ejection fractions was primarily in the apical segments (-12.0 ± 2.7% before infusion and -13.4 ± 3.4% at 10 min, P = .001). CONCLUSIONS High-MI impulses during infusion of a commercially available contrast agent can improve LV systolic function and may have therapeutic effect in patients with LV dysfunction.
Collapse
Affiliation(s)
- Arif Albulushi
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Joan Olson
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Feng Xie
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lijun Qian
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Daniel Mathers
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ahmed Aboeata
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Thomas R Porter
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
21
|
Lindner JR. Limb Perfusion Imaging in Peripheral Artery Disease. JACC Cardiovasc Imaging 2020; 14:1625-1627. [PMID: 33221233 DOI: 10.1016/j.jcmg.2020.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Jonathan R Lindner
- Knight Cardiovascular Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
22
|
Lindner JR. Contrast echocardiography: current status and future directions. Heart 2020; 107:18-24. [PMID: 33077502 DOI: 10.1136/heartjnl-2020-316662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Contrast echocardiography is a family of ultrasound-based procedures, whereby acoustic enhancing agents, usually microbubbles, are administered by intravenous route and detected in order to improve diagnostic performance. This review describes: (1) the agents that have been designed for diagnostic imaging, (2) current clinical applications where either left ventricular opacification or microvascular perfusion imaging with myocardial contrast echocardiography have been demonstrated to provide incremental information to non-contrast echocardiography and (3) future diagnostic and therapeutic applications of contrast ultrasound that rely on unique compositional design of ultrasound-enhancing agents.
Collapse
Affiliation(s)
- Jonathan R Lindner
- Division of Cardiovascular Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
23
|
Keller SB, Suo D, Wang YN, Kenerson H, Yeung RS, Averkiou MA. Image-Guided Treatment of Primary Liver Cancer in Mice Leads to Vascular Disruption and Increased Drug Penetration. Front Pharmacol 2020; 11:584344. [PMID: 33101038 PMCID: PMC7554611 DOI: 10.3389/fphar.2020.584344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Despite advances in interventional procedures and chemotherapeutic drug development, hepatocellular carcinoma (HCC) is still the fourth leading cause of cancer-related deaths worldwide with a <30% 5-year survival rate. This poor prognosis can be attributed to the fact that HCC most commonly occurs in patients with pre-existing liver conditions, rendering many treatment options too aggressive. Patient survival rates could be improved by a more targeted approach. Ultrasound-induced cavitation can provide a means for overcoming traditional barriers defining drug uptake. The goal of this work was to evaluate preclinical efficacy of image-guided, cavitation-enabled drug delivery with a clinical ultrasound scanner. To this end, ultrasound conditions (unique from those used in imaging) were designed and implemented on a Philips EPIQ and S5-1 phased array probe to produced focused ultrasound for cavitation treatment. Sonovue® microbubbles which are clinically approved as an ultrasound contrast agent were used for both imaging and cavitation treatment. A genetically engineered mouse model was bred and used as a physiologically relevant preclinical analog to human HCC. It was observed that image-guided and targeted microbubble cavitation resulted in selective disruption of the tumor blood flow and enhanced doxorubicin uptake and penetration. Histology results indicate that no gross morphological damage occurred as a result of this process. The combination of these effects may be exploited to treat HCC and other challenging malignancies and could be implemented with currently available ultrasound scanners and reagents.
Collapse
Affiliation(s)
- Sara B Keller
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Dingjie Suo
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, WA, United States
| | - Heidi Kenerson
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
24
|
Yuan Y, Li E, Zhao J, Wu B, Na Z, Cheng W, Jing H. Highly penetrating nanobubble polymer enhances LINC00511-siRNA delivery for improving the chemosensitivity of triple-negative breast cancer. Anticancer Drugs 2020; 32:178-188. [PMID: 32826414 DOI: 10.1097/cad.0000000000000985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrasound-mediated nanobubble destruction (UMND), which can utilize the physical energy of ultrasound irradiation to improve the transfer efficiency to target cells is becoming one of the most promising carriers for gene delivery. The purpose of this study was to establish cell-penetrating peptide (CPP)-loaded nanobubbles (CNBs) connected with long intergenic nonprotein coding RNA 00511-small interfering RNA (LINC00511-siRNA) and evaluate its feasibility for improving the chemosensitivity of triple-negative breast cancer in vitro. First, fluorescence imaging confirmed the loading of siLINC00511 on CNBs, and the CNBs-siLINC00511 were characterized by the Zetasizer Nano ZS90 analyzer and transmission electron microscopy. Next, cell counting kit 8 assay was used to detect the inhibitory activity of cisplatin on the proliferation of MDA-MB-231 cells, and the 50% inhibition concentration value before and after transfer was calculated. Finally, the silencing effect of siLINC00511 was evaluated in vitro using an apoptosis assay, transwell assay, real time-PCR and western blotting. UMND combined with CNBs could effectively transfer the siRNA to MDA-MB-231 cells, thus evidently reducing the expression of LINC00511. Furthermore, inhibitory activity of cisplatin on MDA-MB-231 cells was enhanced after downregulation of LINC00511 expression. Downregulation of LINC00511 alters expression of cell cycle-related (CDK 6) and apoptosis-related (Bcl-2 and Bax) proteins in MDA-MB-231 cells. These results suggested that siRNA-CNBs may be an ideal vector for the treatment of tumors, with high efficiency RNA interference under the combined action of UMND. It may provide a new therapeutic method for triple negative breast cancer.
Collapse
Affiliation(s)
- Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Presset A, Bonneau C, Kazuyoshi S, Nadal-Desbarats L, Mitsuyoshi T, Bouakaz A, Kudo N, Escoffre JM, Sasaki N. Endothelial Cells, First Target of Drug Delivery Using Microbubble-Assisted Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:1565-1583. [PMID: 32331799 DOI: 10.1016/j.ultrasmedbio.2020.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Microbubble-assisted ultrasound has emerged as a promising method for local drug delivery. Microbubbles are intravenously injected and locally activated by ultrasound, thus increasing the permeability of vascular endothelium for facilitating extravasation and drug uptake into the treated tissue. Thereby, endothelial cells are the first target of the effects of ultrasound-driven microbubbles. In this review, the in vitro and in vivo bioeffects of this method on endothelial cells are described and discussed, including aspects on the permeabilization of biologic barriers (endothelial cell plasma membranes and endothelial barriers), the restoration of their integrity, the molecular and cellular mechanisms involved in both these processes, and the resulting intracellular and intercellular consequences. Finally, the influence of the acoustic settings, microbubble parameters, treatment schedules and flow parameters on these bioeffects are also reviewed.
Collapse
Affiliation(s)
- Antoine Presset
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | - Sasaoka Kazuyoshi
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences; Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Takigucho Mitsuyoshi
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences; Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Nobuki Kudo
- Laboratory of Biological Engineering, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | | | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences; Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Flow Augmentation in the Myocardium by Ultrasound Cavitation of Microbubbles: Role of Shear-Mediated Purinergic Signaling. J Am Soc Echocardiogr 2020; 33:1023-1031.e2. [PMID: 32532642 DOI: 10.1016/j.echo.2020.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Ultrasound-mediated cavitation of microbubble contrast agents produces high intravascular shear. We hypothesized that microbubble cavitation increases myocardial microvascular perfusion through shear-dependent purinergic pathways downstream from ATP release that is immediate and sustained through cellular ATP channels such as Pannexin-1. METHODS Quantitative myocardial contrast echocardiography perfusion imaging and in vivo optical imaging of ATP was performed in wild-type and Pannexin-1-deficient (Panx1-/-) mice before and 5 and 30 minutes after 10 minutes of ultrasound-mediated (1.3 MHz, mechanical index 1.3) myocardial microbubble cavitation. Flow augmentation in a preclinical model closer to humans was evaluated in rhesus macaques undergoing myocardial contrast echocardiography perfusion imaging after high-power cavitation in the apical four-chamber plane for 10 minutes. RESULTS Microbubble cavitation in wild-type mice (n = 7) increased myocardial perfusion by 64% ± 25% at 5 minutes and 95% ± 55% at 30 minutes compared with baseline (P < .05). In Panx1-/- mice (n = 5), perfusion increased by 28% ± 26% at 5 minutes (P = .04) but returned to baseline at 30 minutes. Myocardial ATP signal in wild-type (n = 7) mice undergoing cavitation compared with sham-treated controls (n = 3) was 450-fold higher at 5 minutes and 90-fold higher at 30 minutes after cavitation (P < .001). The ATP signal in Panx1-/- mice (n = 4) was consistently 10-fold lower than that in wild-type mice and was similar to sham controls at 30 minutes. In macaques (n = 8), myocardial perfusion increased twofold in the cavitation-exposed four-chamber plane, similar in degree to that produced by adenosine, but did not increase in the control two-chamber plane. CONCLUSIONS Cavitation of microbubbles in the myocardial microcirculation produces an immediate release of ATP, likely from cell microporation, as well as sustained release, which is channel dependent and responsible for persistent flow augmentation. These findings provide mechanistic insight by which cavitation improves perfusion and reduces infarct size in patients with myocardial infarction.
Collapse
|
27
|
Complex Highways on the Translational Roadmap for Therapeutic Ultrasound-Targeted Microbubble Cavitation: Where Are We Now? JACC Cardiovasc Imaging 2019; 13:652-654. [PMID: 31607657 DOI: 10.1016/j.jcmg.2019.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022]
|