1
|
Sun S, Yeh L, Imanzadeh A, Kooraki S, Kheradvar A, Bedayat A. The Current Landscape of Artificial Intelligence in Imaging for Transcatheter Aortic Valve Replacement. CURRENT RADIOLOGY REPORTS 2024; 12:113-120. [PMID: 39483792 PMCID: PMC11526784 DOI: 10.1007/s40134-024-00431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
Purpose This review explores the current landscape of AI applications in imaging for TAVR, emphasizing the potential and limitations of these tools for (1) automating the image analysis and reporting process, (2) improving procedural planning, and (3) offering additional insight into post-TAVR outcomes. Finally, the direction of future research necessary to bridge these tools towards clinical integration is discussed. Recent Findings Transcatheter aortic valve replacement (TAVR) has become a pivotal treatment option for select patients with severe aortic stenosis, and its indication for use continues to broaden. Noninvasive imaging techniques such as CTA and MRA have become routine for patient selection, preprocedural planning, and predicting the risk of complications. As the current methods for pre-TAVR image analysis are labor-intensive and have significant inter-operator variability, experts are looking towards artificial intelligence (AI) as a potential solution. Summary AI has the potential to significantly enhance the planning, execution, and post-procedural follow up of TAVR. While AI tools are promising, the irreplaceable value of nuanced clinical judgment by skilled physician teams must not be overlooked. With continued research, collaboration, and careful implementation, AI can become an integral part in imaging for TAVR, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Shawn Sun
- Radiology Department, UCI Medical Center, University of California, Irvine, USA
| | - Leslie Yeh
- Independent Researcher, Anaheim, CA 92803, USA
| | - Amir Imanzadeh
- Radiology Department, UCI Medical Center, University of California, Irvine, USA
| | - Soheil Kooraki
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
| | - Arash Kheradvar
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Arash Bedayat
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Luo Y, Xu R, Hu Z, Ni R, Zhu T, Zhang H, Zhu Y. Gel-Based Suspension Medium Used in 3D Bioprinting for Constructing Tissue/Organ Analogs. Gels 2024; 10:644. [PMID: 39451297 PMCID: PMC11507232 DOI: 10.3390/gels10100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Constructing tissue/organ analogs with natural structures and cell types in vitro offers a valuable strategy for the in situ repair of damaged tissues/organs. Three-dimensional (3D) bioprinting is a flexible method for fabricating these analogs. However, extrusion-based 3D bioprinting faces the challenge of balancing the use of soft bioinks with the need for high-fidelity geometric shapes. To address these challenges, recent advancements have introduced various suspension mediums based on gelatin, agarose, and gellan gum microgels. The emergence of these gel-based suspension mediums has significantly advanced the fabrication of tissue/organ constructs using 3D bioprinting. They effectively stabilize and support soft bioinks, enabling the formation of complex spatial geometries. Moreover, they provide a stable, cell-friendly environment that maximizes cell viability during the printing process. This minireview will summarize the properties, preparation methods, and potential applications of gel-based suspension mediums in constructing tissue/organ analogs, while also addressing current challenges and providing an outlook on the future of 3D bioprinting.
Collapse
Affiliation(s)
- Yang Luo
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Rong Xu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zeming Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Tong Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Hua Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China
- Research Institute of Smart Medicine and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Nedadur R, Bhatt N, Liu T, Chu MWA, McCarthy PM, Kline A. The Emerging and Important Role of Artificial Intelligence in Cardiac Surgery. Can J Cardiol 2024; 40:1865-1879. [PMID: 39098601 DOI: 10.1016/j.cjca.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
Artificial Intelligence (AI) has greatly affected our everyday lives and holds great promise to change the landscape of medicine. AI is particularly positioned to improve care for the increasingly complex patients undergoing cardiac surgery using the immense amount of data generated in the course of their care. When deployed, AI can be used to analyze this information at the patient's bedside more expediently and accurately, all while providing new insights. This review summarizes the current applications of AI in cardiac surgery from the vantage point of a patient's journey. Applications of AI include preoperative risk assessment, intraoperative planning, postoperative patient care, and outpatient telemonitoring, encompassing the spectrum of cardiac surgical care. Offloading of administrative processes and enhanced experience with information gathering also represent a unique and under-represented avenue for future use of AI. As clinicians, understanding the nomenclature and applications of AI is important to contextualize issues, to ensure problem-driven solutions, and for clinical benefit. Precision medicine, and thus clinically relevant AI, remains dependent on data curation and warehousing to gather insights from large multicentre repositories while treating privacy with the utmost importance. AI tasks should not be siloed but rather holistically integrated into clinical workflow to retain context and relevance. As cardiac surgeons, AI allows us to look forward to a bright future of more efficient use of our clinical expertise toward high-level decision making and technical prowess.
Collapse
Affiliation(s)
- Rashmi Nedadur
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA.
| | - Nitish Bhatt
- Peter Munk Cardiac Center, Toronto General Hospital, Toronto, Ontario, Canada
| | - Tom Liu
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA
| | | | - Patrick M McCarthy
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA
| | - Adrienne Kline
- Feinberg School of Medicine, Division of Cardiac Surgery, Northwestern University, Chicago, Illinois, USA; Center for Artificial Intelligence, Bluhm Cardiovascular Institute, Northwestern Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Cheheili Sobbi S, Pauli M, Fillet M, Maessen JG, Sardari Nia P. The development of direct 3-dimensional printing of patient-specific mitral valve in soft material for simulation and procedural planning. JTCVS Tech 2024; 27:104-111. [PMID: 39478931 PMCID: PMC11518862 DOI: 10.1016/j.xjtc.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 11/02/2024] Open
Abstract
Objectives Replicating 3-dimensional prints of patient-specific mitral valves in soft materials is a cumbersome and time-consuming process. The aim of this study was to develop a method for a direct 3-dimensional printing of patient-specific mitral valves in soft material for simulation-based training and procedural planning. Methods A process was developed based on data acquisition using 3-dimensional transesophageal echocardiography Cartesian Digital Imaging and Communication of Medicine format, image processing using software (Vesalius3D, Blender, Meshlab, Atum3D Operation Station), and 3-dimensional printing using digital light processing, an additive manufacturing process based on photopolymer resins. Experiments involved adjustment of 3 variables: curing times, model thinness, and lattice structuring during the printing process. Printed models were evaluated for suitability in physical simulation by an experienced mitral valve surgeon. Results Direct 3-dimensional printing of a patient's mitral valve in soft material was completed within a range of 1.5 to 4.5 hours. Prints with postcuring times of 5, 7, 10, and 15 minutes resulted in increased stiffness. The mitral valves with 2.0-mm and 2.4-mm thinner leaflets felt more flexible without tear of the sutures through the material. The addition of lattice structures made the prints more compliant and better supported suturing. Conclusions Direct 3-dimensional printing of a realistic and flexible patient-specific mitral valve was achieved within a few hours. A combination of thinner leaflets, reduced curing time, and lattice structures enabled the creation of a realistic patient-specific mitral valve in soft material for physical simulation.
Collapse
Affiliation(s)
- Shokoufeh Cheheili Sobbi
- Department of Cardiothoracic Surgery, Heart and Vascular Centre Maastricht University Medical Centre, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Milou Pauli
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Marvin Fillet
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Jos G. Maessen
- Department of Cardiothoracic Surgery, Heart and Vascular Centre Maastricht University Medical Centre, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Peyman Sardari Nia
- Department of Cardiothoracic Surgery, Heart and Vascular Centre Maastricht University Medical Centre, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Androshchuk V, Montarello N, Lahoti N, Hill SJ, Zhou C, Patterson T, Redwood S, Niederer S, Lamata P, De Vecchi A, Rajani R. Evolving capabilities of computed tomography imaging for transcatheter valvular heart interventions - new opportunities for precision medicine. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-024-03247-z. [PMID: 39347934 DOI: 10.1007/s10554-024-03247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
The last decade has witnessed a substantial growth in percutaneous treatment options for heart valve disease. The development in these innovative therapies has been mirrored by advances in multi-detector computed tomography (MDCT). MDCT plays a central role in obtaining detailed pre-procedural anatomical information, helping to inform clinical decisions surrounding procedural planning, improve clinical outcomes and prevent potential complications. Improvements in MDCT image acquisition and processing techniques have led to increased application of advanced analytics in routine clinical care. Workflow implementation of patient-specific computational modeling, fluid dynamics, 3D printing, extended reality, extracellular volume mapping and artificial intelligence are shaping the landscape for delivering patient-specific care. This review will provide an insight of key innovations in the field of MDCT for planning transcatheter heart valve interventions.
Collapse
Affiliation(s)
- Vitaliy Androshchuk
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
- Guy's & St Thomas' NHS Foundation Trust, King's College London, St Thomas' Hospital, The Reyne Institute, 4th Floor, Lambeth Wing, London, SE1 7EH, UK.
| | - Natalie Montarello
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Nishant Lahoti
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Samuel Joseph Hill
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Can Zhou
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Tiffany Patterson
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
| | - Simon Redwood
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Steven Niederer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Adelaide De Vecchi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Ronak Rajani
- Cardiovascular Department, St Thomas' Hospital, King's College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
6
|
Mao Y, Liu Y, Zhai M, Jin P, Wei L, Zhang H, Liu J, Pan X, Guo Y, Yang J. Transapical Transcatheter Aortic Valve Replacement Under 3-Dimensional Guidance to Treat Pure Aortic Regurgitation in Patients with a Large Aortic Annulus. Rev Cardiovasc Med 2024; 25:319. [PMID: 39355610 PMCID: PMC11440419 DOI: 10.31083/j.rcm2509319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 10/03/2024] Open
Abstract
Background Transcatheter aortic valve replacement (TAVR) is a challenge for patients with aortic regurgitation (AR) and a large annulus. Our goal was to evaluate the clinical outcomes and predictors of transapical TAVR in AR patients with a large annulus and noncalcification and the feasibility and safety of 3-dimensional printing (3DP) in the preprocedural simulation. Methods Patients with a large annulus (diameter >29 mm) were enrolled and divided into the simulation (n = 43) and the nonsimulation group (n = 82). Surgeons used the specific 3DP model of the simulation group to simulate the main steps before the procedure and to refit the transcatheter heart valve (THV) according to the simulated results. Results The average annular diameter of the overall cohort was 29.8 ± 0.7 mm. Compared with the nonsimulation group, the simulation group used a higher proportion of extra oversizing for THVs (97.6% vs. 85.4%, p = 0.013), and the coaxiality performance was better (9.7 ± 3.9° vs. 12.7 ± 3.8°, p < 0.001). Both THV displacement and ≥ mild paravalvular leakage (PVL) occurred only in the nonsimulation group (9.8% vs. 0, p < 0.001; 9.8% vs. 0, p < 0.001). Multivariate regression analysis showed that extra oversizing, coaxial angle and annulus diameter were independent predictors of THV displacement and ≥ mild PVL, respectively. Conclusions Based on 3DP guidance, transapical TAVR using extra oversizing was safe and feasible for patients with noncalcified AR with a large annulus. Extra oversizing and coaxial angle were predictors of postprocedural THV displacement and ≥ mild PVL in such patients.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, 710032 Xi’an, Shaanxi, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, 710032 Xi’an, Shaanxi, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, 710032 Xi’an, Shaanxi, China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, 710032 Xi’an, Shaanxi, China
| | - Lai Wei
- Department of Cardiovascular Surgery, Shanghai Cardiovascular Institution and Zhongshan Hospital, Fudan University, 200433 Shanghai, China
| | - Haibo Zhang
- Department of Cardiovascular Surgery, Anzhen Hospital, Capital Medical University, 100069 Beijing, China
| | - Jian Liu
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital, 519041 Guangzhou, Guangdong, China
| | - Xiangbin Pan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, 100730 Beijing, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, 610065 Chengdu, Sichuan, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, 710032 Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Mao Y, Ma Y, Zhai M, Li L, Jin P, Liu Y, Yang J. Preliminary Study of a Degenerated Tricuspid Bioprosthetic Valve Implanted via Transcatheter Valve-in-Valve Implantation Guided by 3-Dimensional Printing. CJC Open 2024; 6:978-988. [PMID: 39211748 PMCID: PMC11357757 DOI: 10.1016/j.cjco.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 09/04/2024] Open
Abstract
Background The procedures of transcatheter tricuspid valve-in-valve (TTViV) replacement are challenging, and the clinical outcomes are still unclear. Our goal was to report the short- and mid-term clinical outcomes of patients who underwent a TTViV implantation guided by 3-dimensional (3D) printing. Methods A retrospective analysis was performed on 6 patients who had TTViV implantation from May 2021 to March 2022. The median age was 51 years (range: 18-71 years), and 50.0% of the patients were male. Imaging assessments and 3D printing were performed on all 6 patients before the procedures. The perioperative data were evaluated, and the patients were followed up. Results Among the 6 patients, the etiologies of conditions affecting the tricuspid valves at baseline varied widely, including 1 case of Ebstein anomaly, 2 cases of infective endocarditis, 1 case of ventricular septal defect, and 2 cases of rheumatic heart disease. TTViV implantation was successfully performed in all 6 patients via the femoral vein approach; postoperative tricuspid regurgitation disappeared immediately, and the hemodynamic results were satisfactory. During the follow-up, all patients had significant improvement in symptoms and functional status. Conclusions TTViV implantation for the treatment of degenerated tricuspid bioprostheses should be considered safe and effective. Multimodal imaging and 3D printing may provide effective guidance for conducting the procedure. Clinical Trial Registration ClinicalTrials.gov Protocol Registration System (NCT02917980).
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Lanlan Li
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Ping Jin
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Xi’an, China
| |
Collapse
|
8
|
Fathima AJ, Fasla MMN. A comprehensive review on heart disease prognostication using different artificial intelligence algorithms. Comput Methods Biomech Biomed Engin 2024; 27:1357-1374. [PMID: 38424704 DOI: 10.1080/10255842.2024.2319706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Prediction of heart diseases on time is significant in order to preserve life. Many conventional methods have taken efforts on earlier prediction but faced with challenges of higher prediction cost, extended time for computation and complexities with larger volume of data which reduced prediction accuracy. In order to overcome such pitfalls, AI (Artificial Intelligence) technology has been evolved in diagnosing heart diseases through deployment of several ML (Machine Learning) and DL (Deep Learning) algorithms. It improves detection by influencing with its capacity of learning from the massive data containing age, obesity, hypertension and other risk factors of patients and extract it accordingly to differentiate on the circumstances. Moreover, storage of larger data with AI greatly assists in analysing the occurrence of the disease from past historical data. Hence, this paper intends to provide a review on different AI based algorithms used in the heart disease prognostication and delivers its benefits through researching on various existing works. It performs comparative analysis and critical assessment as encompassing accuracies and maximum utilization of algorithms focussed by traditional studies in this area. The major findings of the paper emphasized on the evolution and continuous explorations of AI techniques for heart disease prediction and the future researchers aims in determining the dimensions that have attained high and low prediction accuracies on which appropriate research works can be performed. Finally, future research is included to offer new stimulus for further investigation of AI in cardiac disease diagnosis.
Collapse
Affiliation(s)
- A Jainul Fathima
- Assistant Professor, IT Francis Xavier Engineering College, Tirunelveli - 627003, India
| | | |
Collapse
|
9
|
Kanumilli SLD, Kosuru BP, Shaukat F, Repalle UK. Advancements and Applications of Three-dimensional Printing Technology in Surgery. J Med Phys 2024; 49:319-325. [PMID: 39526161 PMCID: PMC11548071 DOI: 10.4103/jmp.jmp_89_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/16/2024] Open
Abstract
Three-dimensional (3D) printing technology has revolutionized surgical practices, offering precise solutions for planning, education, and patient care. Surgeons now wield tangible, patient-specific 3D models derived from imaging data, allowing for meticulous presurgical planning. These models enhance surgical precision, reduce operative times, and minimize complications, ultimately improving patient outcomes. The technology also serves as a powerful educational tool, providing hands-on learning experiences for medical professionals and clearer communication with patients and their families. Despite its advantages, challenges such as model accuracy and material selection exist. Ongoing advancements, including bioactive materials and artificial intelligence integration, promise to further enhance 3D printing's impact. The future of 3D printing in surgery holds potential for regenerative medicine, increased global accessibility, and collaboration through telemedicine. Interdisciplinary collaboration between medical and engineering fields is crucial for responsible and innovative use of this technology.
Collapse
Affiliation(s)
| | - Bhanu P. Kosuru
- Department of Internal Medicine, University of Pittsburgh Medical Center East, Monroeville, Pennsylvania, USA
| | - Faiza Shaukat
- Department of General Surgery, Akhtar Saeed Medical and Dental College, Lahore, Punjab, India
| | - Uday Kumar Repalle
- Department of General Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Vijayawada, Andhra Pradesh, India
| |
Collapse
|
10
|
Cheng K, Zhu H, Peng Y, Wen X, Ding H. Computer-aided design and 3D printing for a stable construction of segmental bone defect model in Beagles: a short term observation. 3D Print Med 2024; 10:20. [PMID: 38914872 PMCID: PMC11197206 DOI: 10.1186/s41205-024-00217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE Segmental bone defect animal studies require stable fixation which is a continuous experimental challenge. Large animal models are comparable to the human bone, but with obvious drawbacks of housing and costs. Our study aims to utilize CAD and 3D printing in the construction of a stable and reproducible segmental bone defect animal mode. METHODS CAD-aided 3D printed surgical instruments were incorporated into the construction of the animal model through preoperative surgical emulation. 20 3D printed femurs were divided into either experimental group using 3D surgical instruments or control group. In Vitro surgical time and accuracy of fixation were analysed and compared between the two groups. A mature surgical plan using the surgical instruments was then utilized in the construction of 3 segmental bone defect Beagle models in vivo. The Beagles were postoperatively assessed through limb function and imaging at 1, 2 and 3 months postoperatively. RESULTS In vitro experiments showed a significant reduction in surgical time from 40.6 ± 14.1 (23-68 min) to 26 ± 4.6 (19-36 min) (n = 10, p < 0.05) and the accuracy of intramedullary fixation placement increased from 71.6 ± 23.6 (33.3-100) % to 98.3 ± 5.37 (83-100) %, (n = 30, p < 0.05) with the use of CAD and 3D printed instruments. All Beagles were load-bearing within 1 week, and postoperative radiographs showed no evidence of implant failure. CONCLUSION Incorporation of CAD and 3D printing significantly increases stability, while reducing the surgical time in the construction of the animal model, significantly affecting the success of the segmental bone defect model in Beagles.
Collapse
Affiliation(s)
- Kai Cheng
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Haotian Zhu
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou, 510180, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yuanhao Peng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xinghua Wen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, China
| | - Huanwen Ding
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou, 510180, China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Liang H, Chen B, Duan S, Yang L, Xu R, Zhang H, Sun M, Zhou X, Liu H, Wen H, Cai Z. Treatment of complex limb fractures with 3D printing technology combined with personalized plates: a retrospective study of case series and literature review. Front Surg 2024; 11:1383401. [PMID: 38817945 PMCID: PMC11137251 DOI: 10.3389/fsurg.2024.1383401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Background In recent years, 3D printing technology has made significant strides in the medical field. With the advancement of orthopedics, there is an increasing pursuit of high surgical quality and optimal functional recovery. 3D printing enables the creation of precise physical models of fractures, and customized personalized steel plates can better realign and more comprehensively and securely fix fractures. These technologies improve preoperative diagnosis, simulation, and planning for complex limb fractures, providing patients with better treatment options. Patients and methods Five typical cases were selected from a pool of numerous patients treated with 3D printing technology combined with personalized custom steel plates at our hospital. These cases were chosen to demonstrate the entire process of printing 3D models and customizing individualized steel plates, including details of the patients' surgeries and treatment procedures. Literature reviews were conducted, with a focus on highlighting the application of 3D printing technology combined with personalized custom steel plates in the treatment of complex limb fractures. Results 3D printing technology can produce accurate physical models of fractures, and personalized custom plates can achieve better fracture realignment and more comprehensive and robust fixation. These technologies provide patients with better treatment options. Conclusion The use of 3D printing models and personalized custom steel plates can improve preoperative diagnosis, simulation, and planning for complex limb fractures, realizing personalized medicine. This approach helps reduce surgical time, minimize trauma, enhance treatment outcomes, and improve patient functional recovery.
Collapse
Affiliation(s)
- Hairui Liang
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Beibei Chen
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Siyu Duan
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Lei Yang
- School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia Autonomous Region, Shenyang, China
| | - Rongda Xu
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - He Zhang
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Ming Sun
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Xueting Zhou
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Hanfei Liu
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Hang Wen
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Zhencun Cai
- Department of Orthopedics Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
- Key Laboratory of Human Ethnic Specificity and Phenomics of Critical Illness in Liaoning Province, Shenyang Medical College, Shenyang, China
| |
Collapse
|
12
|
Zheng H, Feng E, Xiao Y, Liu X, Lai T, Xu Z, Chen J, Xie S, Lin F, Zhang Y. Is AI 3D-printed PSI an accurate option for patients with developmental dysplasia of the hip undergoing THA? BMC Musculoskelet Disord 2024; 25:308. [PMID: 38649919 PMCID: PMC11034034 DOI: 10.1186/s12891-024-07449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND In traditional surgical procedures, significant discrepancies are often observed between the pre-planned templated implant sizes and the actual sizes used, particularly in patients with congenital hip dysplasia. These discrepancies arise not only in preoperative planning but also in the precision of implant placement, especially concerning the acetabular component. Our study aims to enhance the accuracy of implant placement during Total Hip Arthroplasty (THA) by integrating AI-enhanced preoperative planning with Patient-Specific Instrumentation (PSI). We also seek to assess the accuracy and clinical outcomes of the AI-PSI (AIPSI) group in comparison to a manual control group. METHODS This study included 60 patients diagnosed with congenital hip dysplasia, randomly assigned to either the AIPSI or manual group, with 30 patients in each. No significant demographic differences between were noted the two groups. A direct anterior surgical approach was employed. Postoperative assessments included X-rays and CT scans to measure parameters such as the acetabular cup anteversion angle, acetabular cup inclination angle, femoral stem anteversion angle, femoral offset, and leg length discrepancy. Functional scores were recorded at 3 days, 1 week, 4 weeks, and 12 weeks post-surgery. Data analysis was conducted using SPSS version 22.0, with the significance level was set at α = 0.05. RESULTS AND CONCLUSION The AIPSI group demonstrated greater prosthesis placement accuracy. With the aid of PSI, AI-planned THA surgery provides surgeons with enhanced precision in prosthesis positioning. This approach potentially offers greater insights and guidelines for managing more complex anatomical variations or cases.
Collapse
Affiliation(s)
- Han Zheng
- Department of Arthrosis Surgery, Fuzhou Second Hospital, Fuzhou, China
- The Second School of Medicine, Fujian University of Traditional Chinese, Fujian, China
| | - Eryou Feng
- Department of Arthrosis Surgery, Fuzhou Second Hospital, Fuzhou, China.
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma(2020Y2014), Fuzhou, China.
| | - Yao Xiao
- Fuzhou Changle Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Xingyu Liu
- Longwood Valley Medical Technology Co Ltd, Beijing, China
| | - Tianyu Lai
- Department of Arthrosis Surgery, Fuzhou Second Hospital, Fuzhou, China
| | - Zhibiao Xu
- Department of Arthrosis Surgery, Fuzhou Second Hospital, Fuzhou, China
| | - Jingqiao Chen
- Department of Arthrosis Surgery, Fuzhou Second Hospital, Fuzhou, China
| | - Shiwei Xie
- Department of Arthrosis Surgery, Fuzhou Second Hospital, Fuzhou, China
| | - Feitai Lin
- Department of Arthrosis Surgery, Fuzhou Second Hospital, Fuzhou, China
| | - Yiling Zhang
- Longwood Valley Medical Technology Co Ltd, Beijing, China.
| |
Collapse
|
13
|
Kieda J, Shakeri A, Landau S, Wang EY, Zhao Y, Lai BF, Okhovatian S, Wang Y, Jiang R, Radisic M. Advances in cardiac tissue engineering and heart-on-a-chip. J Biomed Mater Res A 2024; 112:492-511. [PMID: 37909362 PMCID: PMC11213712 DOI: 10.1002/jbm.a.37633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023]
Abstract
Recent advances in both cardiac tissue engineering and hearts-on-a-chip are grounded in new biomaterial development as well as the employment of innovative fabrication techniques that enable precise control of the mechanical, electrical, and structural properties of the cardiac tissues being modelled. The elongated structure of cardiomyocytes requires tuning of substrate properties and application of biophysical stimuli to drive its mature phenotype. Landmark advances have already been achieved with induced pluripotent stem cell-derived cardiac patches that advanced to human testing. Heart-on-a-chip platforms are now commonly used by a number of pharmaceutical and biotechnology companies. Here, we provide an overview of cardiac physiology in order to better define the requirements for functional tissue recapitulation. We then discuss the biomaterials most commonly used in both cardiac tissue engineering and heart-on-a-chip, followed by the discussion of recent representative studies in both fields. We outline significant challenges common to both fields, specifically: scalable tissue fabrication and platform standardization, improving cellular fidelity through effective tissue vascularization, achieving adult tissue maturation, and ultimately developing cryopreservation protocols so that the tissues are available off the shelf.
Collapse
Affiliation(s)
- Jennifer Kieda
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Fook Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Richard Jiang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Faza NN, Harb SC, Wang DD, van den Dorpel MMP, Van Mieghem N, Little SH. Physical and Computational Modeling for Transcatheter Structural Heart Interventions. JACC Cardiovasc Imaging 2024; 17:428-440. [PMID: 38569793 DOI: 10.1016/j.jcmg.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 04/05/2024]
Abstract
Structural heart disease interventions rely heavily on preprocedural planning and simulation to improve procedural outcomes and predict and prevent potential procedural complications. Modeling technologies, namely 3-dimensional (3D) printing and computational modeling, are nowadays increasingly used to predict the interaction between cardiac anatomy and implantable devices. Such models play a role in patient education, operator training, procedural simulation, and appropriate device selection. However, current modeling is often limited by the replication of a single static configuration within a dynamic cardiac cycle. Recognizing that health systems may face technical and economic limitations to the creation of "in-house" 3D-printed models, structural heart teams are pivoting to the use of computational software for modeling purposes.
Collapse
Affiliation(s)
- Nadeen N Faza
- Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA
| | | | | | | | | | - Stephen H Little
- Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA.
| |
Collapse
|
15
|
Chrysostomidis G, Apostolos A, Papanikolaou A, Konstantinou K, Tsigkas G, Koliopoulou A, Chamogeorgakis T. The Application of Precision Medicine in Structural Heart Diseases: A Step towards the Future. J Pers Med 2024; 14:375. [PMID: 38673001 PMCID: PMC11051532 DOI: 10.3390/jpm14040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
The personalized applications of 3D printing in interventional cardiology and cardiac surgery represent a transformative paradigm in the management of structural heart diseases. This review underscores the pivotal role of 3D printing in enhancing procedural precision, from preoperative planning to procedural simulation, particularly in valvular heart diseases, such as aortic stenosis and mitral regurgitation. The ability to create patient-specific models contributes significantly to predicting and preventing complications like paravalvular leakage, ensuring optimal device selection, and improving outcomes. Additionally, 3D printing extends its impact beyond valvular diseases to tricuspid regurgitation and non-valvular structural heart conditions. The comprehensive synthesis of the existing literature presented here emphasizes the promising trajectory of individualized approaches facilitated by 3D printing, promising a future where tailored interventions based on precise anatomical considerations become standard practice in cardiovascular care.
Collapse
Affiliation(s)
- Grigorios Chrysostomidis
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| | - Anastasios Apostolos
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippocration General Hospital, 115 27 Athens, Greece;
| | - Amalia Papanikolaou
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippocration General Hospital, 115 27 Athens, Greece;
| | - Konstantinos Konstantinou
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London 26504, UK;
| | - Grigorios Tsigkas
- Department of Cardiology, University Hospital of Patras, 265 04 Patras, Greece;
| | - Antigoni Koliopoulou
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| | - Themistokles Chamogeorgakis
- Second Department of Adult Cardiac Surgery—Heart and Lung Transplantation, Onassis Cardiac Surgery Center, 176 74 Athens, Greece; (G.C.); (A.K.); (T.C.)
| |
Collapse
|
16
|
Giannopoulos AA, Tan TC. Three-dimensional models for coronary artery fistulas: to print, or not to print-that is the question. Eur Heart J Case Rep 2024; 8:ytae069. [PMID: 38374986 PMCID: PMC10875926 DOI: 10.1093/ehjcr/ytae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Affiliation(s)
- Andreas A Giannopoulos
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Zurich, Raemistrasse 100, CH-8091, Switzerland
| | - Timothy C Tan
- Department of Cardiology, Blacktown Hospital, University of Western Sydney, Blacktown Road, Blacktown, NSW 2148, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| |
Collapse
|
17
|
Valvez S, Oliveira-Santos M, Gonçalves L, Amaro AM, Piedade AP. Preprocedural Planning of Left Atrial Appendage Occlusion: A Review of the Use of Additive Manufacturing. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:333-346. [PMID: 38389681 PMCID: PMC10880654 DOI: 10.1089/3dp.2022.0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Stroke is a significant public health problem, with non-valvular atrial fibrillation (NVAF) being one of its main causes. This cardiovascular arrhythmia predisposes to the production of intracardiac thrombi, mostly formed in the left atrial appendage (LAA). When there are contraindications to treatment with oral anticoagulants, another therapeutic option to reduce the possibility of thrombus formation in the LAA is the implantation of an occlusion device by cardiac catheterization. The effectiveness of LAA occlusion is dependent on accurate preprocedural device sizing and proper device positioning at the LAA ostium, to ensure sufficient device anchoring and avoid peri-device leaks. Additive manufacturing, commonly known as three-dimensional printing (3DP), of LAA models is beginning to emerge in the scientific literature to address these challenges through procedural simulation. This review aims at clarifying the impact of 3DP on preprocedural planning of LAA occlusion, specifically in the training of cardiac surgeons and in the assessment of the perfect adjustment between the LAA and the biomedical implant.
Collapse
Affiliation(s)
- Sara Valvez
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Coimbra, Portugal
| | | | - Lino Gonçalves
- CBR, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana M. Amaro
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Coimbra, Portugal
| | - Ana P. Piedade
- Department of Mechanical Engineering, CEMMPRE, ARISE, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
18
|
Sun Z, Silberstein J, Vaccarezza M. Cardiovascular Computed Tomography in the Diagnosis of Cardiovascular Disease: Beyond Lumen Assessment. J Cardiovasc Dev Dis 2024; 11:22. [PMID: 38248892 PMCID: PMC10816599 DOI: 10.3390/jcdd11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring images with high spatial and temporal resolution. The recent emergence of photon-counting CT has further enhanced CT performance in clinical applications, providing improved spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-printed patient-specific models are also superior to standard CT, offering advantages in terms of educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well as enhancing doctor-patient communication. Three-dimensional visualization tools including virtual reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning, and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has significantly improved, with promising results being presented in terms of both disease diagnosis and prediction. This review article provides an overview of the applications of cardiovascular CT, covering its performance from the perspective of its diagnostic value based on traditional lumen assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the use of these advanced technologies. The limitations and future prospects of these technologies are also discussed.
Collapse
Affiliation(s)
- Zhonghua Sun
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jenna Silberstein
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
| | - Mauro Vaccarezza
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
19
|
Bulbul Z, El Rassi I, Hamade R, Tamim H, Bitar F. Three-dimensional printing of mitral valve models using echocardiographic data improves the knowledge of cardiology fellow physicians in training. Front Cardiovasc Med 2023; 10:1307994. [PMID: 38124899 PMCID: PMC10731368 DOI: 10.3389/fcvm.2023.1307994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Background High fidelity three-dimensional Mitral valve models (3D MVM) printed from echocardiography are currently being used in preparation for surgical repair. Aim We hypothesize that printed 3DMVM could have relevance to cardiologists in training by improving their understanding of normal anatomy and pathology. Methods Sixteen fellow physicians in pediatric and adult cardiology training were recruited. 3D echocardiography (3DE) video clips of six mitral valves (one normal and five pathological) were displayed and the fellows were asked to name the prolapsing segments in each. Following that, three still images of 3D MVMs in different projections: enface, profile and tilted corresponding to the same MVs seen in the clip were presented on a screen. Participating physicians were presented with a comprehensive questionnaire aimed at assessing whether the 3D MVM has improved their understanding of valvular anatomy. Finally, a printed 3D MVM of each of the valves was handed out, and the same questionnaire was re-administered to identify any further improvement in the participants' perception of the anatomy. Results The correct diagnosis using the echocardiography video clip of the Mitral valve was attained by 45% of the study participants. Both pediatric and adult trainees, regardless of the year of training demonstrated improved understanding of the anatomy of MV after observing the corresponding model image. Significant improvement in their understanding was noted after participants had seen and physically examined the printed model. Conclusion Printed 3D MVM has a beneficial impact on the cardiology trainees' understanding of MV anatomy and pathology compared to 3DE images.
Collapse
Affiliation(s)
- Ziad Bulbul
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Issam El Rassi
- Pediatric Cardiac Surgery, Al Jalila Hospital, Dubai, United Arab Emirates
| | - Ramsey Hamade
- Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon
| | - Hani Tamim
- Department of Biostatistics, American University of Beirut, Beirut, Lebanon
| | - Fadi Bitar
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
20
|
Ma L, Yu S, Xu X, Moses Amadi S, Zhang J, Wang Z. Application of artificial intelligence in 3D printing physical organ models. Mater Today Bio 2023; 23:100792. [PMID: 37746667 PMCID: PMC10511479 DOI: 10.1016/j.mtbio.2023.100792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Artificial intelligence (AI) and 3D printing will become technologies that profoundly impact humanity. 3D printing of patient-specific organ models is expected to replace animal carcasses, providing scenarios that simulate the surgical environment for preoperative training and educating patients to propose effective solutions. Due to the complexity of 3D printing manufacturing, it is still used on a small scale in clinical practice, and there are problems such as the low resolution of obtaining MRI/CT images, long consumption time, and insufficient realism. AI has been effectively used in 3D printing as a powerful problem-solving tool. This paper introduces 3D printed organ models, focusing on the idea of AI application in 3D printed manufacturing of organ models. Finally, the potential application of AI to 3D-printed organ models is discussed. Based on the synergy between AI and 3D printing that will benefit organ model manufacturing and facilitate clinical preoperative training in the medical field, the use of AI in 3D-printed organ model making is expected to become a reality.
Collapse
Affiliation(s)
- Liang Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310000, China
- Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, 310000, China
| | - Shijie Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310000, China
- Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, 310000, China
| | - Xiaodong Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310000, China
- Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, 310000, China
| | - Sidney Moses Amadi
- International Education College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310000, China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhifei Wang
- Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
21
|
Jacquemyn X, Kutty S, Manlhiot C. The Lifelong Impact of Artificial Intelligence and Clinical Prediction Models on Patients With Tetralogy of Fallot. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2023; 2:440-452. [PMID: 38161675 PMCID: PMC10755786 DOI: 10.1016/j.cjcpc.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/24/2023] [Indexed: 01/03/2024]
Abstract
Medical advancements in the diagnosis, surgical techniques, perioperative care, and continued care throughout childhood have transformed the outlook for individuals with tetralogy of Fallot (TOF), improving survival and shifting the perspective towards lifelong care. However, with a growing population of survivors, longstanding challenges have been accentuated, and new challenges have surfaced, necessitating a re-evaluation of TOF care. Availability of prenatal diagnostics, insufficient information from traditional imaging techniques, previously unforeseen medical complications, and debates surrounding optimal timing and indications for reintervention are among the emerging issues. To address these challenges, the integration of artificial intelligence and machine learning holds great promise as they have the potential to revolutionize patient management and positively impact lifelong outcomes for individuals with TOF. Innovative applications of artificial intelligence and machine learning have spanned across multiple domains of TOF care, including screening and diagnosis, automated image processing and interpretation, clinical risk stratification, and planning and performing cardiac interventions. By embracing these advancements and incorporating them into routine clinical practice, personalized medicine could be delivered, leading to the best possible outcomes for patients. In this review, we provide an overview of these evolving applications and emphasize the challenges, limitations, and future potential for integrating them into clinical care.
Collapse
Affiliation(s)
- Xander Jacquemyn
- Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Shelby Kutty
- Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Cedric Manlhiot
- Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Khalili O, Asgari M. Fluid-structure interaction and structural simulation of high acceleration effects on surgical repaired human mitral valve biomechanics. Proc Inst Mech Eng H 2023; 237:1248-1260. [PMID: 37846647 DOI: 10.1177/09544119231200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Mitral valve dynamics depend on force stability in the mitral leaflets, the mitral annulus, the chordae tendineae, and the papillary muscles. In chordal rupture conditions, the proper function of the valve disrupts, causing mitral regurgitation, the most prevalent valvular disease. In this study, Structural and FSI frameworks were employed to study valve dynamics in healthy, pathologic, and repaired states. Anisotropic, non-linear, hyper-elastic material properties applied to tissues of the valve while the first-order Ogden model reflected the best compatibility with the empirical data. Hemodynamic blood pressure of the cardiovascular system is applied on the leaflets as uniform loads varying by time, and exposure to high acceleration loads imposed on models. Immersed boundary method used for simulation of fluid in a cardiac cycle. In comparison between healthy and pathologic models, stress values and chordal tensions are increased, by nearly threefold and twofold, respectively. Stress concentration on leaflets is reduced by 75% after performing a successful surgical repair on the pathological model. Crash acceleration loads led to more significant stress and chordae tension on models, by 27% and 23%, respectively. It is concluded that a more sophisticated model could lead to a better understanding of human heart valve biomechanics in various conditions. If a preoperative plan is developed based on these modeling methods, the requirement for multiple successive repairs would be eliminated, operative times are shortened, and patient outcomes are improved.
Collapse
Affiliation(s)
- Omid Khalili
- Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Masoud Asgari
- Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
23
|
Sazzad F, Ramanathan K, Moideen IS, Gohary AE, Stevens JC, Kofidis T. A Systematic Review of Individualized Heart Surgery with a Personalized Prosthesis. J Pers Med 2023; 13:1483. [PMID: 37888094 PMCID: PMC10608049 DOI: 10.3390/jpm13101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Personalized surgery is not just a new trend but rather a patient-specific approach to therapy that makes it possible to adopt a targeted approach for a specific patient and closely mirrors the approach of personalized medicine. However, the application of tailored surgery in the context of cardiovascular replacement surgery has not been systematically reviewed. The ability to customize a device is highly dependent on the collection of radiological image data for precise prosthesis modeling. These facts are essential to "tailor-made" device design for precise prosthesis implantation. According to this study, computed tomography (CT) was the most prominent imaging modality; however, transesophageal echocardiography and echocardiography were also found to be helpful. Additionally, a dynamic finite element simulation was also found to be an attractive alternative to the finite element analysis for an in-silico experiment. Nonetheless, there is a paucity of relevant publications and only sporadic evidence. More clinical studies have been warranted, notwithstanding that the derived data and results from this insight into the use of therapeutic interventions may be evidence of multiple directives in clinical practices and beyond. This study may help the integration of personalized devices for better comprehension of predicted clinical outcomes, thus leading towards enhanced performance gains.
Collapse
Affiliation(s)
- Faizus Sazzad
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Kollengode Ramanathan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119228, Singapore
| | - Irwan Shah Moideen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Abdulrahman El Gohary
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - John Carey Stevens
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Theo Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119228, Singapore
| |
Collapse
|
24
|
Xia J, Wu J, Chen H, Mao J, Xu X, Zhang J, Yang J, Wang Z. Assessment of laparoscopic intracorporeal intestinal anastomosis training using simulation-based 3D printed models: exploring surgical performance and learning curves. Int J Surg 2023; 109:2953-2961. [PMID: 37498142 PMCID: PMC10583936 DOI: 10.1097/js9.0000000000000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/25/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND AND AIMS Intestinal anastomosis is a clinical procedure widely used to reconstruct the digestive tract, but authentic laparoscopic intracorporeal intestinal anastomosis (LIIA) models are lacking. However, three-dimensional (3D) printing can enable authentic and reusable models. In this paper, a novel cost-effective 3D-printing training model of LIIA is designed and the authenticity and validity of the model are tested. METHODS A fused deposition modeling 3D printing and an assembled lab model were built to test LIIA. Fifteen surgeons were required to perform LIIA, and their operation score and time were recorded and analyzed. Five experts were invited to assess the face and content validity of the models. A study was also performed to further evaluate and validate the learning curve of surgeons. RESULTS The difference in modified anastomosis objective structured assessment of technical skills (MAOSATS) scores between the expert, intermediate, and novice groups were significant (64.1±1.8: 48.5±1.7: 29.5±3.1, P <0.001). In addition, the operation time of the procedure was statistically different for all three groups (21.5±1.9: 30.6±2.8:70.7±4.0, P<0.001 ). The five experts rated the face and content validity of the model very highly, with the median being four out of five. Surgeons who underwent repeated training programs showed improved surgical performance. After eight training sessions, the novices' performance was similar to that of the average level of untrained intermediates, while the operation scores of the intermediates were close to that of the average level of experts. CONCLUSIONS In this study, it is found that the LIIA model exhibits excellent face, content, and construct validity. Repeated simulation training of the LIIA training program improved the surgeon's operative performance, so the model is considered one of the most effective methods for LIIA training and assessment of surgical quality in the future and for reducing healthcare costs.
Collapse
Affiliation(s)
- Jianfu Xia
- Department of General Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, Wenzhou
- Department of Clinical Medicine, Suzhou Medical College of Soochow University, Suzhou
- Department of Hernia Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junjie Wu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hao Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University
| | - Jinlei Mao
- The Second Clinical Medical College, Zhejiang Chinese Medical University
| | - Xiaodong Xu
- College of Materials Science and Engineering, Zhejiang University of Technology
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology
| | - Jin Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Zhifei Wang
- Department of Hernia Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Chen X, Li S, Wang Y, Liu X, Zhang Y, Qiu G, Qian W. Artificially Intelligent Three-Dimensionally-Printed Patient-Specific Instrument Improves Total Hip Arthroplasty Accuracy. J Arthroplasty 2023; 38:2060-2067.e1. [PMID: 36535443 DOI: 10.1016/j.arth.2022.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Patient-specific instrumentation (PSI) has the potential to improve the accuracy of implant positioning in total hip arthroplasty (THA). This prospective clinical study aimed to develop artificial intelligence to increase PSI production efficiency and assess accuracy, clinical outcomes, and learning curves. METHODS A convolutional neural network was applied to automatically process computer tomography images. PSI size and position were designed to guide the acetabular preparation and femoral neck resection. Thirty patients who underwent PSI-assisted THAs were matched to thirty patients who underwent free-hand THAs, and the component positions, as well as radiographic and clinical outcomes were analyzed. RESULTS PSI-assisted THA was significantly more accurate than free-hand THA at achieving the target component position. The mean absolute errors of cup inclination (P = .004) and anteversion (P < .001) were significantly smaller in the PSI group with fewer outliers. Calcar length (P = .002) and neck length (P = .026) were also more accurate in the PSI group. The leg length discrepancy was significantly lower in the PSI group (P = .002). There were no significant differences in operation time, blood loss, leg length discrepancy, or cup position among the first, second, and last 10 cases. CONCLUSION PSI-assisted THA offered more accurate component positions and better radiographic outcomes than free-hand THA. There was no evidence of a learning curve. Our findings suggest that PSI is a convenient and practical option to help surgeons achieve accurate surgical outcomes.
Collapse
Affiliation(s)
- Xi Chen
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China; Department of Orthopedic Surgery, West China Hospital, Sichuan, China; Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Songlin Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Yiou Wang
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xingyu Liu
- School of Life Sciences, Tsinghua University, Beijing, China; Institute of Biomedical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Shenzhen, China; Department of Biomedical Engineering, School of Medicine, Tsinghua Univsersity, Beijing, China; Longwood Valley Medical Technology Co Ltd, Beijing, China
| | - Yiling Zhang
- Longwood Valley Medical Technology Co Ltd, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Wenwei Qian
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
26
|
Agricola E, Ancona F, Bartel T, Brochet E, Dweck M, Faletra F, Lancellotti P, Mahmoud-Elsayed H, Marsan NA, Maurovich-Hovart P, Monaghan M, Pontone G, Sade LE, Swaans M, Von Bardeleben RS, Wunderlich N, Zamorano JL, Popescu BA, Cosyns B, Donal E. Multimodality imaging for patient selection, procedural guidance, and follow-up of transcatheter interventions for structural heart disease: a consensus document of the EACVI Task Force on Interventional Cardiovascular Imaging: part 1: access routes, transcatheter aortic valve implantation, and transcatheter mitral valve interventions. Eur Heart J Cardiovasc Imaging 2023; 24:e209-e268. [PMID: 37283275 DOI: 10.1093/ehjci/jead096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/08/2023] Open
Abstract
Transcatheter therapies for the treatment of structural heart diseases (SHD) have expanded dramatically over the last years, thanks to the developments and improvements of devices and imaging techniques, along with the increasing expertise of operators. Imaging, in particular echocardiography, is pivotal during patient selection, procedural monitoring, and follow-up. The imaging assessment of patients undergoing transcatheter interventions places demands on imagers that differ from those of the routine evaluation of patients with SHD, and there is a need for specific expertise for those working in the cath lab. In the context of the current rapid developments and growing use of SHD therapies, this document intends to update the previous consensus document and address new advancements in interventional imaging for access routes and treatment of patients with aortic stenosis and regurgitation, and mitral stenosis and regurgitation.
Collapse
Affiliation(s)
- Eustachio Agricola
- Cardiovascular Imaging Unit, Cardio-Thoracic-Vascular Department, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy
- Vita-Salute San Raffaele University, via Olgettina 58, Milan 20132, Italy
| | - Francesco Ancona
- Cardiovascular Imaging Unit, Cardio-Thoracic-Vascular Department, IRCCS San Raffaele Scientific Institute, via Olgettina 60, Milan 20132, Italy
| | - Thomas Bartel
- Heart & Vascular Institute, Cleveland Clinic Abu Dhabi, 26th Street, Dubai, United Arab Emirates
| | - Eric Brochet
- Cardiology Department, Hopital Bichat, 46 rue Huchard, Paris 75018, France
| | - Marc Dweck
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Francesco Faletra
- Senior SHD Consultant Istituto Cardiocentro Via Tesserete 48, CH-6900 Lugano, Switzerland
- Senior Imaging Consultant ISMETT UPCM Hospital, Discesa dei Giudici, 4, 90133 Palermo, Italy
| | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, Domaine Universitaire du Sart Tilman, Liège B4000, Belgium
- Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | | | - Nina Ajmone Marsan
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Leyla Elif Sade
- University of Pittsburgh-Heart & Vascular Institute UPMC, 200 Lothrop St Ste E354.2, Pıttsburgh, PA 15213, USA
- Cardiology Department, Baskent University, Ankara, Turkey
| | - Martin Swaans
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | | - Nina Wunderlich
- Asklepios Klinik Langen Röntgenstrasse 20, Langen 63225, Germany
| | | | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy 'Carol Davila' -Euroecolab, Emergency Institute for Cardiovascular Diseases 'Prof. Dr. C. C. Iliescu', Bucharest, Romania
| | - Bernard Cosyns
- Cardiology Department, Centrum voor Hart en Vaatziekten (CHVZ), Universitair ziekenhuis Brussel, Brussels, Belgium
| | - Erwan Donal
- Cardiologie, CHU de RENNES, LTSI UMR1099, INSERM, Universite´ de Rennes-1, Rennes, France
| |
Collapse
|
27
|
Wang Y, Mao Y, Zhai M, Ma Y, Li L, Liu Y, Yang J. Transapical Mitral Valve-in-Ring Replacement Using the Innovative System under 3-Dimensional Printing Guidance. J Cardiovasc Dev Dis 2023; 10:339. [PMID: 37623352 PMCID: PMC10455199 DOI: 10.3390/jcdd10080339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Transcatheter mitral valve-in-ring replacement (TMViR) is an emerging alternative for patients with recurrent mitral regurgitation (MR) after a prior failed annuloplasty ring. However, intraoperative common issues and complications remain to be addressed. CASE SUMMARY We describe the case of a 67-year-old male patient who underwent surgical mitral concomitant tricuspid annuloplasty repair 7 years ago who developed recurrent severe MR (New York Heart Association functional class IV). To avoid a high-risk surgical reoperation, we chose to perform a TMViR using an innovative dedicated device-the Mi-thos system-via a transapical approach. A patient-specific, 3-dimensional printed model was used to guide the procedure to avoid potential challenges. The procedure was performed successfully, and the patient exhibited symptomatic improvement. CONCLUSIONS This case report highlights the first use of the innovative Mi-thos system in a TMViR procedure. The findings demonstrate the feasibility and safety of utilizing the Mi-thos system, guided by 3-dimensional printing technology, for patients who have experienced recurrent mitral regurgitation MR following a failed annuloplasty ring.
Collapse
Affiliation(s)
| | | | | | | | | | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (Y.W.); (Y.M.); (M.Z.); (Y.M.); (L.L.)
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi’an 710032, China; (Y.W.); (Y.M.); (M.Z.); (Y.M.); (L.L.)
| |
Collapse
|
28
|
Bhandari S, Yadav V, Ishaq A, Sanipini S, Ekhator C, Khleif R, Beheshtaein A, Jhajj LK, Khan AW, Al Khalifa A, Naseem MA, Bellegarde SB, Nadeem MA. Trends and Challenges in the Development of 3D-Printed Heart Valves and Other Cardiac Implants: A Review of Current Advances. Cureus 2023; 15:e43204. [PMID: 37565179 PMCID: PMC10411854 DOI: 10.7759/cureus.43204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
This article provides a comprehensive review of the current trends and challenges in the development of 3D-printed heart valves and other cardiac implants. By providing personalized solutions and pushing the limits of regenerative medicine, 3D printing technology has revolutionized the field of cardiac healthcare. The use of several organic and synthetic polymers in 3D printing heart valves is explored in this article, with emphasis on both their benefits and drawbacks. In cardiac tissue engineering, stem cells are essential, and their potential to lessen immunological rejection and thrombogenic consequences is highlighted. In the clinical applications section, the article emphasizes the importance of 3D printing in preoperative planning. Surgery results are enhanced when surgeons can visualize and assess the size and placement of implants using patient-specific anatomical models. Customized implants that are designed to match the anatomy of a particular patient reduce the likelihood of complications and enhance postoperative results. The development of physiologically active cardiac implants, made possible by 3D bioprinting, shows promise by eliminating the need for artificial valves. In conclusion, this paper highlights cutting-edge research and the promise of 3D-printed cardiac implants to improve patient outcomes and revolutionize cardiac treatment.
Collapse
Affiliation(s)
| | - Vikas Yadav
- Internal Medicine, Pt. B.D. Sharma Postgraduate Institute of Medical Sciences, Rohtak, IND
| | - Aqsa Ishaq
- Internal Medicine, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, PAK
| | | | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Rafeef Khleif
- Medicine, Xavier University School of Medicine, Aruba, ABW
| | - Alee Beheshtaein
- Internal Medicine, Xavier University School of Medicine, Chicago, USA
| | - Loveleen K Jhajj
- Internal Medicine, Xavier University School of Medicine, Oranjestad, ABW
| | | | - Ahmed Al Khalifa
- Medicine, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah, SAU
| | | | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | | |
Collapse
|
29
|
Yang T, Zhu G, Cai L, Yeo JH, Mao Y, Yang J. A benchmark study of convolutional neural networks in fully automatic segmentation of aortic root. Front Bioeng Biotechnol 2023; 11:1171868. [PMID: 37397959 PMCID: PMC10311214 DOI: 10.3389/fbioe.2023.1171868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Recent clinical studies have suggested that introducing 3D patient-specific aortic root models into the pre-operative assessment procedure of transcatheter aortic valve replacement (TAVR) would reduce the incident rate of peri-operative complications. Tradition manual segmentation is labor-intensive and low-efficient, which cannot meet the clinical demands of processing large data volumes. Recent developments in machine learning provided a viable way for accurate and efficient medical image segmentation for 3D patient-specific models automatically. This study quantitively evaluated the auto segmentation quality and efficiency of the four popular segmentation-dedicated three-dimensional (3D) convolutional neural network (CNN) architectures, including 3D UNet, VNet, 3D Res-UNet and SegResNet. All the CNNs were implemented in PyTorch platform, and low-dose CTA image sets of 98 anonymized patients were retrospectively selected from the database for training and testing of the CNNs. The results showed that despite all four 3D CNNs having similar recall, Dice similarity coefficient (DSC), and Jaccard index on the segmentation of the aortic root, the Hausdorff distance (HD) of the segmentation results from 3D Res-UNet is 8.56 ± 2.28, which is only 9.8% higher than that of VNet, but 25.5% and 86.4% lower than that of 3D UNet and SegResNet, respectively. In addition, 3D Res-UNet and VNet also performed better in the 3D deviation location of interest analysis focusing on the aortic valve and the bottom of the aortic root. Although 3D Res-UNet and VNet are evenly matched in the aspect of classical segmentation quality evaluation metrics and 3D deviation location of interest analysis, 3D Res-UNet is the most efficient CNN architecture with an average segmentation time of 0.10 ± 0.04 s, which is 91.2%, 95.3% and 64.3% faster than 3D UNet, VNet and SegResNet, respectively. The results from this study suggested that 3D Res-UNet is a suitable candidate for accurate and fast automatic aortic root segmentation for pre-operative assessment of TAVR.
Collapse
Affiliation(s)
- Tingting Yang
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Guangyu Zhu
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Li Cai
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, China
| | - Joon Hock Yeo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yu Mao
- Department of Cardiac Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jian Yang
- Department of Cardiac Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
30
|
Cresti A, Camara O. Left Atrial Thrombus-Are All Atria and Appendages Equal? Card Electrophysiol Clin 2023; 15:119-132. [PMID: 37076224 DOI: 10.1016/j.ccep.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Although the left atrial appendage (LAA) seems useless, it has several critical functions that are not fully known yet, such as the causes for being the main origin of cardioembolic stroke. Difficulties arise due to the extreme range of LAA morphologic variability, making the definition of normality challenging and hampering the stratification of thrombotic risk. Furthermore, obtaining quantitative metrics of its anatomy and function from patient data is not straightforward. A multimodality imaging approach, using advanced computational tools for their analysis, allows a complete characterization of the LAA to individualize medical decisions related to left atrial thrombosis patients.
Collapse
Affiliation(s)
- Alberto Cresti
- Cardiology Department, Misericordia Hospital, Azienda Sanitaria Toscana SudEst, Via Senese, Grosseto 58100, Italy
| | - Oscar Camara
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Tànger 122, Barcelona 08018, Spain.
| |
Collapse
|
31
|
Devgun J, De Potter T, Fabbricatore D, Wang DD. Pre-cath Laboratory Planning for Left Atrial Appendage Occlusion - Optional or Essential? Card Electrophysiol Clin 2023; 15:141-150. [PMID: 37076226 DOI: 10.1016/j.ccep.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
In the wake of rapid advancement in cardiovascular procedural technologies, physician-led preprocedural planning utilizing multi-modality imaging training is increasingly recognized as invaluable for procedural accuracy. Left atrial appendage occlusion (LAAO) is one such procedure in which complications such as device leak, cardiac injury, and device embolization can be decreased substantially with incorporation of physician driven imaging and digital tools. We discuss the benefits of cardiac CT and 3D printing in preprocedural planning for the Heart Team, as well as novel applications by physicians of intraprocedural 3D angiography and dynamic fusion imaging. Furthermore, incorporation of computational modeling and artificial intelligence (AI) may yield promise. For optimal patient-centric procedural success, we advocate for standardized preprocedural imaging planning by physicians within the Heart Team as an essential part of LAAO.
Collapse
Affiliation(s)
- Jasneet Devgun
- Division of Cardiology, Henry Ford Health System, 2799 West Grand Boulevard, Clara Ford Pavilion, Detroit, MI 48202, USA
| | - Tom De Potter
- Cardiovascular Center, Onze-Lieve-Vrouwziekenhuis Hospital, Moorselbaan 164, Aalst 9300, Belgium
| | - Davide Fabbricatore
- Cardiovascular Center, Onze-Lieve-Vrouwziekenhuis Hospital, Moorselbaan 164, Aalst 9300, Belgium
| | - Dee Dee Wang
- Division of Cardiology, Henry Ford Health System, 2799 West Grand Boulevard, Clara Ford Pavilion, Detroit, MI 48202, USA.
| |
Collapse
|
32
|
Alkhouli M, Hatoum H, Piazza N. Computational Modeling to Guide Structural Heart Interventions. JACC Cardiovasc Interv 2023; 16:667-669. [PMID: 36990555 DOI: 10.1016/j.jcin.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 02/24/2023]
Affiliation(s)
- Mohamad Alkhouli
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States.
| | - Hoda Hatoum
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, United States
| | - Nicolo Piazza
- Department of Medicine, Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Xia J, Mao J, Chen H, Xu X, Zhang J, Yang J, Wang Z. Development and evaluation of a portable and soft 3D-printed cast for laparoscopic choledochojejunostomy model in surgical training. BMC MEDICAL EDUCATION 2023; 23:77. [PMID: 36721193 PMCID: PMC9889129 DOI: 10.1186/s12909-023-04055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Laparoscopic choledochojejunostomy (LCJ) is an essential basic skill for biliary surgeons. Therefore, we established a convenient and effective LCJ 3D printing model to evaluate whether the model could simulate the actual operation situation and determine its effectiveness and validity in surgical training. METHODS A 3D printing dry laboratory model was established to simulate LCJ. The face and content validity of the model were evaluated by six experienced biliary surgeons based on 5-point Likert scale questionnaires. A total of 15 surgeons with different levels of experience performed LCJ on the model and evaluated the structural validity of the model using the objective structured assessment of technical skills (OSATS). Simultaneously, the operation time of each surgery was also recorded. A study was also performed to further evaluate the learning curve of residents. RESULTS The operating space score of the model was 4.83 ± 0.41 points. The impression score of bile duct and intestinal canal was 4.33 ± 0.52 and 4.17 ± 0.41 points, respectively. The tactile sensation score of bile duct suture and intestinal canal suture was 4.00 ± 0.63 and 3.83 ± 0.41points, respectively. The OSATS score for model operation in the attending group was 29.20 ± 0.45 points, which was significantly higher than that in the fellow group (26.80 ± 1.10, P = 0.007) and the resident group (19.80 ± 1.30, P < 0.001). In addition, there was a statistical difference in operation time among surgeons of different experience levels (P < 0.05). Residents could significantly improve the surgical score and shorten the time of LCJ through repeated training. CONCLUSIONS The 3D printing LCJ model can simulate the real operation scenes and distinguish surgeons with different levels of experience. The model is expected to be one of the training methods for biliary tract surgery in the future.
Collapse
Affiliation(s)
- Jianfu Xia
- Department of General Surgery, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, 325000, China
- Soochow University, Suzhou, 215000, China
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310000, China
| | - Jinlei Mao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Hao Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Xiaodong Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jin Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhifei Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310000, China.
| |
Collapse
|
34
|
Park JJ, Tiefenbach J, Demetriades AK. The role of artificial intelligence in surgical simulation. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:1076755. [PMID: 36590155 PMCID: PMC9794840 DOI: 10.3389/fmedt.2022.1076755] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Artificial Intelligence (AI) plays an integral role in enhancing the quality of surgical simulation, which is increasingly becoming a popular tool for enriching the training experience of a surgeon. This spans the spectrum from facilitating preoperative planning, to intraoperative visualisation and guidance, ultimately with the aim of improving patient safety. Although arguably still in its early stages of widespread clinical application, AI technology enables personal evaluation and provides personalised feedback in surgical training simulations. Several forms of surgical visualisation technologies currently in use for anatomical education and presurgical assessment rely on different AI algorithms. However, while it is promising to see clinical examples and technological reports attesting to the efficacy of AI-supported surgical simulators, barriers to wide-spread commercialisation of such devices and software remain complex and multifactorial. High implementation and production costs, scarcity of reports evidencing the superiority of such technology, and intrinsic technological limitations remain at the forefront. As AI technology is key to driving the future of surgical simulation, this paper will review the literature delineating its current state, challenges, and prospects. In addition, a consolidated list of FDA/CE approved AI-powered medical devices for surgical simulation is presented, in order to shed light on the existing gap between academic achievements and the universal commercialisation of AI-enabled simulators. We call for further clinical assessment of AI-supported surgical simulators to support novel regulatory body approved devices and usher surgery into a new era of surgical education.
Collapse
Affiliation(s)
- Jay J. Park
- Department of General Surgery, Norfolk and Norwich University Hospital, Norwich, United Kingdom,Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Jakov Tiefenbach
- Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andreas K. Demetriades
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom,Department of Neurosurgery, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Terentes-Printzios D, Xydis P, Gourgouli I, Tampakis K, Pastromas S, Sikiotis A, Antonopoulos A, Andrikopoulos G, Tsioufis K, Vlachopoulos C. 3D printing for ablation planning in patients undergoing atrial fibrillation ablation: Preliminary results of the pilot randomized 3D GALA trial. Hellenic J Cardiol 2022; 71:64-66. [PMID: 36503108 DOI: 10.1016/j.hjc.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dimitrios Terentes-Printzios
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Panagiotis Xydis
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Ioanna Gourgouli
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Konstantinos Tampakis
- 1st Clinic of Cardiology/Cardiac Electrophysiology and Pacing, Henry Dunant Hospital Center, Athens, Greece
| | - Sokratis Pastromas
- 1st Clinic of Cardiology/Cardiac Electrophysiology and Pacing, Henry Dunant Hospital Center, Athens, Greece
| | - Alexandros Sikiotis
- 1st Clinic of Cardiology/Cardiac Electrophysiology and Pacing, Henry Dunant Hospital Center, Athens, Greece
| | - Alexios Antonopoulos
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - George Andrikopoulos
- 1st Clinic of Cardiology/Cardiac Electrophysiology and Pacing, Henry Dunant Hospital Center, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece
| | - Charalambos Vlachopoulos
- First Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Hippokration Hospital, Athens, Greece.
| |
Collapse
|
36
|
Javaid M, Haleem A, Singh RP, Suman R. 3D printing applications for healthcare research and development. GLOBAL HEALTH JOURNAL 2022. [DOI: 10.1016/j.glohj.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Wei HQ, Xue Y, Wu S, Fang X. Case report: Three-dimensional printing as an educational tool for optimal lead positioning to left bundle branch pacing. Front Cardiovasc Med 2022; 9:973480. [PMID: 36186972 PMCID: PMC9520357 DOI: 10.3389/fcvm.2022.973480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Left bundle branch pacing (LBBP) has been widely adopted as a physiological pacing approach. However, LBBP fails to achieve in some cases because it is difficult to maintain the orientation of the lead tip perpendicular to the interventricular septum (IVS). Three-dimensional (3D) printing technology has emerged as a promising tool for modeling and teaching cardiovascular interventions. Seeking confirmation of optimal lead placement relative to the IVS, we used 3D printing technology to generate a 3D printed heart from a selected patient with successful and proven LBBP. Our model successfully illustrated that the lead tip was perpendicular to the IVS. Application of the 3D technology has potential to help the early-operator understand the optimal lead placement relative to IVS and diminish the learning-curve.
Collapse
|
38
|
Mendez K, Kennedy DG, Wang DD, O’Neill B, Roche ET. Left Atrial Appendage Occlusion: Current Stroke Prevention Strategies and a Shift Toward Data-Driven, Patient-Specific Approaches. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2022; 1:100405. [PMID: 39131471 PMCID: PMC11308563 DOI: 10.1016/j.jscai.2022.100405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 08/13/2024]
Abstract
The left atrial appendage (LAA) is a complex structure with unknown physiologic function protruding from the main body of the left atrium. In patients with atrial fibrillation, the left atrium does not contract effectively. Insufficient atrial and LAA contractility predisposes the LAA morphology to hemostasis and thrombus formation, leading to an increased risk of cardioembolic events. Oral anticoagulation therapies are the mainstay of stroke prevention options for patients; however, not all patients are candidates for long-term oral anticoagulation. Percutaneous occlusion devices are an attractive alternative to long-term anticoagulation therapy, although they are not without limitations, such as peri-implant leakage and device-related thrombosis. Although efforts have been made to reduce these risks, significant interpatient heterogeneity inevitably yields some degree of device-anatomy mismatch that is difficult to resolve using current devices and can ultimately lead to insufficient occlusion and poor patient outcomes. In this state-of-the-art review, we evaluated the anatomy of the LAA as well as the current pathophysiologic understanding and stroke prevention strategies used in the management of the risk of stroke associated with atrial fibrillation. We highlighted recent advances in computed tomography imaging, preprocedural planning, computational modeling, and novel additive manufacturing techniques, which represent the tools needed for a paradigm shift toward patient-centric LAA occlusion. Together, we envisage that these techniques will facilitate a pipeline from the imaging of patient anatomy to patient-specific computational and bench-top models that enable customized, data-driven approaches for LAA occlusion that are engineered specifically to meet each patient's unique needs.
Collapse
Affiliation(s)
- Keegan Mendez
- Harvard/MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Darragh G. Kennedy
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Biomedical Engineering, Columbia University, New York, New York
| | | | | | - Ellen T. Roche
- Harvard/MIT Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
39
|
Computational AI models in VAT photopolymerization: a review, current trends, open issues, and future opportunities. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
40
|
3D-Printing to Plan Complex Transcatheter Paravalvular Leaks Closure. J Clin Med 2022; 11:jcm11164758. [PMID: 36012997 PMCID: PMC9410469 DOI: 10.3390/jcm11164758] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Percutaneous closure of paravalvular leak (PVL) has emerged as an alternative to surgical management in selected cases. Achieving complete PVL occlusion, while respecting prosthesis function remains challenging. A multimodal imaging analysis of PVL morphology before and during the procedure is mandatory to select an appropriate device. We aim to explore the additional value of 3D printing in predicting device related adverse events including mechanical valve leaflet blockade, risk of device embolization and residual shunting. Methods: From the FFPP registries (NCT05089136 and NCT05117359), we included 11 transcatheter PVL closure procedures from three centers for which 3D printed models were produced. Cardiac CT was used for segmentation for 3D printed models (3D-heartmodeling, Caissargues, France). Technology used a laser to fuse very fine powders (TPU Thermoplastic polyurethane) into a final part-laser sintering technology (SLS) with an adapted elasticity. A simulation on 3D printed model was performed using a set of occluders. Results: PVLs were located around aortic prostheses in six cases, mitral prostheses in four cases and tricuspid ring in one case. The device chosen during the simulation on the 3D printed model matched the one implanted in eight cases. In the three other cases, a similar device type was chosen during the procedures but with a different size. A risk of prosthesis leaflet blockade was identified on 3D printed models in four cases. During the procedure, the occluder was removed before release in one case. In another case the device was successfully repositioned and released. In two patients, leaflet impingement was observed post-operatively and surgical device removal had to be performed. Conclusion: In a case-series of complex transcatheter PVL closure procedures, hands-on simulation testing on 3D printed models proved its usefulness to plan and facilitate these challenging procedures.
Collapse
|
41
|
Ciobotaru V, Tadros VX, Martin CA, Hascoet S. Complex transcatheter left atrial appendage closure using a tailored trans-jugular approach simulated by 3D printing: a case report. Eur Heart J Case Rep 2022; 6:ytac304. [PMID: 35965604 PMCID: PMC9366637 DOI: 10.1093/ehjcr/ytac304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
Abstract
Background Transcatheter left atrial appendage (LAA) closure (LAAc) is less feasible in patients with unusual LAA anatomy. Case summary A 65-year-old woman with persistent atrial fibrillation was referred for LAAc. Transesophageal echocardiography (TEE) revealed spontaneous contrast in the LAA without formation of a thrombus; the LAA shape was tortuous and difficult to assess. A first LAAc procedure was unsuccessful given the unsuitable sheath position. Therefore, a soft three-dimensional (3D) model printing was performed by laser sintering and revealed excessive sheath kinking with an inferior approach, but successful deployment would be feasible using a superior approach. Successful trans-jugular implantation of a Watchman FLX 31 device in stable position without residual leakage was achieved during the subsequent procedure. At 3-month follow-up, and after cessation of oral anticoagulation, the patient’s symptoms improved. Imaging demonstrated complete LAA occlusion and correct placement of the device along the LAA superior axis. Discussion This is the first-reported clinical case of a complex transcatheter LAAc through a trans-jugular approach. Simulating the patient’s anatomy with a laser sintering 3D-printed model showed why the transfemoral approach failed, validated the trans-jugular procedure, enabled selection of the simple curve access sheath that had the most direct trajectory towards the LAA, confirmed that transseptal puncture was possible, allowed determination of the angle of puncture, enabled selection of the most appropriate LAA device and had a very low cost compared with planning software or other printing methods.
Collapse
Affiliation(s)
- Vlad Ciobotaru
- Structural and Valvular Unit, Hôpital Privé les Franciscaines , 3 rue Jean Bouin, 30000 Nîmes , France
- Inserm UMR 999, Hôpital Marie Lannelongue, Faculté de Médecine, Université Paris Saclay , 92296 Chatenay-Malabry , France
| | - Victor-Xavier Tadros
- Structural and Valvular Unit, Hôpital Privé les Franciscaines , 3 rue Jean Bouin, 30000 Nîmes , France
| | - Claire A Martin
- Division of Cardiac Electrophysiology, Royal Papworth Hospital NHS Foundation Trust , Cambridge CB2 0AY , UK
| | - Sebastien Hascoet
- Inserm UMR 999, Hôpital Marie Lannelongue, Faculté de Médecine, Université Paris Saclay , 92296 Chatenay-Malabry , France
- Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph , 92350 Le Plessis-Robinson , France
| |
Collapse
|
42
|
Mao Y, Liu Y, Ma Y, Jin P, Li L, Yang J. Mitral Valve-in-Valve Implant of a Balloon-Expandable Valve Guided by 3-Dimensional Printing. Front Cardiovasc Med 2022; 9:894160. [PMID: 35711355 PMCID: PMC9195497 DOI: 10.3389/fcvm.2022.894160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022] Open
Abstract
Background Our goal was to explore the role of 3-dimensional (3D) printing in facilitating the outcome of a mitral valve-in-valve (V-in-V) implant of a balloon-expandable valve. Methods From November 2020 to April 2021, 6 patients with degenerated mitral valves were treated by a transcatheter mitral V-in-V implant of a balloon-expandable valve. 3D printed mitral valve pre- and post-procedure models were prepared to facilitate the process by making individualized plans and evaluating the outcomes. Results Each of the 6 patients was successfully implanted with a balloon-expandable valve. From post-procedural images and the 3D printed models, we could clearly observe the valve at the ideal position, with the proper shape and no regurgitation. 3D printed mitral valve models contributed to precise decisions, the avoidance of complications, and the valuation of outcomes. Conclusions 3D printing plays an important role in guiding the transcatheter mitral V-in-V implant of a balloon-expandable valve. Clinical Trial Registration ClinicalTrials.gov Protocol Registration System (NCT02917980).
Collapse
Affiliation(s)
| | | | | | | | | | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
43
|
Rizzi S, Ragazzini S, Pesce M. Engineering Efforts to Refine Compatibility and Duration of Aortic Valve Replacements: An Overview of Previous Expectations and New Promises. Front Cardiovasc Med 2022; 9:863136. [PMID: 35509271 PMCID: PMC9058060 DOI: 10.3389/fcvm.2022.863136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2023] Open
Abstract
The absence of pharmacological treatments to reduce or retard the progression of cardiac valve diseases makes replacement with artificial prostheses (mechanical or bio-prosthetic) essential. Given the increasing incidence of cardiac valve pathologies, there is always a more stringent need for valve replacements that offer enhanced performance and durability. Unfortunately, surgical valve replacement with mechanical or biological substitutes still leads to disadvantages over time. In fact, mechanical valves require a lifetime anticoagulation therapy that leads to a rise in thromboembolic complications, while biological valves are still manufactured with non-living tissue, consisting of aldehyde-treated xenograft material (e.g., bovine pericardium) whose integration into the host fails in the mid- to long-term due to unresolved issues regarding immune-compatibility. While various solutions to these shortcomings are currently under scrutiny, the possibility to implant fully biologically compatible valve replacements remains elusive, at least for large-scale deployment. In this regard, the failure in translation of most of the designed tissue engineered heart valves (TEHVs) to a viable clinical solution has played a major role. In this review, we present a comprehensive overview of the TEHVs developed until now, and critically analyze their strengths and limitations emerging from basic research and clinical trials. Starting from these aspects, we will also discuss strategies currently under investigation to produce valve replacements endowed with a true ability to self-repair, remodel and regenerate. We will discuss these new developments not only considering the scientific/technical framework inherent to the design of novel valve prostheses, but also economical and regulatory aspects, which may be crucial for the success of these novel designs.
Collapse
Affiliation(s)
- Stefano Rizzi
- Tissue Engineering Unit, Centro Cardiologico Monzino, Istituto di ricovero e cura a carattere scientifico (IRCCS), Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
- Stefano Rizzi
| | - Sara Ragazzini
- Tissue Engineering Unit, Centro Cardiologico Monzino, Istituto di ricovero e cura a carattere scientifico (IRCCS), Milan, Italy
| | - Maurizio Pesce
- Tissue Engineering Unit, Centro Cardiologico Monzino, Istituto di ricovero e cura a carattere scientifico (IRCCS), Milan, Italy
- *Correspondence: Maurizio Pesce
| |
Collapse
|
44
|
Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14:765-793. [PMID: 35582107 PMCID: PMC9048537 DOI: 10.4251/wjgo.v14.i4.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths. Currently, treatment selection is based on the stage of the disease. Emerging fields such as three-dimensional (3D) printing, 3D bioprinting, artificial intelligence (AI), and machine learning (ML) could lead to evidence-based, individualized management of HCC. In this review, we comprehensively report the current applications of 3D printing, 3D bioprinting, and AI/ML-based models in HCC management; we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them, and finally, we discuss the opportunities that arise from these applications. Notably, regarding 3D printing and bioprinting-related challenges, we elaborate on cost and cost-effectiveness, cell sourcing, cell viability, safety, accessibility, regulation, and legal and ethical concerns. Similarly, regarding AI/ML-related challenges, we elaborate on intellectual property, liability, intrinsic biases, data protection, cybersecurity, ethical challenges, and transparency. Our findings show that AI and 3D printing applications in HCC management and healthcare, in general, are steadily expanding; thus, these technologies will be integrated into the clinical setting sooner or later. Therefore, we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
45
|
Cresti A, Camara O. Left Atrial Thrombus-Are All Atria and Appendages Equal? Interv Cardiol Clin 2022; 11:121-134. [PMID: 35361457 DOI: 10.1016/j.iccl.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although the left atrial appendage (LAA) seems useless, it has several critical functions that are not fully known yet, such as the causes for being the main origin of cardioembolic stroke. Difficulties arise due to the extreme range of LAA morphologic variability, making the definition of normality challenging and hampering the stratification of thrombotic risk. Furthermore, obtaining quantitative metrics of its anatomy and function from patient data is not straightforward. A multimodality imaging approach, using advanced computational tools for their analysis, allows a complete characterization of the LAA to individualize medical decisions related to left atrial thrombosis patients.
Collapse
Affiliation(s)
- Alberto Cresti
- Cardiology Department, Misericordia Hospital, Azienda Sanitaria Toscana SudEst, Via Senese, Grosseto 58100, Italy
| | - Oscar Camara
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Tànger 122, Barcelona 08018, Spain.
| |
Collapse
|
46
|
Devgun J, De Potter T, Fabbricatore D, Wang DD. Pre-cath Laboratory Planning for Left Atrial Appendage Occlusion - Optional or Essential? Interv Cardiol Clin 2022; 11:143-152. [PMID: 35361459 DOI: 10.1016/j.iccl.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the wake of rapid advancement in cardiovascular procedural technologies, physician-led preprocedural planning utilizing multi-modality imaging training is increasingly recognized as invaluable for procedural accuracy. Left atrial appendage occlusion (LAAO) is one such procedure in which complications such as device leak, cardiac injury, and device embolization can be decreased substantially with incorporation of physician driven imaging and digital tools. We discuss the benefits of cardiac CT and 3D printing in preprocedural planning for the Heart Team, as well as novel applications by physicians of intraprocedural 3D angiography and dynamic fusion imaging. Furthermore, incorporation of computational modeling and artificial intelligence (AI) may yield promise. For optimal patient-centric procedural success, we advocate for standardized preprocedural imaging planning by physicians within the Heart Team as an essential part of LAAO.
Collapse
Affiliation(s)
- Jasneet Devgun
- Division of Cardiology, Henry Ford Health System, 2799 West Grand Boulevard, Clara Ford Pavilion, Detroit, MI 48202, USA
| | - Tom De Potter
- Cardiovascular Center, Onze-Lieve-Vrouwziekenhuis Hospital, Moorselbaan 164, Aalst 9300, Belgium
| | - Davide Fabbricatore
- Cardiovascular Center, Onze-Lieve-Vrouwziekenhuis Hospital, Moorselbaan 164, Aalst 9300, Belgium
| | - Dee Dee Wang
- Division of Cardiology, Henry Ford Health System, 2799 West Grand Boulevard, Clara Ford Pavilion, Detroit, MI 48202, USA.
| |
Collapse
|
47
|
Carrabba N, Buonamici F, Furferi R, Carfagni M, Vannini M, Valenti R, Cerillo AG, Marchionni N, Stefàno P. Case Report: Three-Dimensional Printing Model for Surgical Planning of Left Ventricular Aneurysm: Evolution Toward Tailoring Surgery. Front Cardiovasc Med 2022; 9:852682. [PMID: 35402549 PMCID: PMC8990127 DOI: 10.3389/fcvm.2022.852682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
A 59-year-old woman was admitted to the emergency department for heart failure (HF), New York Heart Association (NYHA) IV, showing an anterior, evolved myocardial infarction (MI) with a wide apical left ventricular aneurysm (LVA), ejection fraction (EF) 24%, and global longitudinal strain (GLS) −5. 5% by echo. Cardiac magnetic resonance imaging (MRI) confirmed an apical LVA without thrombus, EF 20%, and a transmural delayed enhancement in the myocardium wall. Coronarography showed a three-vessel disease with occluded proximal left anterior descending (LAD) and proximal right coronary artery (RCA). Based on the cardiac CT scan, we decided to generate a three-dimensional (3D) print model of the heart, for better prediction of residual LV volumes. After LVA surgery plus complete functional revascularization, an optimal agreement was found between predicted and surgical residual LV end-diastolic (24.7 vs. 31.8 ml/m2) and end-systolic (54.1 vs. 69.4 ml/m2) volumes, with an improvement of NYHA class, from IV to I. The patient was discharged uneventfully and at 6- and 12-month follow-up, the NYHA class, and LV volumes were found unchanged. This is a second report describing the use of the 3D print model for the preoperative planning of surgical management of LVA; the first report was described by Jacobs et al. among three patients, one with a malignant tumor and the remaining two patients with LVA. This article focused on the use of the 3D print model to optimize surgical planning and individualize treatment of LVA associated with complete functional revascularization, leading to complete recovery of LV function with a favorable outcome.
Collapse
Affiliation(s)
- Nazario Carrabba
- Cardiovascular and Thoracic Department of Careggi Hospital, Florence, Italy
- *Correspondence: Nazario Carrabba ;
| | - Francesco Buonamici
- Department of Industrial Engineering of Florence, University of Florence, Florence, Italy
| | - Rocco Furferi
- Department of Industrial Engineering of Florence, University of Florence, Florence, Italy
| | - Monica Carfagni
- Department of Industrial Engineering of Florence, University of Florence, Florence, Italy
| | - Matteo Vannini
- Cardiovascular and Thoracic Department of Careggi Hospital, Florence, Italy
| | - Renato Valenti
- Cardiovascular and Thoracic Department of Careggi Hospital, Florence, Italy
| | | | - Niccolò Marchionni
- Cardiovascular and Thoracic Department of Careggi Hospital, Florence, Italy
| | - Pierluigi Stefàno
- Cardiovascular and Thoracic Department of Careggi Hospital, Florence, Italy
| |
Collapse
|
48
|
Shou Y, Johnson SC, Quek YJ, Li X, Tay A. Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system. Mater Today Bio 2022; 14:100269. [PMID: 35514433 PMCID: PMC9062348 DOI: 10.1016/j.mtbio.2022.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The lymph node (LN) is a vital organ of the lymphatic and immune system that enables timely detection, response, and clearance of harmful substances from the body. Each LN comprises of distinct substructures, which host a plethora of immune cell types working in tandem to coordinate complex innate and adaptive immune responses. An improved understanding of LN biology could facilitate treatment in LN-associated pathologies and immunotherapeutic interventions, yet at present, animal models, which often have poor physiological relevance, are the most popular experimental platforms. Emerging biomaterial engineering offers powerful alternatives, with the potential to circumvent limitations of animal models, for in-depth characterization and engineering of the lymphatic and adaptive immune system. In addition, mathematical and computational approaches, particularly in the current age of big data research, are reliable tools to verify and complement biomaterial works. In this review, we first discuss the importance of lymph node in immunity protection followed by recent advances using biomaterials to create in vitro/vivo LN-mimicking models to recreate the lymphoid tissue microstructure and microenvironment, as well as to describe the related immuno-functionality for biological investigation. We also explore the great potential of mathematical and computational models to serve as in silico supports. Furthermore, we suggest how both in vitro/vivo and in silico approaches can be integrated to strengthen basic patho-biological research, translational drug screening and clinical personalized therapies. We hope that this review will promote synergistic collaborations to accelerate progress of LN-mimicking systems to enhance understanding of immuno-complexity.
Collapse
Key Words
- ABM, agent-based model
- APC, antigen-presenting cell
- BV, blood vessel
- Biomaterials
- CPM, Cellular Potts model
- Computational models
- DC, dendritic cell
- ECM, extracellular matrix
- FDC, follicular dendritic cell
- FRC, fibroblastic reticular cell
- Immunotherapy
- LEC, lymphatic endothelial cell
- LN, lymph node
- LV, lymphatic vessel
- Lymph node
- Lymphatic system
- ODE, ordinary differential equation
- PDE, partial differential equation
- PDMS, polydimethylsiloxane
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Sarah C. Johnson
- Department of Bioengineering, Stanford University, CA, 94305, USA
- Department of Bioengineering, Imperial College London, South Kensington, SW72AZ, UK
| | - Ying Jie Quek
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| |
Collapse
|
49
|
Avesani M, Kang SL, Jalal Z, Thambo JB, Iriart X. Renaissance of Cardiac Imaging to Assist Percutaneous Interventions in Congenital Heart Diseases:The Role of Three-Dimensional Echocardiography and Multimodality Imaging. Front Pediatr 2022; 10:894472. [PMID: 35664875 PMCID: PMC9160663 DOI: 10.3389/fped.2022.894472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/12/2022] [Indexed: 11/20/2022] Open
Abstract
Percutaneous interventions have completely refashioned the management of children with congenital heart diseases (CHD) and the use of non-invasive imaging has become the gold standard to plan and guide these procedures in the modern era. We are now facing a dual challenge to improve the standard of care in low-risk patients, and to shift our strategies from the classic open chest surgery to imaging-guided percutaneous interventions in high-risk patients. Such rapid evolution of ultrasound technologies over the last 20 years have permitted the integration of transthoracic, transesophageal and intracardiac echocardiography into the interventional workflow to improve image guidance and reduce radiation burden from fluoroscopy and angiography. Specifically, miniaturization of transesophageal probe and advances in three-dimensional (3D) imaging techniques have enabled real-time 3D image guidance during complex interventional procedure, In addition, multimodality and fusion imaging techniques harness the strengths of different modalities to enhance understanding of anatomical and spatial relationship between different structures, improving communication and coordination between interventionalists and imaging specialists. In this review, we aim to provide an overview of 3D imaging modalities and multimodal fusion in procedural planning and live guidance of percutaneous interventions. At the present times, 3D imaging can no longer be considered a luxury but a routine clinical tool to improve procedural success and patient outcomes.
Collapse
Affiliation(s)
- Martina Avesani
- Department of Pediatric and Congenital Cardiology, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France
| | - Sok-Leng Kang
- Department of Pediatric Cardiology, Alder Hey Children's Hospital, Liverpool, United Kingdom
| | - Zakaria Jalal
- Department of Pediatric and Congenital Cardiology, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France.,Institut Hospitalo-Universitaire (IHU) Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux University Foundation, Pessac, France
| | - Jean-Benoit Thambo
- Department of Pediatric and Congenital Cardiology, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France.,Institut Hospitalo-Universitaire (IHU) Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux University Foundation, Pessac, France
| | - Xavier Iriart
- Department of Pediatric and Congenital Cardiology, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France.,Institut Hospitalo-Universitaire (IHU) Liryc, Electrophysiology and Heart Modeling Institute, Bordeaux University Foundation, Pessac, France
| |
Collapse
|
50
|
Sadeghi AH, Ooms JFW, Van Mieghem NM, Mahtab EAF, Bogers AJJC. The digital heart-lung unit: applications of exponential technology. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2021; 2:713-720. [PMID: 36713110 PMCID: PMC9707880 DOI: 10.1093/ehjdh/ztab069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/14/2021] [Accepted: 07/26/2021] [Indexed: 06/18/2023]
Abstract
Exponential technologies such as virtual reality (VR), computational modelling, and additive manufacturing have emerged in the field of cardiology and cardiothoracic surgery. An increasing number of publications that evaluate the clinical role of these technologies are becoming available. Moreover, there is an increase in the number of hospitals and departments that have implemented digital and exponential solutions in clinical workflow. In our centre, we have adopted various exponential technologies in order to improve clinical pre-procedural workflow, patient care, and training and education. In order to provide our view and approach on the implementation of these technologies, in this article, we provide an overview of the currently applied modalities including immersive VR, three-dimensional (3D) computational modelling, VR-based simulations, and additive manufacturing (3D printing). Moreover, we present the potential of these applications in cardiovascular and cardiothoracic medicine, and additionally, we will provide key facilitators, challenges, and recommendations to adopting these technologies in clinical practice.
Collapse
Affiliation(s)
- Amir H Sadeghi
- Department of Cardiothoracic Surgery, Thoraxcenter, Erasmus University Medical Center, Room Rg-635, PO Box 2040, 3015 GD Rotterdam, The Netherlands
| | - Joris F W Ooms
- Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Center, Room Rg-635, PO Box 2040, 3015 GD Rotterdam, The Netherlands
| | - Nicolas M Van Mieghem
- Department of Interventional Cardiology, Thoraxcenter, Erasmus University Medical Center, Room Rg-635, PO Box 2040, 3015 GD Rotterdam, The Netherlands
| | - Edris A F Mahtab
- Department of Cardiothoracic Surgery, Thoraxcenter, Erasmus University Medical Center, Room Rg-635, PO Box 2040, 3015 GD Rotterdam, The Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Thoraxcenter, Erasmus University Medical Center, Room Rg-635, PO Box 2040, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|