1
|
Gaspar TB, Jesus TT, Azevedo MT, Macedo S, Soares MA, Martins RS, Leite R, Rodrigues L, Rodrigues DF, Cardoso L, Borges I, Canberk S, Gärtner F, Miranda-Alves L, Lopes JM, Soares P, Vinagre J. Generation of an Obese Diabetic Mouse Model upon Conditional Atrx Disruption. Cancers (Basel) 2023; 15:cancers15113018. [PMID: 37296979 DOI: 10.3390/cancers15113018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Atrx loss was recently ascertained as insufficient to drive pancreatic neuroendocrine tumour (PanNET) formation in mice islets. We have identified a preponderant role of Atrx in the endocrine dysfunction in a Rip-Cre;AtrxKO genetically engineered mouse model (GEMM). To validate the impact of a different Cre-driver line, we used similar methodologies and characterised the Pdx1-Cre;AtrxKO (P.AtrxKO) GEMM to search for PanNET formation and endocrine fitness disruption for a period of up to 24 months. Male and female mice presented different phenotypes. Compared to P.AtrxWT, P.AtrxHOM males were heavier during the entire study period, hyperglycaemic between 3 and 12 mo., and glucose intolerant only from 6 mo.; in contrast, P.AtrxHOM females started exhibiting increased weight gains later (after 6 mo.), but diabetes or glucose intolerance was detected by 3 mo. Overall, all studied mice were overweight or obese from early ages, which challenged the histopathological evaluation of the pancreas and liver, especially after 12 mo. Noteworthily, losing Atrx predisposed mice to an increase in intrapancreatic fatty infiltration (FI), peripancreatic fat deposition, and macrovesicular steatosis. As expected, no animal developed PanNETs. An obese diabetic GEMM of disrupted Atrx is presented as potentially useful for metabolic studies and as a putative candidate for inserting additional tumourigenic genetic events.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Tito Teles Jesus
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Maria Teresa Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Sofia Macedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Mariana Alves Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rui Sousa Martins
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Sciences of the University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Rúben Leite
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- School of Health (ESS), Polytechnic Institute of Porto (IPP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Lia Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Daniela Ferreira Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular and Cell Biology (IBMC), University of Porto, 4200-135 Porto, Portugal
| | - Luís Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Inês Borges
- Centro de Diagnóstico Veterinário (Cedivet), 4200-071 Porto, Portugal
| | - Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Manuel Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Zhao Z, Cai Z, Jiang T, Han J, Zhang B. Histone Chaperones and Digestive Cancer: A Review of the Literature. Cancers (Basel) 2022; 14:cancers14225584. [PMID: 36428674 PMCID: PMC9688693 DOI: 10.3390/cancers14225584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The global burden of digestive cancer is expected to increase. Therefore, crucial for the prognosis of patients with these tumors is to identify early diagnostic markers or novel therapeutic targets. There is accumulating evidence connecting histone chaperones to the pathogenesis of digestive cancer. Histone chaperones are now broadly defined as a class of proteins that bind histones and regulate nucleosome assembly. Recent studies have demonstrated that multiple histone chaperones are aberrantly expressed and have distinct roles in digestive cancers. OBJECTIVE The purpose of this review is to present the current evidence regarding the role of histone chaperones in digestive cancer, particularly their mechanism in the development and progression of esophageal, gastric, liver, pancreatic, and colorectal cancers. In addition, the prognostic significance of particular histone chaperones in patients with digestive cancer is discussed. METHODS According to PRISMA guidelines, we searched the PubMed, Embase, and MEDLINE databases to identify studies on histone chaperones and digestive cancer from inception until June 2022. RESULTS A total of 104 studies involving 21 histone chaperones were retrieved. CONCLUSIONS This review confirms the roles and mechanisms of selected histone chaperones in digestive cancer and suggests their significance as potential prognostic biomarkers and therapeutic targets. However, due to their non-specificity, more research on histone chaperones should be conducted in the future to elucidate novel strategies of histone chaperones for prognosis and treatment of digestive cancer.
Collapse
Affiliation(s)
- Zhou Zhao
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaolun Cai
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianxiang Jiang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Gastric Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: ; Fax: +86-28-854-228-72
| |
Collapse
|
3
|
Nabeta R, Katselis GS, Chumala P, Dickinson R, Fernandez NJ, Meachem MD. Identification of potential plasma protein biomarkers for feline pancreatic carcinoma by liquid chromatography tandem mass spectrometry. Vet Comp Oncol 2022; 20:720-731. [PMID: 35514180 DOI: 10.1111/vco.12826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
In both humans and cats, pancreatic carcinoma is an aggressive cancer with a grave prognosis. Proteomics techniques have successfully identified several blood-based biomarkers of human pancreatic neoplasia. Thus, this study aims to investigate whether similar biomarkers can be identified in the plasma of cats with FePAC by using liquid chromatography tandem mass spectrometry (LC-MS/MS). To facilitate evaluation of the low abundance plasma proteome, a human-based immunodepletion device (MARS-2) was first validated for use with feline plasma. Marked reduction and/or complete removal of albumin and immunoglobulins was confirmed by analysis of electrophoretograms and mass spectral data. Subsequently, plasma collected from 9 cats with pancreatic carcinoma (FePAC), 10 cats with symptomatic pancreatitis, and 10 healthy control cats was immunodepleted and subjected to LC-MS/MS. Thirty-seven plasma proteins were found to be differentially expressed (p < .05 in one-way ANOVA, FC >2 in fold change analysis). Among these proteins, ETS variant transcription factor 4 (p < .05) was overexpressed, while gelsolin (p < .01), tryptophan 2,3-dioxygenase (p < .05), serpin family F member 1 (p < .01), apolipoprotein A-IV (p < .01) and phosphatidylinositol-glycan-specific phospholipase D (p < .05) were down-regulated in cats with FePAC. Further studies on these potential biomarkers are needed to investigate their diagnostic value.
Collapse
Affiliation(s)
- Rina Nabeta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George S Katselis
- Department of Medicine, Division of the Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paulos Chumala
- Department of Medicine, Division of the Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ryan Dickinson
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Nicole J Fernandez
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Melissa D Meachem
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Sun C, Estrella JS, Whitley EM, Chau GP, Lozano G, Wasylishen AR. Mouse modeling provides insights into Daxx and Atrx tumor suppressive mechanisms in the endocrine pancreas. Dis Model Mech 2022; 15:276356. [PMID: 35976056 PMCID: PMC9438929 DOI: 10.1242/dmm.049552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Genome sequencing has revealed the importance of epigenetic regulators in tumorigenesis. The genes encoding the chromatin remodeling complex DAXX:ATRX are frequently mutated in pancreatic neuroendocrine tumors (PanNETs); however, the underlying mechanisms of how mutations contribute to tumorigenesis are only partially understood, in part because of the lack of relevant pre-clinical models. Here we used genetically engineered mouse models combined with environmental stress to evaluate the tumor suppressor functions of Daxx and Atrx in the mouse pancreas. Daxx or Atrx loss, alone or in combination with Men1 loss, do not drive nor accelerate pancreatic neuroendocrine tumorigenesis. Moreover, Daxx loss does not cooperate with environmental stresses (ionizing radiation or pancreatitis) or with the loss of other tumor suppressors (Pten or p53) to promote pancreatic neuroendocrine tumorigenesis. However, due to promiscuity of the Cre promoter used, hepatocellular carcinomas (HCC) and osteosarcomas were observed in some instances. Overall, our findings suggest that Daxx and Atrx are not robust tumor suppressors in the endocrine pancreas of mice and indicate the context of a human genome is essential for tumorigenesis.
Collapse
Affiliation(s)
- Chang Sun
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Genetics and Epigenetics Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jeannelyn S Estrella
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Elizabeth M Whitley
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gilda P Chau
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Genetics and Epigenetics Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Gaspar TB, Macedo S, Sá A, Soares MA, Rodrigues DF, Sousa M, Mendes N, Martins RS, Cardoso L, Borges I, Canberk S, Gärtner F, Miranda-Alves L, Sobrinho-Simões M, Lopes JM, Soares P, Vinagre J. Characterisation of an Atrx Conditional Knockout Mouse Model: Atrx Loss Causes Endocrine Dysfunction Rather Than Pancreatic Neuroendocrine Tumour. Cancers (Basel) 2022; 14:cancers14163865. [PMID: 36010860 PMCID: PMC9406167 DOI: 10.3390/cancers14163865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022] Open
Abstract
Simple Summary ATRX and DAXX mutations occur in 30–40% of pancreatic neuroendocrine tumours (PanNETs), and there are no reports in the literature of any genetically engineered mouse model (GEMM) evaluating the effect of Atrx disruption as a putative driver event on PanNET initiation. We created a novel GEMM with Atrx conditional disruption in β cells. We observed that this genetic alteration, per se, was not tumourigenic, but we reported novel roles of Atrx on endocrine function, which resulted in dysglycaemia and the exacerbation of inflammageing (increased pancreatic inflammation and hepatic steatosis). Abstract ATRX is a chromatin remodeller that maintains telomere homeostasis. Loss of ATRX is described in approximately 10% of pancreatic neuroendocrine tumours (PanNETs) and associated with poorer prognostic features. Here, we present a genetically engineered mouse model (GEMM) addressing the role of Atrx loss (AtrxKO) in pancreatic β cells, evaluating a large cohort of ageing mice (for up to 24 months (mo.)). Atrx loss did not cause PanNET formation but rather resulted in worsening of ageing-related pancreatic inflammation and endocrine dysfunction in the first year of life. Histopathological evaluation highlighted an exacerbated prevalence and intensity of pancreatic inflammation, ageing features, and hepatic steatosis in AtrxKO mice. Homozygous floxed mice presented hyperglycaemia, increased weights, and glucose intolerance after 6 months, but alterations in insulinaemia were not detected. Floxed individuals presented an improper growth of their pancreatic endocrine fraction that may explain such an endocrine imbalance. A pilot study of BRACO-19 administration to AtrxKO mice resulted in telomere instability, reinforcing the involvement of Atrx in the maintenance of β cell telomere homeostasis. Thereby, a non-obese dysglycaemic GEMM of disrupted Atrx is here presented as potentially useful for metabolic studies and putative candidate for inserting additional tumourigenic genetic events.
Collapse
Affiliation(s)
- Tiago Bordeira Gaspar
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Sofia Macedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Ana Sá
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
| | - Mariana Alves Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-912, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-905, Brazil
| | - Daniela Ferreira Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, 4200-135 Porto, Portugal
| | - Mafalda Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute for Molecular and Cell Biology (IBMC), University of Porto, 4200-135 Porto, Portugal
| | - Nuno Mendes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
| | - Rui Sousa Martins
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculty of Sciences of the University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Luís Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Inês Borges
- Centro de Diagnóstico Veterinário (Cedivet), 4200-071 Porto, Portugal
| | - Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-912, Brazil
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-905, Brazil
| | - Manuel Sobrinho-Simões
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - José Manuel Lopes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Department of Pathology, Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence: ; Tel.: +351-225-570-700
| |
Collapse
|
6
|
Sex disparities in DNA damage response pathways: Novel determinants in cancer formation and therapy. iScience 2022; 25:103875. [PMID: 35243237 PMCID: PMC8858993 DOI: 10.1016/j.isci.2022.103875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Yi Z, Wei S, Jin L, Jeyarajan S, Yang J, Gu Y, Kim HS, Schechter S, Lu S, Paulsen MT, Bedi K, Narayanan IV, Ljungman M, Crawford HC, Pasca di Magliano M, Ge K, Dou Y, Shi J. KDM6A Regulates Cell Plasticity and Pancreatic Cancer Progression by Noncanonical Activin Pathway. Cell Mol Gastroenterol Hepatol 2021; 13:643-667. [PMID: 34583087 PMCID: PMC8715196 DOI: 10.1016/j.jcmgh.2021.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Inactivating mutations of KDM6A, a histone demethylase, were frequently found in pancreatic ductal adenocarcinoma (PDAC). We investigated the role of KDM6A (lysine demethylase 6A) in PDAC development. METHODS We performed a pancreatic tissue microarray analysis of KDM6A protein levels. We used human PDAC cell lines for KDM6A knockout and knockdown experiments. We performed bromouridine sequencing analysis to elucidate the effects of KDM6A loss on global transcription. We performed studies with Ptf1aCre; LSL-KrasG12D; Trp53R172H/+; Kdm6afl/fl or fl/Y, Ptf1aCre; Kdm6afl/fl or fl/Y, and orthotopic xenograft mice to investigate the impacts of Kdm6a deficiency on pancreatic tumorigenesis and pancreatitis. RESULTS Loss of KDM6A was associated with metastasis in PDAC patients. Bromouridine sequencing analysis showed up-regulation of the epithelial-mesenchymal transition pathway in PDAC cells deficient in KDM6A. Loss of KDM6A promoted mesenchymal morphology, migration, and invasion in PDAC cells in vitro. Mechanistically, activin A and subsequent p38 activation likely mediated the role of KDM6A loss. Inhibiting either activin A or p38 reversed the effect. Pancreas-specific Kdm6a-knockout mice pancreata showed accelerated PDAC progression, developed a more aggressive undifferentiated type of PDAC, and increased metastases in the background of Kras and p53 mutations. Kdm6a-deficient pancreata in a pancreatitis model had a delayed recovery with increased PDAC precursor lesions compared with wild-type pancreata. CONCLUSIONS Loss of KDM6A accelerates PDAC progression and metastasis, most likely by a noncanonical p38-dependent activin A pathway. KDM6A also promotes pancreatic tissue recovery from pancreatitis. Activin A might be used as a therapeutic target for KDM6A-deficient PDACs.
Collapse
Affiliation(s)
- Zhujun Yi
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, Michigan,Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | | | - Lin Jin
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, Michigan,Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Sivakumar Jeyarajan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Jing Yang
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, Michigan
| | - Yumei Gu
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, Michigan
| | - Hong Sun Kim
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, Michigan
| | - Shula Schechter
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, Michigan
| | - Shuang Lu
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, Michigan,Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Michelle T. Paulsen
- Department of Radiation Oncology, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan
| | - Karan Bedi
- Department of Radiation Oncology, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan
| | - Ishwarya Venkata Narayanan
- Department of Radiation Oncology, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan
| | - Mats Ljungman
- Department of Radiation Oncology, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan
| | | | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, University of Michigan, Ann Arbor, Michigan,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan,Correspondence Address correspondence to: Jiaqi Shi, MD, PhD, Department of Pathology, University of Michigan, 2800 Plymouth Road, Building 35, Ann Arbor, Michigan 48109. fax: (734) 232-5360.
| |
Collapse
|
8
|
Wang W, Xie X, Zhou Z, Zhang H. Expression Analysis of MIST1 and EMT Markers in Primary Tumor Samples Points to MIST1 as a Biomarker of Cervical Cancer. Int J Gen Med 2021; 14:1293-1300. [PMID: 33883927 PMCID: PMC8055369 DOI: 10.2147/ijgm.s307367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 12/09/2022] Open
Abstract
Background Mist1 is a basic transcription factor, which plays an important role in the development of multiple organs, and may also regulate tumor progression by mediating epithelial-mesenchymal transformation. However, there is lack of research on its role of squamous cell carcinoma, especially in cervical squamous cell carcinoma. Methods Bioinformatic methods were used to analyze gene expression, correlation, and patient survival according to the TCGA database. Thirty pairs of cancer tissues and distal cancer tissues from cervical cancer patients who received radical surgery were enrolled in the study. The expression of Mist1 was analyzed using Western blot. Furthermore, the potential associations among Mist1 expression, EMT biomarkers and various clinicopathological characteristics were investigated. All statistical tests employed in this study were two-sided, and P values <0.05 were deemed statistically significant. Results Overall survival data were obtained from TCGA-CESC dataset, containing 3 control samples and 305 tumor samples. The expression of Mist1 was significantly higher in primary tumor than in normal tissues (P<0.001). The samples were divided into a low Mist1 expression group (n=144) and a high Mist1 expression group (n=146) according to the median expression level. Kaplan–Meier survival analysis revealed that high expression of Mist1 was significantly correlated with poor overall survival (P=0.032). We further explored the relationships between Mist1 and EMT. Among the 30 primary cervical cancer specimens investigated, the difference in Mist1 expressed statuses between cervical cancer tissues and distal noncancerous cervical tissues was significant (P=0.001). And the epithelial cell marker E-cadherin was downregulated in Mist1 overexpressed cervical cancer cells; however, the mesenchymal marker N-Cadherin and Twist was upregulated. Conclusion Our study found that Mist1 seemed to play the role of oncogene in cervical squamous cell carcinoma and could be a potential biomarker.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Zhangjian Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| |
Collapse
|
9
|
Azizi N, Toma J, Martin M, Khalid MF, Mousavi F, Win PW, Borrello MT, Steele N, Shi J, di Magliano MP, Pin CL. Loss of activating transcription factor 3 prevents KRAS-mediated pancreatic cancer. Oncogene 2021; 40:3118-3135. [PMID: 33864001 PMCID: PMC8173475 DOI: 10.1038/s41388-021-01771-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023]
Abstract
The unfolded protein response (UPR) is activated in pancreatic pathologies and suggested as a target for therapeutic intervention. In this study, we examined activating transcription factor 3 (ATF3), a mediator of the UPR that promotes acinar-to-ductal metaplasia (ADM) in response to pancreatic injury. Since ADM is an initial step in the progression to pancreatic ductal adenocarcinoma (PDAC), we hypothesized that ATF3 is required for initiation and progression of PDAC. We generated mice carrying a germline mutation of Atf3 (Atf3-/-) combined with acinar-specific induction of oncogenic KRAS (Ptf1acreERT/+KrasG12D/+). Atf3-/- mice with (termed APK) and without KRASG12D were exposed to cerulein-induced pancreatitis. In response to recurrent pancreatitis, Atf3-/- mice showed decreased ADM and enhanced regeneration based on morphological and biochemical analysis. Similarly, an absence of ATF3 reduced spontaneous pancreatic intraepithelial neoplasia (PanIN) formation and PDAC in Ptf1acreERT/+KrasG12D/+ mice. In response to injury, KRASG12D bypassed the requirement for ATF3 with a dramatic loss in acinar tissue and PanIN formation observed regardless of ATF3 status. Compared to Ptf1acreERT/+KrasG12D/+ mice, APK mice exhibited a significant decrease in pancreatic and total body weight, did not progress through to PDAC, and showed altered pancreatic fibrosis and immune cell infiltration. These findings suggest a complex, multifaceted role for ATF3 in pancreatic cancer pathology.
Collapse
Affiliation(s)
- Nawab Azizi
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jelena Toma
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- Department of Oncology, University of Western Ontario, London, ON, Canada
| | - Mickenzie Martin
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Muhammad Faran Khalid
- Children's Health Research Institute, London, ON, Canada
- Department of Paediatrics, University of Western Ontario, London, ON, Canada
| | - Fatemeh Mousavi
- Children's Health Research Institute, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Phyo Wei Win
- Children's Health Research Institute, London, ON, Canada
- Department of Paediatrics, University of Western Ontario, London, ON, Canada
| | - Maria Teresa Borrello
- Centre for Cancer Research Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France
| | - Nina Steele
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jiaqi Shi
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Christopher L Pin
- Children's Health Research Institute, London, ON, Canada.
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
- Department of Oncology, University of Western Ontario, London, ON, Canada.
- Department of Paediatrics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
10
|
Iwamoto K, Saito T, Takemoto Y, Ueno K, Yanagihara M, Furuya-Kondo T, Kurazumi H, Tanaka Y, Taura Y, Harada E, Hamano K. Autologous transplantation of multilayered fibroblast sheets prevents postoperative pancreatic fistula by regulating fibrosis and angiogenesis. Am J Transl Res 2021; 13:1257-1268. [PMID: 33841654 PMCID: PMC8014429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Postoperative pancreatic fistula (POPF) is a serious complication after gastrointestinal or pancreatic surgery. Despite intensive investigations, the occurrence has not significantly decreased in the past decades. The aims of this study were to clarify the pathophysiology of POPF and establish the preventive measures using multilayered fibroblast sheets. METHODS We developed a pancreatic fistula (PF) model of rat with transection of the splenic duct and surrounding pancreatic parenchyma. Multilayered fibroblast sheets prepared from tails were autologously transplanted to this model. The preventive effect was biochemically and histologically evaluated by measuring the ascitic levels of pancreatic enzymes and conducting immunohistochemistry and real-time polymerase chain reaction analyses of pancreatic tissue. Findings were compared to those obtained with acellular materials simply sealing the wound. RESULTS In the PF model, the ascitic levels of pancreatic enzymes were transiently up-regulated. Inflammation and necrosis were histologically observed in a wide range. Islets were damaged even in remote areas. Transplantation of multilayered fibroblast sheets dramatically reduced the ascitic leakage of enzymes, suppressed inflammation, and broadly preserved the islets. Compared with acellular materials, these sheets offered superior prevention of cellular activity through the spaciotemporal regulation of fibrosis and angiogenesis. Notably, the leakage hole appeared to have been plugged with the fibrotic matrix, which might have been the most crucial mechanism minimizing pancreatic damage. CONCLUSIONS The autologous transplantation of multilayered fibroblast sheets significantly prevented PF and protected the pancreas, underscoring the potential utility of this approach for POPF prevention.
Collapse
Affiliation(s)
- Keisuke Iwamoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Toshiro Saito
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Yoshihiro Takemoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Koji Ueno
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Masashi Yanagihara
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Tomoko Furuya-Kondo
- Department of Molecular Pathology, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Hiroshi Kurazumi
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Yuya Tanaka
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Yohei Taura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Eijiro Harada
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of MedicineYamaguchi, Japan
| |
Collapse
|
11
|
Ge Y, Wei F, Du G, Fei G, Li W, Li X, Chu J, Wei P. The association of sex-biased ATRX mutation in female gastric cancer patients with enhanced immunotherapy-related anticancer immunity. BMC Cancer 2021; 21:240. [PMID: 33678158 PMCID: PMC7938533 DOI: 10.1186/s12885-021-07978-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genetic alterations have been proven to be the promising biomarkers for ICI response. However, sex biases in genetic alterations have been often ignored in the field of immunotherapy, which might specially influence the anticancer immunity and immunotherapy efficacy in male or female patients. Here, we have systematically evaluated the effect of the sex biases in somatic mutation of gastric cancer (GC) patients on the anticancer immunity and clinical benefit to immunotherapy. METHODS Genomic and transcriptomic data of gastric cancer were downloaded from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). We also obtained the genomic and clinical data of a MSKCC ICI-treated cohort from cbioportal database. GC male and female-derived tumor somatic mutation profiles were compared by maftools R package. Single sample gene set enrichment analysis (ssGSEA) was conducted to calculate the score of the anticancer immunity indicators including IFN-γ signaling, cytolytic activity (CYT) and antigen presenting machinery (APM). RESULTS ATRX was found to mutate more frequently in female GC patients compared to male patients (FDR = 0.0108). Female GC patients with ATRX mutation manifested significantly more MSI-high subtypes, increased TMB and PDL1 expression as well as higher scores of IFN-γ signaling, CYT and APM. Gene set enrichment analysis (GSEA) has shown that ATRX mutation might enhance the immunogenicity and anticancer immunity through affecting DNA damage repair pathways. In the ICI-treated cohort from MSKCC, GC patients with ATRX mutation were associated with prolonged overall survival. When stratifying the entire ICI-treated cohort by sex, female patients with ATRX mutation obtained significantly better survival benefits than that of ATRX mutant male patients (Female patients, HR of ATRX MT vs WT = 0.636, 95%CI = 0.455-0.890, P = 0.023; Male patients, HR of ATRX MT vs WT = 0.929, 95%CI = 0.596-1.362, P = 0.712). CONCLUSIONS ATRX mutation might serve as a potential predictive biomarker for favorable clinical benefit to ICI in female GC patients. ATRX mutation could be applied in combination with other biomarkers of ICI response to better identify the female GC patients who will derive greater benefits from ICI therapy.
Collapse
Affiliation(s)
- You Ge
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Feiran Wei
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guoping Du
- Southeast University Hospital, Nanjing, China
| | - Gaoqiang Fei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Wei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Xiaoshan Li
- Department of Lung Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jinjin Chu
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
12
|
Stopa KB, Kusiak AA, Szopa MD, Ferdek PE, Jakubowska MA. Pancreatic Cancer and Its Microenvironment-Recent Advances and Current Controversies. Int J Mol Sci 2020; 21:E3218. [PMID: 32370075 PMCID: PMC7246785 DOI: 10.3390/ijms21093218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) causes annually well over 400,000 deaths world-wide and remains one of the major unresolved health problems. This exocrine pancreatic cancer originates from the mutated epithelial cells: acinar and ductal cells. However, the epithelia-derived cancer component forms only a relatively small fraction of the tumor mass. The majority of the tumor consists of acellular fibrous stroma and diverse populations of the non-neoplastic cancer-associated cells. Importantly, the tumor microenvironment is maintained by dynamic cell-cell and cell-matrix interactions. In this article, we aim to review the most common drivers of PDAC. Then we summarize the current knowledge on PDAC microenvironment, particularly in relation to pancreatic cancer therapy. The focus is placed on the acellular stroma as well as cell populations that inhabit the matrix. We also describe the altered metabolism of PDAC and characterize cellular signaling in this cancer.
Collapse
Affiliation(s)
- Kinga B. Stopa
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Agnieszka A. Kusiak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Mateusz D. Szopa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland; (A.A.K.); (M.D.S.)
| | - Monika A. Jakubowska
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Krakow, Poland;
| |
Collapse
|
13
|
Means AL. ATRX Links Chromatin Remodeling to Inflammation and Tumorigenesis in the Pancreas. Cell Mol Gastroenterol Hepatol 2018; 7:233-234. [PMID: 30539789 PMCID: PMC6282641 DOI: 10.1016/j.jcmgh.2018.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/10/2022]
Affiliation(s)
- Anna L. Means
- Correspondence Address correspondence to: Anna L. Means, PhD, Department of Surgery, Vanderbilt University Medical Center, D2300 Medical Center North, 1161 21st Avenue South, Nashville, Tennessee 37232-2730.
| |
Collapse
|