1
|
Nagasawa N, Nakamura S, Ota H, Ogawa R, Nakashima H, Hatori N, Wang Y, Kurita T, Dohi K, Sakuma H, Kitagawa K. Relationship between microvascular status and diagnostic performance of stress dynamic CT perfusion imaging. Eur Radiol 2024:10.1007/s00330-024-11136-1. [PMID: 39419862 DOI: 10.1007/s00330-024-11136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES This study aimed to investigate the relationship between microvascular status in the non-ischemic myocardium and the diagnostic performance of stress dynamic CT perfusion imaging (CTP) in detecting hemodynamically significant stenosis. MATERIALS AND METHODS This study included 157 patients who underwent coronary computed tomography angiography (CTA), CTP, and invasive coronary angiography (ICA), including fractional flow reserve (FFR). Hemodynamically significant stenosis was defined by FFR and ICA. A relative myocardial blood flow (MBF) for each myocardial segment was normalized to the highest MBF (remote MBF) among 16 segments. RESULTS The receiver operating characteristic curve analysis for detecting hemodynamically significant stenosis at the vessel level indicated that patients with lower, intermediate, and higher remote MBF had areas under the curve (AUC) of 0.66, 0.70, and 0.80, respectively, for absolute MBF and AUCs of 0.63, 0.70, and 0.83, respectively, for relative MBF. The optimal cut-off values for absolute MBF were proportional to the levels of remote MBFs, while the ones for relative MBF were more consistent across lower to higher remote MBFs. For the patients with high remote MBF, the relative MBF demonstrated a sensitivity of 69%, specificity of 88%, and accuracy of 85% in detecting hemodynamically significant stenosis. CONCLUSION The microvascular status in the non-ischemic myocardium influenced the diagnostic performance of dynamic CTP and threshold values of absolute MBFs, suggesting the potential preference for relative MBF over absolute MBF in clinical settings. Dynamic CTP's quantification of MBF offers the benefit of indicating reliability in ischemia detection relative to microvascular status. KEY POINTS Question The relationship between microvascular status and diagnostic performance of dynamic CTP imaging has not been fully investigated. Findings The diagnostic performance of dynamic CTP and threshold values of absolute MBF were impacted by microvascular status. Clinical relevance The differences in diagnostic accuracy of dynamic CTP related to varying remote MBF values necessitate a personalized evaluation of myocardial perfusion in dynamic CTP images.
Collapse
Affiliation(s)
- Naoki Nagasawa
- Department of Radiology, Mie University Hospital, Tsu, Japan
- Department of Radiological Technology, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | - Satoshi Nakamura
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Hideki Ota
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Ryo Ogawa
- Department of Radiology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Hitoshi Nakashima
- Department of Cardiovascular Medicine, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Naoki Hatori
- Department of Cardiology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Yining Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tairo Kurita
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Sakuma
- Department of Radiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kakuya Kitagawa
- Department of Advanced Diagnostic Imaging, Mie University Graduate School of Medicine, Tsu, Japan
- Regional Co-creation Deployment Center, Mie Regional Plan Co-creation Organization, Tsu, Japan
| |
Collapse
|
2
|
Li H, Zhang L, Wang RZ, Wang GK, Zhao YM, Wang XY, Zhang XS, Kuai ZX. Coronary CT Angiography-Based Radiomics to Predict Vessel-Specific Ischemia by Stress Dynamic CT Myocardial Perfusion Imaging. Acad Radiol 2024:S1076-6332(24)00446-X. [PMID: 39097508 DOI: 10.1016/j.acra.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/05/2024]
Abstract
RATIONALE AND OBJECTIVES To investigate the predictive value of coronary CT angiography (CCTA)-based radiomics for vessel-specific ischemia by stress dynamic CT myocardial perfusion imaging (MPI). MATERIALS AND METHODS Patients with typical angina/atypical angina/non-angina chest pain who underwent both stress dynamic CT MPI and CCTA scans were retrospectively enrolled. The following models were constructed for ischemic prediction using logistic regression and CCTA-derived quantitative and radiomic features: plaque quantitative model, lumen quantitative model, CT-fractional flow reserve (CT-FFR) model, integrative quantitative model, plaque radiomic model, peri-coronary adipose tissue (pCAT) radiomic model, integrative radiomic model, and quantitative and radiomic fusion model. A relative myocardial blood flow ≤ 0.75 on stress dynamic CT MPI was considered ischemic. The models' performances were quantified by the area under the receiver-operating characteristic curve (AUC). RESULTS 386 coronary vessels (stenosis grade: 25%∼75%; training set: 200 [ischemia/non-ischemia=96/104]; test set:186 [ischemia/non-ischemia=79/107]) from 326 patients were included. The plaque radiomic model (training/test set: AUC=0.81/0.80) outperformed (p < .05) both the plaque quantitative (training/test set: AUC=0.71/0.68) model and the lumen quantitative (training/test set: AUC=0.69/0.65) model in identifying ischemia. The integrative radiomic model (training/test set: AUC=0.83/0.82) outperformed (p < .05) the CT-FFR model (training/test set: AUC=0.74/0.73) for ischemic prediction. The quantitative and radiomic fusion model (training/test set: AUC=0.86/0.84) outperformed (p < .05) the integrative quantitative model (training/test set: AUC=0.79/0.77) for ischemic detection. CONCLUSION The plaque and pCAT radiomic features were superior to the plaque and pCAT quantitative features in predicting ischemia and the addition of the radiomic features to the quantitative features for ischemic identification yielded incremental discriminatory value.
Collapse
Affiliation(s)
- Hui Li
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China
| | - Lan Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China
| | - Run-Ze Wang
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China
| | - Guo-Kun Wang
- Department of Cardiology, Cardiovascular Imaging Center, Second Affiliated Hospital of Harbin Medical University, Xuefu Road No.246, Nangang District, Harbin 150001, China
| | - Yan-Ming Zhao
- Department of Cardiology, Cardiovascular Imaging Center, Second Affiliated Hospital of Harbin Medical University, Xuefu Road No.246, Nangang District, Harbin 150001, China
| | - Xin-Yi Wang
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China
| | - Xiu-Shi Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China
| | - Zi-Xiang Kuai
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China.
| |
Collapse
|
3
|
Kawaguchi Y, Kato S, Horita N, Utsunomiya D. Value of Dynamic Computed Tomography Myocardial Perfusion in CAD: A Systematic Review and Meta-analysis. Eur Heart J Cardiovasc Imaging 2024:jeae118. [PMID: 38693883 DOI: 10.1093/ehjci/jeae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
AIMS Dynamic stress computed tomography (CT) perfusion is a non-invasive method for quantifying myocardial ischemia by assessing myocardial blood flow (MBF). In this meta-analysis, we evaluated the diagnostic accuracy of dynamic CT perfusion for the detection of significant coronary artery disease (CAD) across various CT scanners, obese patients, and its prognostic value. METHODS AND RESULTS We systematically searched PubMed, Embase, Web of Science, and Cochrane library for published studies evaluating the accuracy of CT myocardial perfusion in diagnosing functional significant ischemia by invasive fractional flow reserve. The diagnostic performance of dynamic CT perfusion in detecting ischemia was evaluated using a summary receiver operating characteristic (sROC) curve. A total of 23 studies underwent meta- analysis. In myocardial region without ischemia, MBF was measured at 1.44 ml/min/g (95% confidence interval [CI]: 1.13-1.75), while in region with ischemia, it was 0.94 ml/min/g (95% CI: 0.80-1.08) (p<0.001). On the patient-based analysis, the area under the sROC curve of CT-MBF was 0.93, with a sensitivity of 0.84 and specificity of 0.88. Differences in CT type (dual source vs. single source), and body mass index (BMI) did not significantly affect the diagnostic performance. The pooled hazard ratio of dynamic CT perfusion for predicting adverse events was 4.98 (95%CI: 2.08-11.93, p=<0.001, I2=61%, p for heterogeneity = 0.07). CONCLUSIONS Dynamic CT perfusion has high diagnostic performance in the quantitative assessment of ischemia and detection of functional myocardial ischemia as defined by invasive FFR, and may be useful in risk stratification of CAD patients.
Collapse
Affiliation(s)
- Yuma Kawaguchi
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine
| | - Shingo Kato
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine
| | | | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine
| |
Collapse
|
4
|
Sliwicka O, Sechopoulos I, Baggiano A, Pontone G, Nijveldt R, Habets J. Dynamic myocardial CT perfusion imaging-state of the art. Eur Radiol 2023; 33:5509-5525. [PMID: 36997751 PMCID: PMC10326111 DOI: 10.1007/s00330-023-09550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 04/01/2023]
Abstract
In patients with suspected coronary artery disease (CAD), dynamic myocardial computed tomography perfusion (CTP) imaging combined with coronary CT angiography (CTA) has become a comprehensive diagnostic examination technique resulting in both anatomical and quantitative functional information on myocardial blood flow, and the presence and grading of stenosis. Recently, CTP imaging has been proven to have good diagnostic accuracy for detecting myocardial ischemia, comparable to stress magnetic resonance imaging and positron emission tomography perfusion, while being superior to single photon emission computed tomography. Dynamic CTP accompanied by coronary CTA can serve as a gatekeeper for invasive workup, as it reduces unnecessary diagnostic invasive coronary angiography. Dynamic CTP also has good prognostic value for the prediction of major adverse cardiovascular events. In this article, we will provide an overview of dynamic CTP, including the basics of coronary blood flow physiology, applications and technical aspects including protocols, image acquisition and reconstruction, future perspectives, and scientific challenges. KEY POINTS: • Stress dynamic myocardial CT perfusion combined with coronary CTA is a comprehensive diagnostic examination technique resulting in both anatomical and quantitative functional information. • Dynamic CTP imaging has good diagnostic accuracy for detecting myocardial ischemia comparable to stress MRI and PET perfusion. • Dynamic CTP accompanied by coronary CTA may serve as a gatekeeper for invasive workup and can guide treatment in obstructive coronary artery disease.
Collapse
Affiliation(s)
- Olga Sliwicka
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands.
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrea Baggiano
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Gianluca Pontone
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jesse Habets
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
5
|
Pugliese L, Ricci F, Sica G, Scaglione M, Masala S. Non-Contrast and Contrast-Enhanced Cardiac Computed Tomography Imaging in the Diagnostic and Prognostic Evaluation of Coronary Artery Disease. Diagnostics (Basel) 2023; 13:2074. [PMID: 37370969 DOI: 10.3390/diagnostics13122074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
In recent decades, cardiac computed tomography (CT) has emerged as a powerful non-invasive tool for risk stratification, as well as the detection and characterization of coronary artery disease (CAD), which remains the main cause of morbidity and mortality in the world. Advances in technology have favored the increasing use of cardiac CT by allowing better performance with lower radiation doses. Coronary artery calcium, as assessed by non-contrast CT, is considered to be the best marker of subclinical atherosclerosis, and its use is recommended for the refinement of risk assessment in low-to-intermediate risk individuals. In addition, coronary CT angiography (CCTA) has become a gate-keeper to invasive coronary angiography (ICA) and revascularization in patients with acute chest pain by allowing the assessment not only of the extent of lumen stenosis, but also of its hemodynamic significance if combined with the measurement of fractional flow reserve or perfusion imaging. Moreover, CCTA provides a unique incremental value over functional testing and ICA by imaging the vessel wall, thus allowing the assessment of plaque burden, composition, and instability features, in addition to perivascular adipose tissue attenuation, which is a marker of vascular inflammation. There exists the potential to identify the non-obstructive lesions at high risk of progression to plaque rupture by combining all of these measures.
Collapse
Affiliation(s)
- Luca Pugliese
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Francesca Ricci
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, 80131 Napoli, Italy
| | - Mariano Scaglione
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Masala
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
6
|
Guaricci AI, Neglia D, Acampa W, Andreini D, Baggiano A, Bianco F, Carrabba N, Conte E, Gaudieri V, Mushtaq S, Napoli G, Pergola V, Pontone G, Pedrinelli R, Mercuro G, Indolfi C, Guglielmo M. Computed tomography and nuclear medicine for the assessment of coronary inflammation: clinical applications and perspectives. J Cardiovasc Med (Hagerstown) 2023; 24:e67-e76. [PMID: 37052223 DOI: 10.2459/jcm.0000000000001433] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
There is increasing evidence that in patients with atherosclerotic cardiovascular disease (ASCVD) under optimal medical therapy, a persisting dysregulation of the lipid and glucose metabolism, associated with adipose tissue dysfunction and inflammation, predicts a substantial residual risk of disease progression and cardiovascular events. Despite the inflammatory nature of ASCVD, circulating biomarkers such as high-sensitivity C-reactive protein and interleukins may lack specificity for vascular inflammation. As known, dysfunctional epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) produce pro-inflammatory mediators and promote cellular tissue infiltration triggering further pro-inflammatory mechanisms. The consequent tissue modifications determine the attenuation of PCAT as assessed and measured by coronary computed tomography angiography (CCTA). Recently, relevant studies have demonstrated a correlation between EAT and PCAT and obstructive coronary artery disease, inflammatory plaque status and coronary flow reserve (CFR). In parallel, CFR is well recognized as a marker of coronary vasomotor function that incorporates the haemodynamic effects of epicardial, diffuse and small-vessel disease on myocardial tissue perfusion. An inverse relationship between EAT volume and coronary vascular function and the association of PCAT attenuation and impaired CFR have already been reported. Moreover, many studies demonstrated that 18F-FDG PET is able to detect PCAT inflammation in patients with coronary atherosclerosis. Importantly, the perivascular FAI (fat attenuation index) showed incremental value for the prediction of adverse clinical events beyond traditional risk factors and CCTA indices by providing a quantitative measure of coronary inflammation. As an indicator of increased cardiac mortality, it could guide early targeted primary prevention in a wide spectrum of patients. In this review, we summarize the current evidence regarding the clinical applications and perspectives of EAT and PCAT assessment performed by CCTA and the prognostic information derived by nuclear medicine.
Collapse
Affiliation(s)
- Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari
| | - Danilo Neglia
- Cardiovascular Department, Fondazione Toscana Gabriele Monasterio (FTGM), Pisa
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples
| | - Daniele Andreini
- Centro Cardiologico Monzino IRCCS
- Department of Clinical Sciences and Community Health, Cardiovascular Section, Milan
| | - Andrea Baggiano
- Centro Cardiologico Monzino IRCCS
- Department of Clinical Sciences and Community Health, Cardiovascular Section, Milan
| | - Francesco Bianco
- Cardiovascular Sciences Department - AOU 'Ospedali Riuniti', Ancona
| | - Nazario Carrabba
- Department of Cardiothoracovascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Florence
| | - Edoardo Conte
- Centro Cardiologico Monzino IRCCS
- Department of Biomedical Sciences for Health, University of Milan, Milan
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples
| | | | - Gianluigi Napoli
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari
| | - Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova
| | | | | | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Yan C, Ma J, Tian D, Zhang C, Zhang F, Zhao Y, Fu S, Sun Y, Zhang Q. Evaluation of Myocardial Microcirculation in Rats under a High-Altitude Hypoxic Environment by Computed Tomography Myocardial Perfusion Imaging. Int Heart J 2023; 64:928-934. [PMID: 37778996 DOI: 10.1536/ihj.23-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This study aims to examine the changes in myocardial microcirculation in rats in a high-altitude hypoxic environment via computed tomography (CT) myocardial perfusion imaging technology. Rats in two groups were raised in different environments from 4 weeks of age for a period of 24 weeks. At 28 weeks of age, both groups underwent CT myocardial perfusion scanning, and the following myocardial perfusion parameters were measured: time to peak (TTP), mean transit time (MTT), blood flow (BF), and blood volume (BV). Following the scan, the rats were sacrificed, the cardiac index and right ventricular hypertrophy index were obtained, and hematoxylin-eosin (HE) staining was utilized to observe the pathological changes in the myocardium. In the group of rats that are subject to a high-altitude hypoxic environment for 24 weeks (the high-altitude group), the TTP and MTT values were increased (P < 0.05), the BF and BV values were lower (P < 0.05), the right heart mass was higher (P < 0.05) than that in the low-altitude group. As shown by the pathological results of HE staining, the gap between cardiomyocytes in the high-altitude group was widened, the arrangement of cardiomyocytes was irregular, and the cells were filled with a few fat vacuoles. The myocardial microcirculation is altered in a high-altitude hypoxic environment. In particular, the myocardium is in a state of inadequate perfusion, the BF in the myocardium slows down, and the right heart displays compensatory hypertrophy.
Collapse
Affiliation(s)
- Chunlong Yan
- Suzhou Medical College of Soochow University
- Department of Radiology, Qinghai Provincial People's Hospital
- Department of Radiology, Jining No.1 People's Hospital
| | - Jinfeng Ma
- Suzhou Medical College of Soochow University
- Department of Hematology, Jining No.1 People's Hospital
| | - Dengfeng Tian
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Chenhong Zhang
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Fengjuan Zhang
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Yuchun Zhao
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Shihan Fu
- Department of Radiology, Qinghai Provincial People's Hospital
- Graduate School of Qinghai University
| | - Yanqiu Sun
- Suzhou Medical College of Soochow University
- Department of Radiology, Qinghai Provincial People's Hospital
| | - Qiang Zhang
- Department of Neurosurgery, Qinghai Provincial People's Hospital
| |
Collapse
|
8
|
Møller MB, Schuijf JD, Oyama-Manabe N, Linde JJ, Kühl JT, Lima JAC, Kofoed KF. Technical Considerations for Dynamic Myocardial Computed Tomography Perfusion as Part of a Comprehensive Evaluation of Coronary Artery Disease Using Computed Tomography. J Thorac Imaging 2023; 38:54-68. [PMID: 36044617 DOI: 10.1097/rti.0000000000000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dynamic myocardial computed tomography perfusion (DM-CTP) has good diagnostic accuracy for identifying myocardial ischemia as compared with both invasive and noninvasive reference standards. However, DM-CTP has not yet been implemented in the routine clinical examination of patients with suspected or known coronary artery disease. An important hurdle in the clinical dissemination of the method is the development of the DM-CTP acquisition protocol and image analysis. Therefore, the aim of this article is to provide a review of critical parameters in the design and execution of DM-CTP to optimize each step of the examination and avoid common mistakes. We aim to support potential users in the successful implementation and performance of DM-CTP in daily practice. When performed appropriately, DM-CTP may support clinical decision making. In addition, when combined with coronary computed tomography angiography, it has the potential to shorten the time to diagnosis by providing immediate visualization of both coronary atherosclerosis and its functional relevance using one single modality.
Collapse
Affiliation(s)
- Mathias B Møller
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
| | - Joanne D Schuijf
- Global Research and Development Center, Canon Medical Systems Europe, Zoetermeer, The Netherlands
| | - Noriko Oyama-Manabe
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Jesper J Linde
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
| | - Jørgen T Kühl
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
| | - Joao A C Lima
- Departments of Medicine and Radiology, Johns Hopkins Hospital and School of Medicine, Baltimore, MD
| | - Klaus F Kofoed
- Department of Cardiology, Rigshospitalet, University of Copenhagen, The Heart Centre
- Department of Radiology, Rigshospitalet, University of Copenhagen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Huang JY, Lin YH, Hung CL, Chen WP, Tamaki N, Bax JJ, Morris DA, Korosoglou G, Wu YW. Editorial: Atherosclerosis and functional imaging. Front Cardiovasc Med 2022; 9:1053100. [PMID: 36561766 PMCID: PMC9767462 DOI: 10.3389/fcvm.2022.1053100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jei-Yie Huang
- Department of Nuclear Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chung-Lieh Hung
- Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Pin Chen
- Institute of Pharmacology, National Taiwan University, Taipei, Taiwan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jeroen J. Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Daniel A. Morris
- Department of Internal Medicine and Cardiology, Charité University Hospital, Berlin, Germany
| | - Grigorios Korosoglou
- Department of Cardiology and Vascular Medicine, GRN Hospital Weinheim, Weinheim, Germany
| | - Yen-Wen Wu
- Department of Nuclear Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan,Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan,Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan,Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,*Correspondence: Yen-Wen Wu
| |
Collapse
|
10
|
Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, Budoff M, Chinnaiyan K, Choi AD, Ghoshhajra B, Jacobs J, Koweek L, Lesser J, Maroules C, Rubin GD, Rybicki FJ, Shaw LJ, Williams MC, Williamson E, White CS, Villines TC, Blankstein R. CAD-RADS™ 2.0 - 2022 Coronary Artery Disease-Reporting and Data System: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). JACC Cardiovasc Imaging 2022; 15:1974-2001. [PMID: 36115815 DOI: 10.1016/j.jcmg.2022.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 07/02/2022] [Indexed: 12/14/2022]
Abstract
Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care.
Collapse
Affiliation(s)
- Ricardo C Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South Florida, Miami, Florida, USA.
| | - Jonathon Leipsic
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Stephan Achenbach
- Friedrich-Alexander-Universität, Department of Cardiology, Erlangen, Germany
| | - Daniel Berman
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marcio Bittencourt
- Division of Cardiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew Budoff
- David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Andrew D Choi
- The George Washington University School of Medicine, Washington, DC, USA
| | - Brian Ghoshhajra
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jill Jacobs
- NYU Langone Medical Center, New York, New York, USA
| | - Lynne Koweek
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - John Lesser
- Division of Cardiology, Minneapolis Heart Institute, Minneapolis, Minnesota, USA
| | | | - Geoffrey D Rubin
- Department of Medical Imaging, University of Arizona, Tucson, Arizona, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Leslee J Shaw
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Eric Williamson
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Todd C Villines
- Division of Cardiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, Budoff M, Chinnaiyan K, Choi AD, Ghoshhajra B, Jacobs J, Koweek L, Lesser J, Maroules C, Rubin GD, Rybicki FJ, Shaw LJ, Williams MC, Williamson E, White CS, Villines TC, Blankstein R. CAD-RADS™ 2.0 - 2022 Coronary Artery Disease - Reporting and Data System.: An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR) and the North America Society of Cardiovascular Imaging (NASCI). J Am Coll Radiol 2022; 19:1185-1212. [PMID: 36436841 DOI: 10.1016/j.jacr.2022.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in Cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care.
Collapse
Affiliation(s)
- Ricardo C Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South Florida, 8900 N Kendall Drive, Miami FL, 33176, USA.
| | - Jonathon Leipsic
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Achenbach
- Friedrich-Alexander-Universität, Department of Cardiology, Erlangen, Germany
| | | | | | - Matthew Budoff
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Andrew D Choi
- The George Washington University School of Medicine, Washington, DC, USA
| | - Brian Ghoshhajra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill Jacobs
- NYU Langone Medical Center, New York, NY, USA
| | - Lynne Koweek
- Department of Radiology, Duke University, Durham, NC, USA
| | - John Lesser
- Division of Cardiology, Minneapolis Heart Institute, Minneapolis, MN, USA
| | | | - Geoffrey D Rubin
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leslee J Shaw
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Todd C Villines
- Division of Cardiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Tang CX, Zhou Z, Zhang JY, Xu L, Lv B, Jiang Zhang L. Cardiovascular Imaging in China: Yesterday, Today, and Tomorrow. J Thorac Imaging 2022; 37:355-365. [PMID: 36162066 DOI: 10.1097/rti.0000000000000678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The high prevalence and mortality of cardiovascular diseases in China's large population has increased the use of cardiovascular imaging for the assessment of conditions in recent years. In this study, we review the past 20 years of cardiovascular imaging in China, the increasingly important role played by cardiovascular computed tomography in coronary artery disease and pulmonary embolism assessment, magnetic resonance imaging's use for cardiomyopathy assessment, the development and application of artificial intelligence in cardiovascular imaging, and the future of Chinese cardiovascular imaging.
Collapse
Affiliation(s)
- Chun Xiang Tang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Zhen Zhou
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
| | - Jia Yin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
| | - Bin Lv
- Department of Radiology, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
- State Key Laboratory and National Center for Cardiovascular Diseases, Beijing
| | - Long Jiang Zhang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| |
Collapse
|
13
|
Liu Z, Yang J, Chen Y. The Chinese Experience of Imaging in Cardiac Intervention: A Bird's Eye Review. J Thorac Imaging 2022; 37:374-384. [PMID: 36162061 DOI: 10.1097/rti.0000000000000680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent scientific and technological advances have greatly contributed to the development of medical imaging that could enable specific functions. It has become the primary focus of cardiac intervention in preoperative assessment, intraoperative guidance, and postoperative follow-up. This review provides a contemporary overview of the Chinese experience of imaging in cardiac intervention in recent years.
Collapse
Affiliation(s)
- Zinuan Liu
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital
- Medical School of Chinese PLA, Beijing, P.R. China
| | - Junjie Yang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital
| |
Collapse
|
14
|
Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, Budoff M, Chinnaiyan K, Choi AD, Ghoshhajra B, Jacobs J, Koweek L, Lesser J, Maroules C, Rubin GD, Rybicki FJ, Shaw LJ, Williams MC, Williamson E, White CS, Villines TC, Blankstein R. CAD-RADS™ 2.0 - 2022 Coronary Artery Disease-Reporting and Data System: An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR), and the North America Society of Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 2022; 16:536-557. [PMID: 35864070 DOI: 10.1016/j.jcct.2022.07.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 07/02/2022] [Indexed: 12/14/2022]
Abstract
Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in Cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care.
Collapse
Affiliation(s)
- Ricardo C Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South Florida, Miami FL, USA.
| | - Jonathon Leipsic
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Achenbach
- Friedrich-Alexander-Universität, Department of Cardiology, Erlangen, Germany
| | | | | | - Matthew Budoff
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Andrew D Choi
- The George Washington University School of Medicine, Washington, DC, USA
| | - Brian Ghoshhajra
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill Jacobs
- NYU Langone Medical Center, New York, NY, USA
| | - Lynne Koweek
- Department of Radiology, Duke University, Durham, NC, USA
| | - John Lesser
- Division of Cardiology, Minneapolis Heart Institute, Minneapolis, MN, USA
| | | | - Geoffrey D Rubin
- Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Frank J Rybicki
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leslee J Shaw
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Todd C Villines
- Division of Cardiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Cury RC, Leipsic J, Abbara S, Achenbach S, Berman D, Bittencourt M, Budoff M, Chinnaiyan K, Choi AD, Ghoshhajra B, Jacobs J, Koweek L, Lesser J, Maroules C, Rubin GD, Rybicki FJ, Shaw LJ, Williams MC, Williamson E, White CS, Villines TC, Blankstein R. CAD-RADS™ 2.0 - 2022 Coronary Artery Disease - Reporting and Data System An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR) and the North America Society of Cardiovascular Imaging (NASCI). Radiol Cardiothorac Imaging 2022; 4:e220183. [PMID: 36339062 PMCID: PMC9627235 DOI: 10.1148/ryct.220183] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
Coronary Artery Disease Reporting and Data System (CAD-RADS) was created to standardize reporting system for patients undergoing coronary CT angiography (CCTA) and to guide possible next steps in patient management. The goal of this updated 2022 CAD-RADS 2.0 is to improve the initial reporting system for CCTA by considering new technical developments in Cardiac CT, including data from recent clinical trials and new clinical guidelines. The updated CAD-RADS classification will follow an established framework of stenosis, plaque burden, and modifiers, which will include assessment of lesion-specific ischemia using CT fractional-flow-reserve (CT-FFR) or myocardial CT perfusion (CTP), when performed. Similar to the method used in the original CAD-RADS version, the determinant for stenosis severity classification will be the most severe coronary artery luminal stenosis on a per-patient basis, ranging from CAD-RADS 0 (zero) for absence of any plaque or stenosis to CAD-RADS 5 indicating the presence of at least one totally occluded coronary artery. Given the increasing data supporting the prognostic relevance of coronary plaque burden, this document will provide various methods to estimate and report total plaque burden. The addition of P1 to P4 descriptors are used to denote increasing categories of plaque burden. The main goal of CAD-RADS, which should always be interpreted together with the impression found in the report, remains to facilitate communication of test results with referring physicians along with suggestions for subsequent patient management. In addition, CAD-RADS will continue to provide a framework of standardization that may benefit education, research, peer-review, artificial intelligence development, clinical trial design, population health and quality assurance with the ultimate goal of improving patient care. Keywords: Coronary Artery Disease, Coronary CTA, CAD-RADS, Reporting and Data System, Stenosis Severity, Report Standardization Terminology, Plaque Burden, Ischemia Supplemental material is available for this article. This article is published synchronously in Radiology: Cardiothoracic Imaging, Journal of Cardiovascular Computed Tomography, JACC: Cardiovascular Imaging, Journal of the American College of Radiology, and International Journal for Cardiovascular Imaging. © 2022 Society of Cardiovascular Computed Tomography. Published by RSNA with permission.
Collapse
Affiliation(s)
- Ricardo C. Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South
Florida, 8900 N Kendall Drive, Miami FL, 33176, USA
| | | | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX,
USA
| | - Stephan Achenbach
- Friedrich-Alexander-Universität, Department of Cardiology,
Ulmenweg 18, 90154, Erlangen, Germany
| | | | | | | | | | - Andrew D. Choi
- The George Washington University School of Medicine, USA
| | | | - Jill Jacobs
- NYU Langone Medical Center, 550 First Avenue, New York, NY, 10016,
USA
| | | | - John Lesser
- Division of Cardiology, Minneapolis Heart Institute, USA
| | | | | | - Frank J. Rybicki
- Department of Radiology, University of Cincinnati College of
Medicine, USA
| | | | | | | | | | - Todd C. Villines
- Division of Cardiology, University of Virginia Health System,
USA
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School,
USA
| |
Collapse
|
16
|
Semi-Quantitative Versus Visual Analysis of Adenosine Perfusion Magnetic Resonance Imaging in Intermediate-Grade Coronary Artery Stenosis Using Fractional Flow Reserve as the Reference: A Pilot Study. J Belg Soc Radiol 2022; 106:59. [PMID: 35814277 PMCID: PMC9231575 DOI: 10.5334/jbsr.2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
|
17
|
Geng W, Gao Y, Zhao N, Yan H, Ma W, An Y, Jia L, Lu B. Dose Reduction of Dynamic Computed Tomography Myocardial Perfusion Imaging by Tube Voltage Change: Investigation in a Swine Model. Front Cardiovasc Med 2022; 9:823974. [PMID: 35310988 PMCID: PMC8927626 DOI: 10.3389/fcvm.2022.823974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background It is unclear whether tube voltage influences the measurement of perfusion parameters. The present study sought to evaluate the influence of tube voltage change on myocardial blood flow (MBF) measurements in dynamic computed tomography myocardial perfusion imaging (CTP). Methods and Results Seven swine [mean weight 55.8 kg ± 1.6 (standard deviation)] underwent rest and stress dynamic CTP with tube voltages of 100 and 70 kV. The image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), radiation dose and MBF value were compared. The 70 kV images had higher CT attenuation and higher image noise (27.9 ± 2.4 vs. 21.5 ± 1.9, P < 0.001) than the 100 kV images, resulting in a higher SNR (20.5 ± 1.6 vs. 15.6 ± 1.8, P < 0.001) and CNR (17.6 ± 1.5 vs. 12.4 ± 1.7, P < 0.001). Compared to the use of conventional 100 kV, 70 kV yielded an approximately 64.6% radiation dose reduction while generating comparable MBF values, both at rest (88.3 ± 14.9 ml/100 g/min vs. 85.6 ± 17.4 ml/100 g/min, P = 0.21) and stress (101.4 ± 21.5 ml/100 g/min vs. 99.6 ± 21.4 ml/100 g/min, P = 0.58) states. Conclusion Dynamic CTP using 70 kV instead of 100 kV does not substantially influence the MBF value but significantly reduces the radiation dose. Additional research is required to investigate the clinical significance of this change.
Collapse
Affiliation(s)
- Wenlei Geng
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Gao
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Na Zhao
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hankun Yan
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Ma
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yunqiang An
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liujun Jia
- Animal Experimental Center, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Bin Lu
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Bin Lu,
| |
Collapse
|
18
|
Kim MY, Yang DH, Choo KS, Lee W. Beyond Coronary CT Angiography: CT Fractional Flow Reserve and Perfusion. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:3-27. [PMID: 36237355 PMCID: PMC9238199 DOI: 10.3348/jksr.2021.0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
심장 전산화단층촬영은 비약적인 기술발전과 다양한 연구 결과를 바탕으로 심혈관위험 계층화와 치료 결정을 위한 관상동맥 질환의 진단과 예후 평가성능이 입증되었다. 전산화단층촬영 관상동맥조영술은 폐쇄성 관상동맥 질환에 대한 음성 예측도가 높아서 침습적 혈관조영술의 빈도를 줄일 수 있는 관상동맥 질환 관련 검사의 관문으로 부상했지만, 진단특이도가 상대적으로 낮다. 하지만 심장 전산화단층촬영을 이용한 분획혈류예비력과 심근관류를 분석하여 관상동맥 질환의 혈역학적 유의성을 확인하는 기능적 평가를 통해 그 한계를 극복할 수 있다. 최근에는 이를 보다 객관적이고 재현 가능하도록 인공지능을 접목하는 연구들이 활발히 진행되고 있다. 본 종설에서는 심장 전산화단층촬영의 기능적 영상화 기법들에 대해 알아보고자 한다.
Collapse
Affiliation(s)
- Moon Young Kim
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Dong Hyun Yang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki Seok Choo
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Whal Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Yu Y, Yu L, Dai X, Zhang J. CT Fractional Flow Reserve for the Diagnosis of Myocardial Bridging-Related Ischemia: A Study Using Dynamic CT Myocardial Perfusion Imaging as a Reference Standard. Korean J Radiol 2021; 22:1964-1973. [PMID: 34668350 PMCID: PMC8628161 DOI: 10.3348/kjr.2021.0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/27/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023] Open
Abstract
Objective To investigate the diagnostic performance of CT fractional flow reserve (CT-FFR) for myocardial bridging-related ischemia using dynamic CT myocardial perfusion imaging (CT-MPI) as a reference standard. Materials and Methods Dynamic CT-MPI and coronary CT angiography (CCTA) data obtained from 498 symptomatic patients were retrospectively reviewed. Seventy-five patients (mean age ± standard deviation, 62.7 ± 13.2 years; 48 males) who showed myocardial bridging in the left anterior descending artery without concomitant obstructive stenosis on the imaging were included. The change in CT-FFR across myocardial bridging (ΔCT-FFR, defined as the difference in CT-FFR values between the proximal and distal ends of the myocardial bridging) in different cardiac phases, as well as other anatomical parameters, were measured to evaluate their performance for diagnosing myocardial bridging-related myocardial ischemia using dynamic CT-MPI as the reference standard (myocardial blood flow < 100 mL/100 mL/min or myocardial blood flow ratio ≤ 0.8). Results ΔCT-FFRsystolic (ΔCT-FFR calculated in the best systolic phase) was higher in patients with vs. without myocardial bridging-related myocardial ischemia (median [interquartile range], 0.12 [0.08–0.17] vs. 0.04 [0.01–0.07], p < 0.001), while CT-FFRsystolic (CT-FFR distal to the myocardial bridging calculated in the best systolic phase) was lower (0.85 [0.81–0.89] vs. 0.91 [0.88–0.96], p = 0.043). In contrast, ΔCT-FFRdiastolic (ΔCT-FFR calculated in the best diastolic phase) and CT-FFRdiastolic (CT-FFR distal to the myocardial bridging calculated in the best diastolic phase) did not differ significantly. Receiver operating characteristic curve analysis showed that ΔCT-FFRsystolic had largest area under the curve (0.822; 95% confidence interval, 0.717–0.901) for identifying myocardial bridging-related ischemia. ΔCT-FFRsystolic had the highest sensitivity (91.7%) and negative predictive value (NPV) (97.8%). ΔCT-FFRdiastolic had the highest specificity (85.7%) for diagnosing myocardial bridging-related ischemia. The positive predictive values of all CT-related parameters were low. Conclusion ΔCT-FFRsystolic reliably excluded myocardial bridging-related ischemia with high sensitivity and NPV. Myocardial bridging showing positive CT-FFR results requires further evaluation.
Collapse
Affiliation(s)
- Yarong Yu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lihua Yu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xu Dai
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Yu L, Lu Z, Dai X, Shen C, Zhang L, Zhang J. Prognostic value of CT-derived myocardial blood flow, CT fractional flow reserve and high-risk plaque features for predicting major adverse cardiac events. Cardiovasc Diagn Ther 2021; 11:956-966. [PMID: 34527519 DOI: 10.21037/cdt-21-219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/11/2021] [Indexed: 11/06/2022]
Abstract
Background Myocardial blood flow (MBF), CT fractional flow reserve (CT-FFR) and high-risk plaque (HRP) features have been revealed to be associated with patients' prognosis. However, direct intra-individual comparison of these CT-derived parameters has not been explored yet. The aim of this study was to investigate the prognostic value of CT-derived MBF, CT-FFR and HRP features for predicting major adverse cardiac events (MACEs). Methods Consecutive patients with chest pain and intermediate-to-high pre-test probability of coronary artery disease (CAD) were prospectively enrolled. All patients were referred for dynamic CT myocardial perfusion imaging (CT-MPI) + coronary CT angiography (CCTA) and followed up for at least 1 year. MBFischemic (mean MBF of all ischemic segments), MBFratio (MBF of ischemic segments/MBF of reference segments), CT-FFR and HRP features were measured and multivariate analysis was used to evaluate the predictive value of all above parameters for MACEs. Results One hundred and forty-two patients were included into final analysis. MBFischemic and MBFratio was significantly lower in patients with MACE compared to patients without MACE (87 vs. 153 mL/100 mL/min and 0.64 vs. 0.95, both P<0.001). Similarly, CT-FFR was also markedly lower in patients with MACE (0.58 vs. 0.88, P<0.001) whereas coronary artery calcium score (CACS) was significantly higher (1,038.9 vs. 34.2, P<0.001). According to ROC curve analysis, MBFischemic, MBFratio and CACS had largest area under curve (AUC =0.872, 0.855 and 0.813 respectively, all P<0.001) for identifying patients with MACE. After adjusted by multivariate analysis, MBFischemic (hazard ratio =23.382, P=0.003) and CACS (hazard ratio =3.759, P=0.029) were revealed to be the independent predictors for MACE where CT-FFR and HRP features failed to have prognostic value. Conclusions MBFischemic derived from dynamic CT-MPI was the strongest predictor for MACE, followed by CACS. MBFischemic outperformed HRP features and CT-FFR for prediction of unfavorable clinical outcome.
Collapse
Affiliation(s)
- Lihua Yu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhigang Lu
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xu Dai
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengxing Shen
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lei Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Vattay B, Boussoussou M, Borzsák S, Vecsey-Nagy M, Simon J, Kolossváry M, Merkely B, Szilveszter B. Myocardial perfusion imaging using computed tomography: Current status, clinical value and prognostic implications. IMAGING 2021. [DOI: 10.1556/1647.2020.00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractCombined anatomical and functional evaluation of coronary artery disease (CAD) using computed tomography (CT) has recently emerged as an accurate, robust, and non-invasive tool for the evaluation of ischemic heart disease. Cardiac CT has become a one-stop-shop imaging modality that allows the simultaneous depiction, characterization, and quantification of coronary atherosclerosis and the assessment of myocardial ischemia. Advancements in scanner technology (improvements in spatial and temporal resolution, dual-energy imaging, wide detector panels) and the implementation of iterative reconstruction algorithms enables the detection of myocardial ischemia in both qualitative and quantitative fashion using low-dose scanning protocols. The addition of CT perfusion (CTP) to standard coronary CT angiography is a reliable tool to improve diagnostic accuracy. CTP using static first-pass imaging enables qualitative assessment of the myocardial tissue, whereas dynamic perfusion imaging can also provide quantitative information on myocardial blood flow. Myocardial tissue assessment by CTP holds the potential to refine risk in stable chest pain or microvascular dysfunction. CTP can aid the detection of residual ischemia after coronary intervention. Comprehensive evaluation of CAD using CTP might therefore improve the selection of patients for aggressive secondary prevention therapy or coronary revascularization with high diagnostic certainty. In addition, prognostic information provided by perfusion CT imaging could improve patient outcomes by quantifying the ischemic burden of the left ventricle. The current review focuses on the clinical value of myocardial perfusion imaging by CT, current status of CTP imaging and the use of myocardial CTP in various patient populations for the diagnosis of ischemic heart disease.
Collapse
Affiliation(s)
- Borbála Vattay
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Melinda Boussoussou
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Sarolta Borzsák
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Milán Vecsey-Nagy
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Judit Simon
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Márton Kolossváry
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bálint Szilveszter
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Diagnostic performance of corrected FFR CT metrics to predict hemodynamically significant coronary artery stenosis. Eur Radiol 2021; 31:9232-9239. [PMID: 34080038 DOI: 10.1007/s00330-021-08064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/21/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To determine the diagnostic performance of the fractional flow reserve (FFR) derived from coronary computed tomography angiography (CCTA) (FFRCT) difference across the lesion (ΔFFRCT lesion) or the vessel (ΔFFRCT vessel) and the gradient of FFRCT for the identification of hemodynamically significant coronary stenosis. METHODS From June 2016 to December 2018, 73 patients suspected of having coronary artery disease who underwent CCTA followed invasive coronary angiography (ICA) within 1 month were retrospectively included. ΔFFRCT lesion, ΔFFRCT vessel, and FFRCT gradient were calculated. Performance characteristics of different corrected FFRCT metrics in detecting ischemic stenosis were analyzed. Impacts of coronary calcification and lesion length on the corrected FFRCT metrics were also analyzed. RESULTS The diagnostic sensitivities, specificities, and accuracies of 94.4%, 88.7%, and 91.0% with ΔFFRCT lesion, 57.1%, 72.3%, and 65.2% with ΔFFRCT vessel, and 50.0%, 85.1%, and 68.5% with FFRCT gradient, respectively, were detected. There was higher specificity, accuracy, and area under the curve (AUC) for ΔFFRCT lesion compared with CCTA (p < 0.05 for all). The specificity and AUC of FFRCT gradient and ΔFFRCT vessel were significantly higher than CCTA (p < 0.05 for all). Coronary calcification showed no impact on corrected FFRCT metrics. ΔFFRCT lesion for lesion length ratio (LLR) < 1/10 was significantly lower than that for LLR 1/10 to 3/10 and LLR > 3/10. CONCLUSIONS ΔFFRCT lesion was significantly correlated with the hemodynamically significant coronary artery stenosis. ΔFFRCT lesion had the potential to be immediately used in real-world practice to discriminate ischemic coronary artery stenosis. KEY POINTS • The difference of FFRCT across the lesion or the vessel and the gradient of FFRCT was related to the hemodynamically significant coronary artery stenosis. • The difference of FFRCT across the lesion showed the best diagnostic performance in detecting the hemodynamically significant coronary artery stenosis. • Coronary calcification showed no impact on corrected FFRCT metrics, while lesion length related to the difference of FFRCT across the lesion.
Collapse
|
23
|
Zamorano JL, Pinto FJ, Solano-López J, Bucciarelli-Ducci C. The year in cardiovascular medicine 2020: imaging. Eur Heart J 2021; 42:740-749. [PMID: 33388781 DOI: 10.1093/eurheartj/ehaa1035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023] Open
Affiliation(s)
- José Luis Zamorano
- Department of Cardiology, University Hospital Ramon y Cajal, Carretera de Colmenar Km 9.100, 28034 Madrid; Spain
| | - Fausto J Pinto
- Department of Cardiology, Centro Hospitalar Universitário Lisboa Norte (CHULN), CCUL, Universidade de Lisboa, Av. Prof. Egas Moniz MB 1649-028 Lisboa, Portugal
| | - Jorge Solano-López
- Department of Cardiology, University Hospital Ramon y Cajal, Carretera de Colmenar Km 9.100, 28034 Madrid; Spain
| | - Chiara Bucciarelli-Ducci
- Department of Cardiology, Bristol Heart Institute, University Hospitals Bristol and Weston NHS Trust and University of Bristol, UK
| |
Collapse
|
24
|
Narula J, Chandrashekhar Y, Ahmadi A, Abbara S, Berman DS, Blankstein R, Leipsic J, Newby D, Nicol ED, Nieman K, Shaw L, Villines TC, Williams M, Hecht HS. SCCT 2021 Expert Consensus Document on Coronary Computed Tomographic Angiography: A Report of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr 2021; 15:192-217. [PMID: 33303384 PMCID: PMC8713482 DOI: 10.1016/j.jcct.2020.11.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Y Chandrashekhar
- University of Minnesota and VA Medical Center, Minneapolis, MN, USA
| | - Amir Ahmadi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Suhny Abbara
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Ron Blankstein
- Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | - David Newby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh, United Kingdom
| | - Edward D Nicol
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Leslee Shaw
- New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Todd C Villines
- University of Virginia Health System, Charlottesville, VA, USA
| | - Michelle Williams
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Edinburgh, United Kingdom
| | - Harvey S Hecht
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
25
|
Kumar V, Weerakoon S, Dey AK, Earls JP, Katz RJ, Reiner JS, Shaw LJ, Blankstein R, Mehta NN, Choi AD. The evolving role of coronary CT angiography in Acute Coronary Syndromes. J Cardiovasc Comput Tomogr 2021; 15:384-393. [PMID: 33858808 DOI: 10.1016/j.jcct.2021.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
In the United States, non-obstructive coronary disease has been on the rise, and each year, nearly one million adults suffer myocardial infarction, 70% of which are non-ST-segment elevation myocardial infarction (NSTEMI). In addition, approximately 15% of patients suffering NSTEMI will have subsequent readmission for a recurrent acute coronary syndrome (ACS). While invasive angiography remains the standard of care in the diagnostic and therapeutic approach to these patients, these methods have limitations that include procedural complications, uncertain specificity in diagnosis of the culprit lesion in patients with multi-vessel coronary artery disease (CAD), and challenges in following coronary disease over time. The role of coronary computed tomography angiography (CCTA) for evaluating patients with both stable and acute chest pain has seen a paramount upshift in the last decade. This paper reviews the established role of CCTA for the rapid exclusion of obstructive plaque in troponin negative acute chest pain, while exploring opportunities to address challenges in the current approach to evaluating NSTEMI.
Collapse
Affiliation(s)
- Vishak Kumar
- Division of Cardiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Shaneke Weerakoon
- Division of Cardiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Amit K Dey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - James P Earls
- Division of Cardiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Richard J Katz
- Division of Cardiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Jonathan S Reiner
- Division of Cardiology, Interventional Cardiology Laboratory, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | | | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nehal N Mehta
- Division of Cardiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew D Choi
- Division of Cardiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Abdelrahman KM, Chen MY, Dey AK, Virmani R, Finn AV, Khamis RY, Choi AD, Min JK, Williams MC, Buckler AJ, Taylor CA, Rogers C, Samady H, Antoniades C, Shaw LJ, Budoff MJ, Hoffmann U, Blankstein R, Narula J, Mehta NN. Coronary Computed Tomography Angiography From Clinical Uses to Emerging Technologies: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 76:1226-1243. [PMID: 32883417 PMCID: PMC7480405 DOI: 10.1016/j.jacc.2020.06.076] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Evaluation of coronary artery disease (CAD) using coronary computed tomography angiography (CCTA) has seen a paradigm shift in the last decade. Evidence increasingly supports the clinical utility of CCTA across various stages of CAD, from the detection of early subclinical disease to the assessment of acute chest pain. Additionally, CCTA can be used to noninvasively quantify plaque burden and identify high-risk plaque, aiding in diagnosis, prognosis, and treatment. This is especially important in the evaluation of CAD in immune-driven conditions with increased cardiovascular disease prevalence. Emerging applications of CCTA based on hemodynamic indices and plaque characterization may provide personalized risk assessment, affect disease detection, and further guide therapy. This review provides an update on the evidence, clinical applications, and emerging technologies surrounding CCTA as highlighted at the 2019 National Heart, Lung and Blood Institute CCTA Summit.
Collapse
Affiliation(s)
- Khaled M Abdelrahman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Marcus Y Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Amit K Dey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, Maryland
| | - Aloke V Finn
- Department of Pathology, CVPath Institute, Gaithersburg, Maryland
| | - Ramzi Y Khamis
- Vascular Sciences Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew D Choi
- Division of Cardiology and Department of Radiology, The George Washington University School of Medicine, Washington, DC
| | - James K Min
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York
| | - Michelle C Williams
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, Queen's Medical Research Institute University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Habib Samady
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Leslee J Shaw
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York
| | - Matthew J Budoff
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Udo Hoffmann
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ron Blankstein
- Departments of Medicine (Cardiovascular Division) and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jagat Narula
- Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josée and Henry R. Kravis Center for Cardiovascular Health Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, New York, New York
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
27
|
Diagnostic performance of quantitative, semi-quantitative, and visual analysis of dynamic CT myocardial perfusion imaging: a validation study with invasive fractional flow reserve. Eur Radiol 2020; 31:525-534. [PMID: 32794126 DOI: 10.1007/s00330-020-07145-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/24/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To investigate the diagnostic performance of absolute myocardial blood flow (MBF), MBFratio, and visual analysis of dynamic CT myocardial perfusion imaging (CT-MPI) for the detection of hemodynamically significant coronary stenosis. METHODS Consecutive patients with chest pain and intermediate-to-high pre-test probability of obstructive coronary artery disease were prospectively enrolled. All patients were referred for dynamic CT-MPI and fractional flow reserve (FFR) measurements within 4 weeks. Absolute MBF, MBFratio (mean MBF of stenosis-subtended territories versus that of reference territories), and visually identified perfusion defect were tested for the diagnostic performance with reference to FFR. RESULTS Sixty-two patients with 95 target vessels were included for final analysis. The mean radiation dose for dynamic CT-MPI was 3.0 (2.2-4.0) mSv. The mean lesion-based absolute MBF value was significantly lower in ischemic segments than that in non-ischemic segments (78.0 (65.0-86.0) mL/min/100 mL vs. 133.0 (117.5-163.8) mL/min/100 mL, p < 0.001). Similarly, the lesion-based MBFratio was also markedly lower in territories with positive FFR results (0.52 (0.44-0.64) vs. 0.93 (0.91-0.97), p < 0.001). According to per-lesion ROC curve analysis, MBF and MBFratio had a similar area under the curve (AUC) for detecting hemodynamically significant lesions (AUC = 0.942 vs. 0.956, p = 0.413), which were larger than that of visual analysis (AUC = 0.802, both p < 0.01). The vessel-based sensitivity, specificity, and diagnostic accuracy were 84.3%, 97.7%, and 90.5% for MBF and 96.1%, 93.2%, and 94.7% for MBFratio. CONCLUSIONS Absolute MBF and MBFratio had similarly excellent diagnostic performance with reference to FFR. In addition, these two parameters outperformed visual analysis for the detection of myocardial ischemia. KEY POINTS • The mean MBF and MBFratio were significantly lower in ischemic segments than those in non-ischemic segments. • Absolute MBF and MBFratio had similar AUCs for the detection of hemodynamically significant lesions (AUC = 0.942 vs. 0.956, p = 0.413), which were larger than that of visual analysis (AUC = 0.802, both p < 0.01). • The vessel-based sensitivity, specificity, and diagnostic accuracy were 84.3%, 97.7%, and 90.5% for absolute MBF and 96.1%, 93.2%, and 94.7% for MBFratio.
Collapse
|
28
|
Tanabe Y, Kurata A, Matsuda T, Yoshida K, Baruah D, Kido T, Mochizuki T, Rajiah P. Computed tomographic evaluation of myocardial ischemia. Jpn J Radiol 2020; 38:411-433. [PMID: 32026226 PMCID: PMC7186254 DOI: 10.1007/s11604-020-00922-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Myocardial ischemia is caused by a mismatch between myocardial oxygen consumption and oxygen delivery in coronary artery disease (CAD). Stratification and decision-making based on ischemia improves the prognosis in patients with CAD. Non-invasive tests used to evaluate myocardial ischemia include stress electrocardiography, echocardiography, single-photon emission computed tomography, and magnetic resonance imaging. Invasive fractional flow reserve is considered the reference standard for assessment of the hemodynamic significance of CAD. Computed tomography (CT) angiography has emerged as a first-line imaging modality for evaluation of CAD, particularly in the population at low to intermediate risk, because of its high negative predictive value; however, CT angiography does not provide information on the hemodynamic significance of stenosis, which lowers its specificity. Emerging techniques, e.g., CT perfusion and CT-fractional flow reserve, help to address this limitation of CT, by determining the hemodynamic significance of coronary artery stenosis. CT perfusion involves acquisition during the first pass of contrast medium through the myocardium following pharmacological stress. CT-fractional flow reserve uses computational fluid dynamics to model coronary flow, pressure, and resistance. In this article, we review these two functional CT techniques in the evaluation of myocardial ischemia, including their principles, technology, advantages, limitations, pitfalls, and the current evidence.
Collapse
Affiliation(s)
- Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takuya Matsuda
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kazuki Yoshida
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Dhiraj Baruah
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0295, Japan
- Department of Radiology, I.M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Ulitsa, Moscow, Russia
| | | |
Collapse
|
29
|
Society of cardiovascular computed tomography expert consensus document on myocardial computed tomography perfusion imaging. J Cardiovasc Comput Tomogr 2020; 14:87-100. [DOI: 10.1016/j.jcct.2019.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023]
|
30
|
Yang J, Shan D, Chen Y. Noninvasive cardiac imaging technologies in detecting coronary artery disease: From research to clinical practice. CARDIOLOGY PLUS 2020. [DOI: 10.4103/cp.cp_3_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
31
|
Pontone G, Rabbat MG, Rossi A. Understanding Coronary Physiology Through Dynamic CT Perfusion Imaging. JACC Cardiovasc Imaging 2019; 13:977-979. [PMID: 31542522 DOI: 10.1016/j.jcmg.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 11/17/2022]
Affiliation(s)
| | - Mark G Rabbat
- Loyola University of Chicago, Chicago, Illinois; Edward Hines Jr. Veteran's Affairs Hospital, Hines, Illinois
| | - Alexia Rossi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Diagnostic Imaging, Humanitas Clinical and Research Hospital, IRCCS, Rozzano, Milan, Italy
| |
Collapse
|