1
|
Xu Y, Wang Y, Song T, Li X, Zhou H, Chaibou OZ, Wang B, Li H. Immune-enhancing effect of Weizmannia coagulans BCG44 and its supernatant on cyclophosphamide-induced immunosuppressed mice and RAW264.7 cells via the modulation of the gut microbiota. Food Funct 2024; 15:10679-10697. [PMID: 39373874 DOI: 10.1039/d4fo02452d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
We established a model of cyclophosphamide (CTX)-induced immunosuppressed mice and RAW264.7 cells to assess the effectiveness of W. coagulans BCG44 and its supernatant in enhancing immune function and modulating the gut microbiota. W. coagulans BCG44 and its supernatant restored Th17/Treg balance and alleviated gut inflammation by elevating the expression of interleukin-10 (IL-10) and decreasing IL-6 and toll-like receptor 4 (TLR4). Meanwhile, W. coagulans BCG44 and its supernatant downregulated the levels of lipopolysaccharide and D-lactic acid while increasing the expression of tight junction proteins (ZO-1 and occludin) and goblet cells/crypts to ameliorate mucosal damage. W. coagulans BCG44 and its supernatant may restore the gut microbiota in the immunosuppressed mice by regulating keystone species (Lactobacillus and Lachnospiraceae). PICRUSt2 function prediction and BugBase analysis showed that W. coagulans BCG44 and its supernatant significantly down-regulated American trypanosomiasis and potentially_pathogenic. In addition, under normal versus inflamed culture conditions, stimulation of RAW246.7 cells with W. coagulans BCG44 supernatant activated immune response with increasing proliferation ability and the gene expression of IL-10 while decreasing TLR4. Metabolites in the W. coagulans BCG44 supernatant included arginine, tyrosine, solamargine, tryptophan, D-mannose, phenyllactic acid, and arachidonic acid. Collectively, these findings suggested that W. coagulans BCG44 and its supernatant possess potential immunomodulatory activity and modulate gut microbiota dysbiosis in the CTX-induced immunosuppressed mice.
Collapse
Affiliation(s)
- Yafang Xu
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Yi Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Tao Song
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaxia Li
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Haolin Zhou
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Oumarou Zafir Chaibou
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| | - Bing Wang
- Department of Immunology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Huajun Li
- Department of Pathogen Biology and Microecology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Sorensen L, Humenick A, Poon SSB, Han MN, Mahdavian NS, Rowe MC, Hamnett R, Gómez-de-Mariscal E, Neckel PH, Saito A, Mutunduwe K, Glennan C, Haase R, McQuade RM, Foong JPP, Brookes SJH, Kaltschmidt JA, Muñoz-Barrutia A, King SK, Veldhuis NA, Carbone SE, Poole DP, Rajasekhar P. Gut Analysis Toolbox - automating quantitative analysis of enteric neurons. J Cell Sci 2024; 137:jcs261950. [PMID: 39219476 DOI: 10.1242/jcs.261950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The enteric nervous system (ENS) consists of an extensive network of neurons and glial cells embedded within the wall of the gastrointestinal (GI) tract. Alterations in neuronal distribution and function are strongly associated with GI dysfunction. Current methods for assessing neuronal distribution suffer from undersampling, partly due to challenges associated with imaging and analyzing large tissue areas, and operator bias due to manual analysis. We present the Gut Analysis Toolbox (GAT), an image analysis tool designed for characterization of enteric neurons and their neurochemical coding using two-dimensional images of GI wholemount preparations. GAT is developed in Fiji, has a user-friendly interface, and offers rapid and accurate segmentation via custom deep learning (DL)-based cell segmentation models developed using StarDist, as well as a ganglia segmentation model in deepImageJ. We apply proximal neighbor-based spatial analysis to reveal differences in cellular distribution across gut regions using a public dataset. In summary, GAT provides an easy-to-use toolbox to streamline routine image analysis tasks in ENS research. GAT enhances throughput, allowing rapid unbiased analysis of larger tissue areas, multiple neuronal markers and numerous samples.
Collapse
Affiliation(s)
- Luke Sorensen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Adam Humenick
- Flinders Health and Medical Research Institute , College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Sabrina S B Poon
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Myat Noe Han
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Narges S Mahdavian
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Matthew C Rowe
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ryan Hamnett
- Wu Tsai Neurosciences Institute , Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis , University of Tübingen, Tübingen 72076, Germany
| | - Ayame Saito
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Keith Mutunduwe
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Christie Glennan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Robert Haase
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig , Universität Leipzig, Humboldtstraße 25, Leipzig 04105, Germany
| | - Rachel M McQuade
- Gut Barrier and Disease Laboratory, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, VIC 3021, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne, Melbourne, VIC 3021, Australia
| | - Jaime P P Foong
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Simon J H Brookes
- Flinders Health and Medical Research Institute , College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Julia A Kaltschmidt
- Wu Tsai Neurosciences Institute , Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arrate Muñoz-Barrutia
- Bioengineering Department, Universidad Carlos III de Madrid, ES 28911, Leganés, Spain
- Bioengineering Division, Instituto de Investigación Sanitaria Gregorio Marañon, ES 28007, Madrid, Spain
| | - Sebastian K King
- Department of Paediatric Surgery, The Royal Children's Hospital, Parkville, VIC 3052, Australia
- Surgical Research , Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Pradeep Rajasekhar
- Centre for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
3
|
Eisenberg JD, Bradley RP, Graham KD, Ceron RH, Lemke AM, Wilkins BJ, Naji A, Heuckeroth RO. Three-Dimensional Imaging of the Enteric Nervous System in Human Pediatric Colon Reveals New Features of Hirschsprung's Disease. Gastroenterology 2024; 167:547-559. [PMID: 38494035 PMCID: PMC11260536 DOI: 10.1053/j.gastro.2024.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND & AIMS Hirschsprung's disease is defined by the absence of the enteric nervous system (ENS) from the distal bowel. Primary treatment is "pull-through" surgery to remove bowel that lacks ENS, with reanastomosis of "normal" bowel near the anal verge. Problems after pull-through are common, and some may be due to retained hypoganglionic bowel (ie, low ENS density). Testing this hypothesis has been difficult because counting enteric neurons in tissue sections is unreliable, even for experts. Tissue clearing and 3-dimensional imaging provide better data about ENS structure than sectioning. METHODS Regions from 11 human colons and 1 ileal specimen resected during Hirschsprung's disease pull-through surgery were cleared, stained with antibodies to visualize the ENS, and imaged by confocal microscopy. Control distal colon from people with no known bowel problems were similarly cleared, stained, and imaged. RESULTS Quantitative analyses of human colon, ranging from 3 days to 60 years old, suggest age-dependent changes in the myenteric plexus area, ENS ganglion area, percentage of myenteric plexus occupied by ganglia, neurons/mm2, and neuron Feret's diameter. Neuron counting using 3-dimensional images was highly reproducible. High ENS density in neonatal colon allowed reliable neuron counts using 500-μm2 × 500-μm2 regions (36-fold smaller than in adults). Hirschsprung's samples varied 8-fold in proximal margin enteric neuron density and had diverse ENS architecture in resected bowel. CONCLUSIONS Tissue clearing and 3-dimensional imaging provide more reliable information about ENS structure than tissue sections. ENS structure changes during childhood. Three-dimensional ENS anatomy may provide new insight into human bowel motility disorders, including Hirschsprung's disease.
Collapse
Affiliation(s)
- Joshua D Eisenberg
- Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rebecca P Bradley
- Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Kahleb D Graham
- Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rachel H Ceron
- Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amanda M Lemke
- Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Benjamin J Wilkins
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert O Heuckeroth
- Abramson Research Center, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
4
|
McKay DM, Defaye M, Rajeev S, MacNaughton WK, Nasser Y, Sharkey KA. Neuroimmunophysiology of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2024; 326:G712-G725. [PMID: 38626403 PMCID: PMC11376980 DOI: 10.1152/ajpgi.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/18/2024]
Abstract
Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.
Collapse
Affiliation(s)
- Derek M McKay
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Suman S. Enteric Nervous System Alterations in Inflammatory Bowel Disease: Perspectives and Implications. GASTROINTESTINAL DISORDERS 2024; 6:368-379. [PMID: 38872954 PMCID: PMC11175598 DOI: 10.3390/gidisord6020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
The enteric nervous system (ENS), consisting of neurons and glial cells, is situated along the gastrointestinal (GI) tract's wall and plays a crucial role in coordinating digestive processes. Recent research suggests that the optimal functioning of the GI system relies on intricate connections between the ENS, the intestinal epithelium, the immune system, the intestinal microbiome, and the central nervous system (CNS). Inflammatory bowel disease (IBD) encompasses a group of chronic inflammatory disorders, such as Crohn's disease (CD) and ulcerative colitis (UC), characterized by recurring inflammation and damage to the GI tract. This review explores emerging research in the dynamic field of IBD and sheds light on the potential role of ENS alterations in both the etiology and management of IBD. Specifically, we delve into IBD-induced enteric glial cell (EGC) activation and its implications for persistent enteric gliosis, elucidating how this activation disrupts GI function through alterations in the gut-brain axis (GBA). Additionally, we examine IBD-associated ENS alterations, focusing on EGC senescence and the acquisition of the senescence-associated secretory phenotype (SASP). We highlight the pivotal role of these changes in persistent GI inflammation and the recurrence of IBD. Finally, we discuss potential therapeutic interventions involving senotherapeutic agents, providing insights into potential avenues for managing IBD by targeting ENS-related mechanisms. This approach might represent a potential alternative to managing IBD and advance treatment of this multifaceted disease.
Collapse
Affiliation(s)
- Shubhankar Suman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
6
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
7
|
Barth BB, Redington ER, Gautam N, Pelot NA, Grill WM. Calcium image analysis in the moving gut. Neurogastroenterol Motil 2023; 35:e14678. [PMID: 37736662 PMCID: PMC10999186 DOI: 10.1111/nmo.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The neural control of gastrointestinal muscle relies on circuit activity whose underlying motifs remain limited by small-sample calcium imaging recordings confounded by motion artifact, paralytics, and muscle dissections. We present a sequence of resources to register images from moving preparations and identify out-of-focus events in widefield fluorescent microscopy. METHODS Our algorithm uses piecewise rigid registration with pathfinding to correct movements associated with smooth muscle contractions. We developed methods to identify loss-of-focus events and to simulate calcium activity to evaluate registration. KEY RESULTS By combining our methods with principal component analysis, we found populations of neurons exhibit distinct activity patterns in response to distinct stimuli consistent with hypothesized roles. The image analysis pipeline makes deeper insights possible by capturing concurrently calcium dynamics from more neurons in larger fields of view. We provide access to the source code for our algorithms and make experimental and technical recommendations to increase data quality in calcium imaging experiments. CONCLUSIONS These methods make feasible large population, robust calcium imaging recordings and permit more sophisticated network analyses and insights into neural activity patterns in the gut.
Collapse
Affiliation(s)
- Bradley B. Barth
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Emily R. Redington
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
- Current employment Regeneron Pharmaceuticals, Inc. Contributions to this article were made as an employee of Duke University and the views expressed do not necessarily represent the views of Regeneron Pharmaceuticals Inc
| | - Nitisha Gautam
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Durham, NC 27708
| |
Collapse
|
8
|
Robinson BG, Oster BA, Robertson K, Kaltschmidt JA. Loss of ASD-related molecule Cntnap2 affects colonic motility in mice. Front Neurosci 2023; 17:1287057. [PMID: 38027494 PMCID: PMC10665486 DOI: 10.3389/fnins.2023.1287057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Gastrointestinal (GI) symptoms are highly prevalent among individuals with autism spectrum disorder (ASD), but the molecular link between ASD and GI dysfunction remains poorly understood. The enteric nervous system (ENS) is critical for normal GI motility and has been shown to be altered in mouse models of ASD and other neurological disorders. Contactin-associated protein-like 2 (Cntnap2) is an ASD-related synaptic cell-adhesion molecule important for sensory processing. In this study, we examine the role of Cntnap2 in GI motility by characterizing Cntnap2's expression in the ENS and assessing GI function in Cntnap2 mutant mice. We find Cntnap2 expression predominately in enteric sensory neurons. We further assess in vivo and ex vivo GI motility in Cntnap2 mutants and show altered transit time and colonic motility patterns. The overall organization of the ENS appears undisturbed. Our results suggest that Cntnap2 plays a role in GI function and may provide a molecular link between ASD and GI dysfunction.
Collapse
Affiliation(s)
- Beatriz G. Robinson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
- Neurosciences IDP Graduate Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Beau A. Oster
- Nevada ENDURE Program, University of Nevada, Reno, Reno, NV, United States
| | - Keiramarie Robertson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
- Neurosciences IDP Graduate Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Julia A. Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
9
|
Evans C, Howells K, Suzuki R, Brown AJH, Cox HM. Regional characterisation of TRPV1 and TRPA1 signalling in the mouse colon mucosa. Eur J Pharmacol 2023; 954:175897. [PMID: 37394028 PMCID: PMC10847397 DOI: 10.1016/j.ejphar.2023.175897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Capsaicin and allyl isothiocyanate (AITC) activate transient receptor potential (TRP) vanilloid-1 (TRPV1) and TRP ankyrin-1 (TRPA1), respectively. TRPV1 and TRPA1 expression have been identified in the gastrointestinal (GI) tract. GI mucosal functions remain largely undefined for TRPV1 and TRPA1 with side-dependence and regional differences in signalling unclear. Here we investigated TRPV1- and TRPA1-induced vectorial ion transport as changes in short-circuit current (ΔIsc), in defined segments of mouse colon mucosa (ascending, transverse and descending) under voltage-clamp conditions in Ussing chambers. Drugs were applied basolaterally (bl) or apically (ap). Capsaicin responses were biphasic, with primary secretory and secondary anti-secretory phases, observed with bl application only, which predominated in descending colon. AITC responses were monophasic and secretory, with ΔIsc dependent on colonic region (ascending vs. descending) and sidedness (bl vs. ap). Aprepitant (neurokinin-1 (NK1) antagonist, bl) and tetrodotoxin (Na+ channel blocker, bl) significantly inhibited capsaicin primary responses in descending colon, while GW627368 (EP4 receptor antagonist, bl) and piroxicam (cyclooxygenase inhibitor, bl) inhibited AITC responses in ascending and descending colonic mucosae. Antagonism of the calcitonin gene-related peptide (CGRP) receptor had no effect on mucosal TRPV1 signalling, while tetrodotoxin and antagonists of the 5-hydroxytryptamine-3 and 4 receptors, CGRP receptor, and EP1/2/3 receptors had no effect on mucosal TRPA1 signalling. Our data demonstrates the regional-specificity and side-dependence of colonic TRPV1 and TRPA1 signalling, with involvement of submucosal neurons and mediation by epithelial NK1 receptor activation for TRPV1, and endogenous prostaglandins and EP4 receptor activation for TRPA1 mucosal responses.
Collapse
Affiliation(s)
- Caryl Evans
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychology, Psychiatry and Neuroscience, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK.
| | - Kathryn Howells
- Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Rie Suzuki
- Heptares Therapeutics Ltd, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Alastair J H Brown
- Heptares Therapeutics Ltd, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Helen M Cox
- King's College London, Wolfson Centre for Age-Related Diseases, Institute of Psychology, Psychiatry and Neuroscience, Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
10
|
Robinson BG, Oster BA, Robertson K, Kaltschmidt JA. Loss of ASD-Related Molecule Cntnap2 Affects Colonic Motility in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537221. [PMID: 37131706 PMCID: PMC10153124 DOI: 10.1101/2023.04.17.537221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Gastrointestinal (GI) symptoms are highly prevalent among individuals with autism spectrum disorder (ASD), but the molecular link between ASD and GI dysfunction remains poorly understood. The enteric nervous system (ENS) is critical for normal GI motility and has been shown to be altered in mouse models of ASD and other neurological disorders. Contactin-associated protein-like 2 (Cntnap2) is an ASD-related synaptic cell-adhesion molecule important for sensory processing. In this study, we examine the role of Cntnap2 in GI motility by characterizing Cntnap2's expression in the ENS and assessing GI function in Cntnap2 mutant mice. We find Cntnap2 expression predominately in enteric sensory neurons. We further assess in-vivo and ex-vivo GI motility in Cntnap2 mutants and show altered transit time and colonic motility patterns. The overall organization of the ENS appears undisturbed. Our results suggest that Cntnap2 plays a role in GI function and may provide a molecular link between ASD and GI dysfunction.
Collapse
Affiliation(s)
- Beatriz G. Robinson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences IDP Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Beau A. Oster
- Nevada ENDURE Program, University of Nevada, Reno, Reno, NV 89557, USA
| | - Keiramarie Robertson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences IDP Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia A. Kaltschmidt
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Patyal P, Fil D, Wight PA. Plp1 in the enteric nervous system is preferentially expressed during early postnatal development in mouse as DM20, whose expression appears reliant on an intronic enhancer. Front Cell Neurosci 2023; 17:1175614. [PMID: 37293625 PMCID: PMC10244531 DOI: 10.3389/fncel.2023.1175614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Recently, the myelin proteolipid protein gene (Plp1) was shown to be expressed in the glia of the enteric nervous system (ENS) in mouse. However, beyond this, not much is known about its expression in the intestine. To address this matter, we investigated Plp1 expression at the mRNA and protein levels in the intestine of mice at different ages (postnatal days 2, 9, 21, and 88). In this study, we show that Plp1 expression preferentially occurs during early postnatal development, primarily as the DM20 isoform. Western blot analysis indicated that DM20 migrated according to its formula weight when isolated from the intestine. However, mobilities of both PLP and DM20 were faster than expected when procured from the brain. The 6.2hPLP(+)Z/FL transgene, which uses the first half of the human PLP1 gene to drive expression of a lacZ reporter gene, recapitulated the developmental pattern observed with the native gene in the intestine, indicating that it can be used as a proxy for Plp1 gene expression. As such, the relative levels of β-galactosidase (β-gal) activity emanating from the 6.2hPLP(+)Z/FL transgene suggest that Plp1 expression is highest in the duodenum, and decreases successively along the segments, toward the colon. Moreover, removal of the wmN1 enhancer region from the transgene (located within Plp1 intron 1) resulted in a dramatic reduction in both transgene mRNA levels and β-gal activity in the intestine, throughout development, suggesting that this region contains a regulatory element crucial for Plp1 expression. This is consistent with earlier studies in both the central and peripheral nervous systems, indicating that it may be a common (if not universal) means by which Plp1 gene expression is governed.
Collapse
|
12
|
Edwards BS, Stiglitz ES, Davis BM, Smith-Edwards KM. Abnormal enteric nervous system and motor activity in the ganglionic proximal bowel of Hirschsprung's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531750. [PMID: 36945585 PMCID: PMC10028932 DOI: 10.1101/2023.03.08.531750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Hirschsprung's disease (HSCR) is a congenital defect in which the enteric nervous system (ENS) does not develop in the distal bowel, requiring surgical removal of the portions of bowel without ENS ganglia ('aganglionic') and reattachment of the 'normal' proximal bowel with ENS ganglia. Unfortunately, many HSCR patients have persistent dysmotility (e.g., constipation, incontinence) and enterocolitis after surgery, suggesting that the remaining bowel is not normal despite having ENS ganglia. Anatomical and neurochemical alterations have been observed in the ENS-innervated proximal bowel from HSCR patients and mice, but no studies have recorded ENS activity to define the circuit mechanisms underlying post-surgical HSCR dysfunction. Here, we generated a HSCR mouse model with a genetically-encoded calcium indicator to map the ENS connectome in the proximal colon. We identified abnormal spontaneous and synaptic ENS activity in proximal colons from GCaMP-Ednrb -/- mice with HSCR that corresponded to motor dysfunction. Many HSCR-associated defects were also observed in GCaMP-Ednrb +/- mice, despite complete ENS innervation. Results suggest that functional abnormalities in the ENS-innervated bowel contribute to post-surgical bowel complications in HSCR patients, and HSCR-related mutations that do not cause aganglionosis may cause chronic colon dysfunction in patients without a HSCR diagnosis.
Collapse
|
13
|
Caillaud M, Le Dréan ME, De-Guilhem-de-Lataillade A, Le Berre-Scoul C, Montnach J, Nedellec S, Loussouarn G, Paillé V, Neunlist M, Boudin H. A functional network of highly pure enteric neurons in a dish. Front Neurosci 2023; 16:1062253. [PMID: 36685225 PMCID: PMC9853279 DOI: 10.3389/fnins.2022.1062253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023] Open
Abstract
The enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking. In this study, we developed a novel model of highly pure rat embryonic enteric neurons with dense and functional synaptic networks. The methodology is simple and relatively fast. We characterized enteric neurons using immunohistochemical, morphological, and electrophysiological approaches. In particular, we demonstrated the applicability of this culture model to multi-electrode array technology as a new approach for monitoring enteric neuronal network activity. This in vitro model of highly pure enteric neurons represents a valuable new tool for better understanding the mechanisms involved in the establishment and maintenance of enteric neuron synaptic connectivity and functional networks.
Collapse
Affiliation(s)
- Martial Caillaud
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France,*Correspondence: Martial Caillaud,
| | - Morgane E. Le Dréan
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | | | - Catherine Le Berre-Scoul
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Jérôme Montnach
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Steven Nedellec
- Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes, France
| | - Gildas Loussouarn
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Vincent Paillé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hélène Boudin
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
14
|
Functional Intraregional and Interregional Heterogeneity between Myenteric Glial Cells of the Colon and Duodenum in Mice. J Neurosci 2022; 42:8694-8708. [PMID: 36319118 PMCID: PMC9671584 DOI: 10.1523/jneurosci.2379-20.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 02/24/2023] Open
Abstract
Enteric glia are a unique population of peripheral neuroglia that regulate homeostasis in the enteric nervous system (ENS) and intestinal functions. Despite existing in functionally diverse regions of the gastrointestinal tract, enteric glia have been approached scientifically as a homogeneous group of cells. This assumption is at odds with the functional specializations of gastrointestinal organs and recent data suggesting glial heterogeneity in the brain and ENS. Here, we used calcium imaging in transgenic mice of both sexes expressing genetically encoded calcium sensors in enteric glia and conducted contractility studies to investigate functional diversity among myenteric glia in two functionally distinct intestinal organs: the duodenum and the colon. Our data show that myenteric glia exhibit regionally distinct responses to neuromodulators that require intercellular communication with neurons to differing extents in the duodenum and colon. Glia regulate intestinal contractility in a region-specific and pathway-specific manner, which suggests regionally diverse engagement of enteric glia in local motor patterns through discrete signaling pathways. Further, functional response profiles delineate four unique subpopulations among myenteric glia that are differentially distributed between the colon and duodenum. Our findings support the conclusion that myenteric glia exhibit both intraregional and interregional heterogeneity that contributes to region-specific mechanisms that regulate digestive functions. Glial heterogeneity adds an unexpected layer of complexity in peripheral neurocircuits, and understanding the specific functions of specialized glial subtypes will provide new insight into ENS physiology and pathophysiology.SIGNIFICANCE STATEMENT Enteric glia modulate gastrointestinal functions through intercellular communication with enteric neurons. Whether heterogeneity exists among neuron-glia interactions in the digestive tract is not understood. Here, we show that myenteric glia display regional heterogeneity in their responses to neuromodulators in the duodenum and the colon, which are functionally distinct organs. Glial-mediated control of intestinal motility is region and pathway specific. Four myenteric glial subtypes are present within a given gut region that are differently distributed between gut regions. These data provide functional and regional insights into enteric circuit specificity in the adult enteric nervous system.
Collapse
|
15
|
Hamnett R, Dershowitz LB, Sampathkumar V, Wang Z, Gomez-Frittelli J, De Andrade V, Kasthuri N, Druckmann S, Kaltschmidt JA. Regional cytoarchitecture of the adult and developing mouse enteric nervous system. Curr Biol 2022; 32:4483-4492.e5. [PMID: 36070775 PMCID: PMC9613618 DOI: 10.1016/j.cub.2022.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022]
Abstract
The organization and cellular composition of tissues are key determinants of their biological function. In the mammalian gastrointestinal (GI) tract, the enteric nervous system (ENS) intercalates between muscular and epithelial layers of the gut wall and can control GI function independent of central nervous system (CNS) input.1 As in the CNS, distinct regions of the GI tract are highly specialized and support diverse functions, yet the regional and spatial organization of the ENS remains poorly characterized.2 Cellular arrangements,3,4 circuit connectivity patterns,5,6 and diverse cell types7-9 are known to underpin ENS functional complexity and GI function, but enteric neurons are most typically described only as a uniform meshwork of interconnected ganglia. Here, we present a bird's eye view of the mouse ENS, describing its previously underappreciated cytoarchitecture and regional variation. We visually and computationally demonstrate that enteric neurons are organized in circumferential neuronal stripes. This organization emerges gradually during the perinatal period, with neuronal stripe formation in the small intestine (SI) preceding that in the colon. The width of neuronal stripes varies throughout the length of the GI tract, and distinct neuronal subtypes differentially populate specific regions of the GI tract, with stark contrasts between SI and colon as well as within subregions of each. This characterization provides a blueprint for future understanding of region-specific GI function and identifying ENS structural correlates of diverse GI disorders.
Collapse
Affiliation(s)
- Ryan Hamnett
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Vandana Sampathkumar
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Ziyue Wang
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Julieta Gomez-Frittelli
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vincent De Andrade
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Narayanan Kasthuri
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Poon SSB, Hung LY, Wu Q, Parathan P, Yalcinkaya N, Haag A, Luna RA, Bornstein JC, Savidge TC, Foong JPP. Neonatal antibiotics have long term sex-dependent effects on the enteric nervous system. J Physiol 2022; 600:4303-4323. [PMID: 36082768 PMCID: PMC9826436 DOI: 10.1113/jp282939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 01/12/2023] Open
Abstract
Infants and young children receive the highest exposures to antibiotics globally. Although there is building evidence that early life exposure to antibiotics increases susceptibility to various diseases including gut disorders later in life, the lasting impact of early life antibiotics on the physiology of the gut and its enteric nervous system (ENS) remains unclear. We treated neonatal mice with the antibiotic vancomycin during their first 10 postnatal days, then examined potential lasting effects of the antibiotic treatment on their colons during young adulthood (6 weeks old). We found that neonatal vancomycin treatment disrupted the gut functions of young adult female and male mice differently. Antibiotic-exposed females had significantly longer whole gut transit while antibiotic-treated males had significantly lower faecal weights compared to controls. Both male and female antibiotic-treated mice had greater percentages of faecal water content. Neonatal vancomycin treatment also had sexually dimorphic impacts on the neurochemistry and Ca2+ activity of young adult myenteric and submucosal neurons. Myenteric neurons of male mice were more disrupted than those of females, while opposing changes in submucosal neurons were seen in each sex. Neonatal vancomycin also induced sustained changes in colonic microbiota and lasting depletion of mucosal serotonin (5-HT) levels. Antibiotic impacts on microbiota and mucosal 5-HT were not sex-dependent, but we propose that the responses of the host to these changes are sex-specific. This first demonstration of long-term impacts of neonatal antibiotics on the ENS, gut microbiota and mucosal 5-HT has important implications for gut function and other physiological systems of the host. KEY POINTS: Early life exposure to antibiotics can increase susceptibility to diseases including functional gastrointestinal (GI) disorders later in life. Yet, the lasting impact of this common therapy on the gut and its enteric nervous system (ENS) remains unclear. We investigated the long-term impact of neonatal antibiotic treatment by treating mice with the antibiotic vancomycin during their neonatal period, then examining their colons during young adulthood. Adolescent female mice given neonatal vancomycin treatment had significantly longer whole gut transit times, while adolescent male and female mice treated with neonatal antibiotics had significantly wetter stools. Effects of neonatal vancomycin treatment on the neurochemistry and Ca2+ activity of myenteric and submucosal neurons were sexually dimorphic. Neonatal vancomycin also had lasting effects on the colonic microbiome and mucosal serotonin biosynthesis that were not sex-dependent. Different male and female responses to antibiotic-induced disruptions of the ENS, microbiota and mucosal serotonin biosynthesis can lead to sex-specific impacts on gut function.
Collapse
Affiliation(s)
- Sabrina S. B. Poon
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Lin Y. Hung
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Qinglong Wu
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Pavitha Parathan
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Nazli Yalcinkaya
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Anthony Haag
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Ruth Ann Luna
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Joel C. Bornstein
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Tor C. Savidge
- Department of Pathology & ImmunologyBaylor College of MedicineHoustonTXUSA
- Texas Children's Microbiome CenterTexas Children's HospitalHoustonTXUSA
| | - Jaime P. P. Foong
- Department of Anatomy and PhysiologyThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
17
|
Kyloh MA, Hibberd TJ, Castro J, Harrington AM, Travis L, Dodds KN, Wiklendt L, Brierley SM, Zagorodnyuk VP, Spencer NJ. Disengaging spinal afferent nerve communication with the brain in live mice. Commun Biol 2022; 5:915. [PMID: 36104503 PMCID: PMC9475039 DOI: 10.1038/s42003-022-03876-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Our understanding of how abdominal organs (like the gut) communicate with the brain, via sensory nerves, has been limited by a lack of techniques to selectively activate or inhibit populations of spinal primary afferent neurons within dorsal root ganglia (DRG), of live animals. We report a survival surgery technique in mice, where select DRG are surgically removed (unilaterally or bilaterally), without interfering with other sensory or motor nerves. Using this approach, pain responses evoked by rectal distension were abolished by bilateral lumbosacral L5-S1 DRG removal, but not thoracolumbar T13-L1 DRG removal. However, animals lacking T13-L1 or L5-S1 DRG both showed reduced pain sensitivity to distal colonic distension. Removal of DRG led to selective loss of peripheral CGRP-expressing spinal afferent axons innervating visceral organs, arising from discrete spinal segments. This method thus allows spinal segment-specific determination of sensory pathway functions in conscious, free-to-move animals, without genetic modification. A surgical method in mice can selectively remove dorsal root ganglia (DRG) at specific spinal levels without interfering with other nerves, providing insight on thoracolumbar vs. lumbosacral DRG contributions to pain signalling and behaviour.
Collapse
|
18
|
Hibberd TJ, Yew WP, Dodds KN, Xie Z, Travis L, Brookes SJ, Costa M, Hu H, Spencer NJ. Quantification of CGRP-immunoreactive myenteric neurons in mouse colon. J Comp Neurol 2022; 530:3209-3225. [PMID: 36043843 DOI: 10.1002/cne.25403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/07/2022]
Abstract
Quantitative data of biological systems provide valuable baseline information for understanding pathology, experimental perturbations, and computational modeling. In mouse colon, calcitonin gene-related peptide (CGRP) is expressed by myenteric neurons with multiaxonal (Dogiel type II) morphology, characteristic of intrinsic primary afferent neurons (IPANs). Analogous neurons in other species and gut regions represent 5-35% of myenteric neurons. We aimed to quantify proportions of CGRP-immunopositive (CGRP+) myenteric neurons. Colchicine-treated wholemount preparations of proximal, mid, and distal colon were labeled for HuC/D, CGRP, nitric oxide synthase (NOS), and peripherin (Per). The pan-neuronal markers (Hu+/Per+) co-labeled 94% of neurons. Hu+/Per- neurons comprised ∼6%, but Hu-/Per+ cells were rare. Thus, quantification was based on Hu+ myenteric neurons (8576 total; 1225 ± 239 per animal, n = 7). CGRP+ cell bodies were significantly larger than the average of all Hu+ neurons (329 ± 13 vs. 261 ± 12 μm2 , p < .0001). CGRP+ neurons comprised 19% ± 3% of myenteric neurons without significant regional variation. NOS+ neurons comprised 42% ± 2% of myenteric neurons overall, representing a lower proportion in proximal colon, compared to mid and distal colon (38% ± 2%, 44% ± 2%, and 44% ± 3%, respectively). Peripherin immunolabeling revealed cell body and axonal morphology in some myenteric neurons. Whether all CGRP+ neurons were multiaxonal could not be addressed using peripherin immunolabeling. However, of 118 putatively multiaxonal neurons first identified based on peripherin immunoreactivity, all were CGRP+ (n = 4). In conclusion, CGRP+ myenteric neurons in mouse colon were comprehensively quantified, occurring within a range expected of a putative IPAN marker. All Per+ multiaxonal neurons, characteristic of Dogiel type II/IPAN morphology, were CGRP+.
Collapse
Affiliation(s)
- Timothy J Hibberd
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Wai Ping Yew
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Kelsi N Dodds
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lee Travis
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Simon J Brookes
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Marcello Costa
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch & Sensory Disorders, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Wang L, Yuan PQ, Challis C, Ravindra Kumar S, Taché Y. Transduction of Systemically Administered Adeno-Associated Virus in the Colonic Enteric Nervous System and c-Kit Cells of Adult Mice. Front Neuroanat 2022; 16:884280. [PMID: 35734536 PMCID: PMC9207206 DOI: 10.3389/fnana.2022.884280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic delivery of adeno-associated virus (AAV) vectors transduces the enteric nervous system. However, less is known on the mapping and morphological and neurochemical characterization in the adult mouse colon. We used AAV9-CAG-GFP (AAV9) and AAV-PHP.S-hSyn1-tdTomato farnesylated (PHP.S-tdTf) to investigate the segmental distribution, morphologies and neurochemical coding of the transduction. The vectors were retro-orbitally injected in male and female adult mice, and 3 weeks later, the colon was prepared for microcopy with or without immunohistochemistry for neuronal and non-neuronal markers. In contrast to the distributions in neonatal and juvenile rodents, the AAV transduction in neurons and/or nerve fibers was the highest in the proximal colon, decreased gradually in the transverse, and was sparse in the distal colon without difference between sexes. In the proximal colon, the AAV9-transduced myenteric neurons were unevenly distributed. The majority of enteric neurons did not have AAV9 expression in their processes, except those with big soma with or without variously shaped dendrites, and a long axon. Immunolabeling demonstrated that about 31% neurons were transduced by AAV9, and the transduction was in 50, 28, and 31% of cholinergic, nitrergic, and calbindin-positive myenteric neurons, respectively. The nerve fiber markers, calcitonin gene-related peptide alpha, tyrosine hydroxylase or vasoactive intestinal polypeptide co-localized with AAV9 or PHP.S-tdTf in the mucosa, and rarely in the myenteric plexus. Unexpectedly, AAV9 expression appeared also in a few c-Kit immunoreactive cells among the heavily populated interstitial cells of Cajal (ICC). In the distal colon, the AAV transduction appeared in a few nerve fibers mostly the interganglionic strands. Other types of AAV9 and AAV-PHP vectors induced a similar colonic segmental difference which is not colon specific since neurons were transduced in the small intestine and gastric antrum, while little in the gastric corpus and none in the lower esophagus. Conclusion These findings demonstrate that in adult mice colon that there is a rostro-caudal decrease in the transduction of systemic delivery of AAV9 and its variants independent of sex. The characterization of AAV transduction in the proximal colon in cholinergic and nitrergic myenteric neurons along with a few ICC suggests implications in circuitries regulating motility.
Collapse
Affiliation(s)
- Lixin Wang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE/Digestive Diseases Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Pu-Qing Yuan
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE/Digestive Diseases Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Collin Challis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Sripriya Ravindra Kumar
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE/Digestive Diseases Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
20
|
Meerschaert KA, Davis BM, Smith-Edwards KM. New Insights on Extrinsic Innervation of the Enteric Nervous System and Non-neuronal Cell Types That Influence Colon Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:133-139. [PMID: 36587153 DOI: 10.1007/978-3-031-05843-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The enteric nervous system not only innervates the colon to execute various functions in a semi-autonomous manner but also receives neural input from three extrinsic sources, (1) vagal, (2) thoracolumbar (splanchnic), and (3) lumbosacral (pelvic) pathways, that permit bidirectional communication between the colon and central nervous system. Extrinsic pathways signal sensory input via afferent fibers, as well as motor autonomic output via parasympathetic or sympathetic efferent fibers, but the shared and unique roles for each pathway in executing sensory-motor control of colon function have not been well understood. Here, we describe the recently developed approaches that have provided new insights into the diverse mechanisms utilized by extrinsic pathways to influence colon functions related to visceral sensation, motility, and inflammation. Based on the cumulative results from anatomical, molecular, and functional studies, we propose pathway-specific functions for vagal, thoracolumbar, and lumbosacral innervation of the colon.
Collapse
Affiliation(s)
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
21
|
In the Enteric Nervous System, It's All About Connections. Cell Mol Gastroenterol Hepatol 2021; 13:346-347. [PMID: 34666010 PMCID: PMC8703119 DOI: 10.1016/j.jcmgh.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/10/2022]
|