1
|
Ohri N, Häußler J, Javakhishvili N, Vieweg D, Zourelidis A, Trojanowicz B, Haemmerle M, Esposito I, Glaß M, Sunami Y, Kleeff J. Gene expression dynamics in fibroblasts during early-stage murine pancreatic carcinogenesis. iScience 2025; 28:111572. [PMID: 39811640 PMCID: PMC11731286 DOI: 10.1016/j.isci.2024.111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive growth and metastasis, partly driven by fibroblast-mediated stromal interactions. Using RNA sequencing of fibroblasts from early-stage KPC mouse models, we identified significant upregulation of genes involved in adipogenesis, fatty acid metabolism, and the ROS pathway. ANGPTL4, a key adipogenesis regulator, was highly expressed in fibroblasts and promoted pancreatic cancer cell proliferation and migration through paracrine signaling. Notably, cancer cell-driven paracrine signals appear to regulate ANGPTL4 expression in fibroblasts, suggesting that ANGPTL4 may act as a reciprocal factor in a feedback loop that enhances tumor progression. LAMA2, an extracellular matrix gene with reduced expression, suppressed pancreatic cancer cell migration, proliferation, and invasion. This study provides the temporal transcriptional analysis of fibroblast subtypes during early PDAC, highlighting the roles of metabolic reprogramming and ECM remodeling in shaping the tumor microenvironment and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Nupur Ohri
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Johanna Häußler
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Nino Javakhishvili
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi 0162, Georgia
| | - David Vieweg
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Anais Zourelidis
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Bogusz Trojanowicz
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Monika Haemmerle
- Institute of Pathology, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06112 Halle (Saale), Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Yoshiaki Sunami
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Lasse-Opsahl EL, Barravecchia I, McLintock E, Lee JM, Ferris SF, Espinoza CE, Hinshaw R, Cavanaugh S, Robotti M, Rober L, Brown K, Abdelmalak KY, Galban CJ, Frankel TL, Zhang Y, Pasca di Magliano M, Galban S. KRASG12D drives immunosuppression in lung adenocarcinoma through paracrine signaling. JCI Insight 2025; 10:e182228. [PMID: 39782689 PMCID: PMC11721295 DOI: 10.1172/jci.insight.182228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. New targeted therapies against the once-deemed undruggable oncogenic KRAS are changing current therapeutic paradigms. However, resistance to targeted KRAS inhibitors almost inevitably occurs; resistance can be driven by tumor cell-intrinsic changes or by changes in the microenvironment. Here, we utilized a genetically engineered mouse model of KRASG12D-driven lung cancer that allows for inducible and reversible expression of the oncogene: activation of oncogenic KRASG12D induces tumor growth; conversely, inactivation of KRASG12D causes tumor regression. We showed that in addition to regulating cancer cell growth and survival, oncogenic KRAS regulated the transcriptional status of cancer-associated fibroblasts and macrophages in this model. Utilizing ex vivo approaches, we showed that secreted factors from cancer cells induced the expression of multiple cytokines in lung fibroblasts, and in turn drove expression of immunosuppressive factors, such as arginase 1, in macrophages. In summary, fibroblasts emerged as a key source of immune regulatory signals, and a potential therapeutic target for improving the efficacy of KRAS inhibitors in lung cancer.
Collapse
Affiliation(s)
| | - Ivana Barravecchia
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- The Institute of Biorobotics, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Elyse McLintock
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jennifer M. Lee
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sarah F. Ferris
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Carlos E. Espinoza
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachael Hinshaw
- Graduate Program in Cancer Biology
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sophia Cavanaugh
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marzia Robotti
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- PhD School in Translational Medicine, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Lily Rober
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kristee Brown
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kristena Y. Abdelmalak
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Craig J. Galban
- Department of Radiology, and
- Department of Biomedical Engineering
| | - Timothy L. Frankel
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, and
| | - Yaqing Zhang
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, and
| | - Marina Pasca di Magliano
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, and
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Stefanie Galban
- Department of Radiology, and
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, and
| |
Collapse
|
3
|
Graham S, Dmitrieva M, Vendramini-Costa DB, Francescone R, Trujillo MA, Cukierman E, Wood LD. From precursor to cancer: decoding the intrinsic and extrinsic pathways of pancreatic intraepithelial neoplasia progression. Carcinogenesis 2024; 45:801-816. [PMID: 39514554 DOI: 10.1093/carcin/bgae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the progression of pancreatic intraepithelial neoplasia (PanIN) to pancreatic ductal adenocarcinoma through a dual lens of intrinsic molecular alterations and extrinsic microenvironmental influences. PanIN development begins with Kirsten rat sarcoma viral oncogene (KRAS) mutations driving PanIN initiation. Key additional mutations in cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein p53 (TP53), and mothers against decapentaplegic homolog 4 (SMAD4) disrupt cell cycle control and genomic stability, crucial for PanIN progression from low-grade to high-grade dysplasia. Additional molecular alterations in neoplastic cells, including epigenetic modifications and chromosomal alterations, can further contribute to neoplastic progression. In parallel with these alterations in neoplastic cells, the microenvironment, including fibroblast activation, extracellular matrix remodeling, and immune modulation, plays a pivotal role in PanIN initiation and progression. Crosstalk between neoplastic and stromal cells influences nutrient support and immune evasion, contributing to tumor development, growth, and survival. This review underscores the intricate interplay between cell-intrinsic molecular drivers and cell-extrinsic microenvironmental factors, shaping PanIN predisposition, initiation, and progression. Future research aims to unravel these interactions to develop targeted therapeutic strategies and early detection techniques, aiming to alleviate the severe impact of pancreatic cancer by addressing both genetic predispositions and environmental influences.
Collapse
Affiliation(s)
- Sarah Graham
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Mariia Dmitrieva
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Debora Barbosa Vendramini-Costa
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Ralph Francescone
- Henry Ford Pancreatic Cancer Center, Henry Ford Health, Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, United States
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA 19111, United States
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, United States
| |
Collapse
|
4
|
Thielman NRJ, Funes V, Davuluri S, Ibanez HE, Sun WC, Fu J, Li K, Muth S, Pan X, Fujiwara K, Dwayne L Thomas Ii, Henderson M, Teh SS, Zhu Q, Thompson E, Jaffee EM, Kolodkin A, Meng F, Zheng L. Semaphorin 3D promotes pancreatic ductal adenocarcinoma progression and metastasis through macrophage reprogramming. SCIENCE ADVANCES 2024; 10:eadp0684. [PMID: 39413197 DOI: 10.1126/sciadv.adp0684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Axon guidance molecules are frequently altered in pancreatic ductal adenocarcinoma (PDA) and influence PDA progression. However, the molecular mechanism remained unclear. Using genetically engineered mouse models to examine semaphorin 3D (SEMA3D), we identified a dual role for tumor- and nerve-derived SEMA3D in the malignant transformation of pancreatic epithelial cells and invasive PDA development. Pancreatic-specific knockout of the SEMA3D gene from the KRASG12D and TP53R172H mutation knock-in, PDX1-Cre(KPC) mouse model demonstrated delayed tumor initiation, prolonged survival, absence of metastasis, and reduced M2 macrophage expression. Mechanistically, tumor- and nerve-derived SEMA3D indirectly reprograms macrophages through KRASMUT-dependent ARF6 signaling in PDA cells, resulting in increased lactate production, which is sensed by GPCR132 on macrophages to stimulate protumorigenic M2 polarization. Multiplex immunohistochemistry demonstrated increased M2-polarized macrophages proximal to nerves in SEMA3D-expressing human PDA tissue. This study suggests that altered SEMA3D expression leads to an acquisition of cancer-promoting functions, and nerve-derived SEMA3D is "hijacked" by PDA cells to support growth and metastasis in a KRASMUT-dependent manner.
Collapse
Affiliation(s)
- Noelle R J Thielman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vanessa Funes
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sanjana Davuluri
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21287, USA
| | - Hector E Ibanez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wei-Chih Sun
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Juan Fu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Keyu Li
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Stephen Muth
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xingyi Pan
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kenji Fujiwara
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Surgery, Kimura Hospital and Department of Surgery; Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dwayne L Thomas Ii
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - MacKenzie Henderson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Selina Shiqing Teh
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qingfeng Zhu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Thompson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Cancer Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alex Kolodkin
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Fengxi Meng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Shanghai Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Skip Viragh Center for Pancreatic Cancer, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2024:10.1038/s41577-024-01098-2. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
6
|
Gao B, Hu G, Sun B, Li W, Yang H. BNIP3+ fibroblasts associated with hypoxia and inflammation predict prognosis and immunotherapy response in pancreatic ductal adenocarcinoma. J Transl Med 2024; 22:937. [PMID: 39402590 PMCID: PMC11476087 DOI: 10.1186/s12967-024-05674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors that lacks effective treatment options. Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment, associated with tumor progression, prognosis, and treatment response. This work aimed to explore the novel CAFs-associated target to improve treatment strategies in PDAC. METHODS The PDAC single-cell sequencing data (CRA001160, n = 35) were downloaded and integrated based on GSA databases to classify fibroblasts into fine subtypes. Functional enrichment analysis and coexpression regulatory network analysis were used to identify the functional phenotypes and biological properties of the different fibroblast subtypes. Fibroblast differentiation trajectories were constructed using pseudochronological analysis to identify initial and terminally differentiated subtypes of fibroblasts. The changes in the proportions of different fibroblast subtypes before and after PDAC immunotherapy were compared in responsive and nonresponding patients, and the relationships between fibroblast subtypes and PDAC immunotherapy responsiveness were determined based on GSA and GEO database. Using molecular biology methods to confirm the effects of BNIP3 on hypoxia and inflammation in CAFs. CAFs were co cultured with pancreatic cancer cells to detect their effects on migration and invasion of pancreatic cancer. RESULTS Single-cell data analysis divided fibroblasts into six subtypes. The differentiation trajectory suggested that BNIP3+ Fibro subtype exhibited terminal differentiation, and the expression of genes related to hypoxia and the inflammatory response increased gradually with differentiation time. The specific overexpressed genes in the BNIP3+ Fibro subtype were significantly associated with overall and disease progression-free survival in the patients with PDAC. Interestingly, the greater the proportion of the BNIP3+ Fibro subtype was, the worse the response of PDAC patients to immunotherapy, and the CRTL treatment regimen effectively reduced the proportion of the BNIP3+ Fibro subtype. After knocking out BNIP3, the hypoxia markers and inflammatory factors of CAFs were inhibited. Co-culture of CAFs with pancreatic cancer cells can increase the migration and invasion of pancreatic cancer, but this could be reversed by knocking out BNIP3. CONCLUSIONS This study revealed the BNIP3+ Fibro subtype associated with hypoxia and inflammatory responses, which was closely related to the poor prognosis of patients with PDAC, and identified signature genes that predict the immunotherapy response in PDAC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Hernia and Abdominal Wall, Peking University People's Hospital, Beijing, China
| | - Guohua Hu
- Department of Hernia and Abdominal Wall, Peking University People's Hospital, Beijing, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenqiang Li
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China
| | - Hao Yang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
7
|
Donahue KL, Watkoske HR, Kadiyala P, Du W, Brown K, Scales MK, Elhossiny AM, Espinoza CE, Lasse Opsahl EL, Griffith BD, Wen Y, Sun L, Velez-Delgado A, Renollet NM, Morales J, Nedzesky NM, Baliira RK, Menjivar RE, Medina-Cabrera PI, Rao A, Allen B, Shi J, Frankel TL, Carpenter ES, Bednar F, Zhang Y, Pasca di Magliano M. Oncogenic KRAS-Dependent Stromal Interleukin-33 Directs the Pancreatic Microenvironment to Promote Tumor Growth. Cancer Discov 2024; 14:1964-1989. [PMID: 38958646 PMCID: PMC11450371 DOI: 10.1158/2159-8290.cd-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic cancer is characterized by an extensive fibroinflammatory microenvironment. During carcinogenesis, normal stromal cells are converted to cytokine-high cancer-associated fibroblasts (CAF). The mechanisms underlying this conversion, including the regulation and function of fibroblast-derived cytokines, are poorly understood. Thus, efforts to therapeutically target CAFs have so far failed. Herein, we show that signals from epithelial cells expressing oncogenic KRAS-a hallmark pancreatic cancer mutation-activate fibroblast autocrine signaling, which drives the expression of the cytokine IL33. Stromal IL33 expression remains high and dependent on epithelial KRAS throughout carcinogenesis; in turn, environmental stress induces interleukin-33 (IL33) secretion. Using compartment-specific IL33 knockout mice, we observed that lack of stromal IL33 leads to profound reprogramming of multiple components of the pancreatic tumor microenvironment, including CAFs, myeloid cells, and lymphocytes. Notably, loss of stromal IL33 leads to an increase in CD8+ T-cell infiltration and activation and, ultimately, reduced tumor growth. Significance: This study provides new insights into the mechanisms underlying the programming of CAFs and shows that during this process, expression of the cytokine IL33 is induced. CAF-derived IL33 has pleiotropic effects on the tumor microenvironment, supporting its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - Hannah R. Watkoske
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Padma Kadiyala
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan.
| | - Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Kristee Brown
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Ahmed M. Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| | | | | | | | - Yukang Wen
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Lei Sun
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nur M. Renollet
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | - Jacqueline Morales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
| | - Nicholas M. Nedzesky
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan.
| | | | - Rosa E. Menjivar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan.
| | | | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Cancer Data Science Resource, University of Michigan, Ann Arbor, Michigan.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
| | - Benjamin Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Jiaqi Shi
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Department of Pathology and Clinical Labs, University of Michigan, Ann Arbor, Michigan.
| | - Timothy L. Frankel
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Eileen S. Carpenter
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| | - Filip Bednar
- Cancer Biology Program, University of Michigan, Ann Arbor, Michigan.
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
8
|
Li X, Hou W, Xiao C, Yang H, Zhao C, Cao D. Panoramic tumor microenvironment in pancreatic ductal adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1561-1578. [PMID: 39008192 DOI: 10.1007/s13402-024-00970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is notorious for its resistance to various treatment modalities. The genetic heterogeneity of PDAC, coupled with the presence of a desmoplastic stroma within the tumor microenvironment (TME), contributes to an unfavorable prognosis. The mechanisms and consequences of interactions among different cell types, along with spatial variations influencing cellular function, potentially play a role in the pathogenesis of PDAC. Understanding the diverse compositions of the TME and elucidating the functions of microscopic neighborhoods may contribute to understanding the immune microenvironment status in pancreatic cancer. As we delve into the spatial biology of the microscopic neighborhoods within the TME, aiding in deciphering the factors that orchestrate this intricate ecosystem. This overview delineates the fundamental constituents and the structural arrangement of the PDAC microenvironment, highlighting their impact on cancer cell biology.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Wanting Hou
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Heqi Yang
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitaL, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China
| | - Dan Cao
- Department of Abdominal Oncology, Division of Abdominal Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610017, People's Republic of China.
| |
Collapse
|
9
|
Than MT, O'Hara M, Stanger BZ, Reiss KA. KRAS-Driven Tumorigenesis and KRAS-Driven Therapy in Pancreatic Adenocarcinoma. Mol Cancer Ther 2024; 23:1378-1388. [PMID: 39118358 PMCID: PMC11444872 DOI: 10.1158/1535-7163.mct-23-0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with significant morbidity and mortality and is projected to be the second leading cause of cancer-related deaths by 2030. Mutations in KRAS are found in the vast majority of PDAC cases and plays an important role in the development of the disease. KRAS drives tumor cell proliferation and survival through activating the MAPK pathway to drive cell cycle progression and to lead to MYC-driven cellular programs. Moreover, activated KRAS promotes a protumorigenic microenvironment through forming a desmoplastic stroma and by impairing antitumor immunity. Secretion of granulocyte-macrophage colony-stimulating factor and recruitment of myeloid-derived suppressor cells and protumorigenic macrophages results in an immunosuppressive environment while secretion of secrete sonic hedgehog and TGFβ drive fibroblastic features characteristic of PDAC. Recent development of several small molecules to directly target KRAS marks an important milestone in precision medicine. Many molecules show promise in preclinical models of PDAC and in early phase clinical trials. In this review, we discuss the underlying cell intrinsic and extrinsic roles of KRAS in PDAC tumorigenesis, the pharmacologic development of KRAS inhibition, and therapeutic strategies to target KRAS in PDAC.
Collapse
Affiliation(s)
- Minh T Than
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark O'Hara
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kim A Reiss
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Sozzi S, Manni I, Ercolani C, Diodoro MG, Bartolazzi A, Spallotta F, Piaggio G, Monteonofrio L, Soddu S, Rinaldo C, Valente D. Inactivation of HIPK2 attenuates KRAS G12D activity and prevents pancreatic tumorigenesis. J Exp Clin Cancer Res 2024; 43:265. [PMID: 39342278 PMCID: PMC11437985 DOI: 10.1186/s13046-024-03189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) features KRAS mutations in approximately 90% of human cases and excessive stromal response, termed desmoplastic reaction. Oncogenic KRAS drives pancreatic carcinogenesis by acting on both epithelial cells and tumor microenvironment (TME). We have previously shown that Homeodomain-Interacting Protein Kinase 2 (HIPK2) cooperates with KRAS in sustaining ERK1/2 phosphorylation in human colorectal cancers. Here, we investigated whether HIPK2 contributes to oncogenic KRAS-driven tumorigenesis in vivo, in the onset of pancreatic cancer. METHODS We employed an extensively characterized model of KRASG12D-dependent preinvasive PDAC, the Pdx1-Cre;LSL-KRasG12D/+ (KC) mice. In these mice, HIPK2 was inhibited by genetic knockout in the pancreatic epithelial cells (KCH-/-) or by pharmacologic inactivation with the small molecule 5-IodoTubercidin (5-ITu). The development of preneoplastic acinar-to-ductal metaplasia (ADM), intraepithelial neoplasia (PanIN), and their associated desmoplastic reaction were analyzed. RESULTS In Hipk2-KO mice (KCH-/-), ERK phosphorylation was lowered, the appearance of ADM was slowed down, and both the number and pathologic grade of PanIN were reduced compared to Hipk2-WT KC mice. The pancreatic lesion phenotype in KCH-/- mice was characterized by abundant collagen fibers and reduced number of αSMA+ and pSTAT3+ desmoplastic cells. These features were reminiscent of the recently described human "deserted" sub-TME, poor in cells, rich in matrix, and associated with tumor differentiation. In contrast, the desmoplastic reaction of KC mice resembled the "reactive" sub-TME, rich in stromal cells and associated with tumor progression. These observations were confirmed by the pharmacologic inhibition of HIPK2 in KC mice. CONCLUSION This study demonstrates that HIPK2 inhibition weakens oncogenic KRAS activity and pancreatic tumorigenesis providing a rationale for testing HIPK2 inhibitors to mitigate the incidence of PDAC development in high-risk individuals.
Collapse
Affiliation(s)
- Silvia Sozzi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratories, Sant'Andrea University Hospital, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Giulia Piaggio
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.
| | - Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.
| |
Collapse
|
11
|
Baldan J, Camacho-Roda J, Ballester M, Høj K, Kurilla A, Maurer HC, Arcila-Barrera S, Lin X, Pan Z, Castro JL, Mayorca-Guiliani AE, Rift CV, Hasselby J, Bouwens L, Lefebvre V, David CJ, Parnas O, DelGiorno KE, Erler JT, Rooman I, Arnes L. Resolution of Acinar Dedifferentiation Regulates Tissue Remodeling in Pancreatic Injury and Cancer Initiation. Gastroenterology 2024; 167:718-732.e18. [PMID: 38729450 DOI: 10.1053/j.gastro.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND & AIMS Acinar-to-ductal metaplasia (ADM) is crucial in the development of pancreatic ductal adenocarcinoma. However, our understanding of the induction and resolution of ADM remains limited. We conducted comparative transcriptome analyses to identify conserved mechanisms of ADM in mouse and human. METHODS We identified Sox4 among the top up-regulated genes. We validated the analysis by RNA in situ hybridization. We performed experiments in mice with acinar-specific deletion of Sox4 (Ptf1a: CreER; Rosa26-LSL-YFPLSL-YFP; Sox4fl/fl) with and without an activating mutation in Kras (KrasLSL-G12D/+). Mice were given caerulein to induce pancreatitis. We performed phenotypic analysis by immunohistochemistry, tissue decellularization, and single-cell RNA sequencing. RESULTS We demonstrated that Sox4 is reactivated in ADM and pancreatic intraepithelial neoplasias. Contrary to findings in other tissues, Sox4 actually counteracts cellular dedifferentiation and helps maintain tissue homeostasis. Moreover, our investigations unveiled the indispensable role of Sox4 in the specification of mucin-producing cells and tuft-like cells from acinar cells. We identified Sox4-dependent non-cell-autonomous mechanisms regulating the stromal reaction during disease progression. Notably, Sox4-inferred targets are activated upon KRAS inactivation and tumor regression. CONCLUSIONS Our results indicate that our transcriptome analysis can be used to investigate conserved mechanisms of tissue injury. We demonstrate that Sox4 restrains acinar dedifferentiation and is necessary for the specification of acinar-derived metaplastic cells in pancreatic injury and cancer initiation and is activated upon Kras ablation and tumor regression in mice. By uncovering novel potential strategies to promote tissue homeostasis, our findings offer new avenues for preventing the development of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jonathan Baldan
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark; Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Juan Camacho-Roda
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Marta Ballester
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Høj
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anita Kurilla
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - H Carlo Maurer
- Department of Internal Medicine II, Technical University of Munich, Munich, Germany
| | - Sebastian Arcila-Barrera
- The Lautenberg Center for Immunology and Cancer Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xinyi Lin
- Tsinghua University School of Medicine, Beijing, China; Peking University-Tsinghua Center for Life Sciences, Beijing, China
| | - Zhaolong Pan
- Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joana Leitão Castro
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - Charlotte Vestrup Rift
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jane Hasselby
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Luc Bouwens
- Cell Differentiation Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Charles J David
- Tsinghua University School of Medicine, Beijing, China; Peking University-Tsinghua Center for Life Sciences, Beijing, China
| | - Oren Parnas
- The Lautenberg Center for Immunology and Cancer Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Janine Terra Erler
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Ilse Rooman
- Translational Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luis Arnes
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Casacuberta-Serra S, González-Larreategui Í, Capitán-Leo D, Soucek L. MYC and KRAS cooperation: from historical challenges to therapeutic opportunities in cancer. Signal Transduct Target Ther 2024; 9:205. [PMID: 39164274 PMCID: PMC11336233 DOI: 10.1038/s41392-024-01907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 08/22/2024] Open
Abstract
RAS and MYC rank amongst the most commonly altered oncogenes in cancer, with RAS being the most frequently mutated and MYC the most amplified. The cooperative interplay between RAS and MYC constitutes a complex and multifaceted phenomenon, profoundly influencing tumor development. Together and individually, these two oncogenes regulate most, if not all, hallmarks of cancer, including cell death escape, replicative immortality, tumor-associated angiogenesis, cell invasion and metastasis, metabolic adaptation, and immune evasion. Due to their frequent alteration and role in tumorigenesis, MYC and RAS emerge as highly appealing targets in cancer therapy. However, due to their complex nature, both oncogenes have been long considered "undruggable" and, until recently, no drugs directly targeting them had reached the clinic. This review aims to shed light on their complex partnership, with special attention to their active collaboration in fostering an immunosuppressive milieu and driving immunotherapeutic resistance in cancer. Within this review, we also present an update on the different inhibitors targeting RAS and MYC currently undergoing clinical trials, along with their clinical outcomes and the different combination strategies being explored to overcome drug resistance. This recent clinical development suggests a paradigm shift in the long-standing belief of RAS and MYC "undruggability", hinting at a new era in their therapeutic targeting.
Collapse
Affiliation(s)
| | - Íñigo González-Larreategui
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Daniel Capitán-Leo
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain
| | - Laura Soucek
- Peptomyc S.L., Barcelona, Spain.
- Models of cancer therapies Laboratory, Vall d'Hebron Institute of Oncology, Cellex Centre, Hospital University Vall d'Hebron Campus, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
13
|
Vitorakis N, Gargalionis AN, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Precision Targeting Strategies in Pancreatic Cancer: The Role of Tumor Microenvironment. Cancers (Basel) 2024; 16:2876. [PMID: 39199647 PMCID: PMC11352254 DOI: 10.3390/cancers16162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer demonstrates an ever-increasing incidence over the last years and represents one of the top causes of cancer-associated mortality. Cells of the tumor microenvironment (TME) interact with cancer cells in pancreatic ductal adenocarcinoma (PDAC) tumors to preserve cancer cells' metabolism, inhibit drug delivery, enhance immune suppression mechanisms and finally develop resistance to chemotherapy and immunotherapy. New strategies target TME genetic alterations and specific pathways in cell populations of the TME. Complex molecular interactions develop between PDAC cells and TME cell populations including cancer-associated fibroblasts, myeloid-derived suppressor cells, pancreatic stellate cells, tumor-associated macrophages, tumor-associated neutrophils, and regulatory T cells. In the present review, we aim to fully explore the molecular landscape of the pancreatic cancer TME cell populations and discuss current TME targeting strategies to provide thoughts for further research and preclinical testing.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Clinical Biochemistry, 'Attikon' University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Høj K, Baldan J, Seymour PA, Rift CV, Hasselby JP, Sandelin A, Arnes L. Age-Related Decline in Pancreas Regeneration Is Associated With an Increased Proinflammatory Response to Injury. GASTRO HEP ADVANCES 2024; 3:973-985. [PMID: 39286614 PMCID: PMC11403435 DOI: 10.1016/j.gastha.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/03/2024] [Indexed: 09/19/2024]
Abstract
Background and Aims The regenerative capacity of the pancreas diminishes with age. Understanding acinar cell responses to injury and the resolution of regenerative processes is crucial for tissue homeostasis. However, knowledge about the impact of aging on these processes remains limited. Methods To investigate the influence of aging on pancreas regeneration, we established a cohort of young (7-14 weeks) and old (18 months) C57bl/6 mice. Experimental pancreatitis was induced using caerulein, and pancreas samples were collected at various time points after induction, covering acute damage response, inflammation, peak proliferation, and inflammation resolution. Our analysis involved immunohistochemistry, quantitative imaging, and gene expression analyses. Results Our study revealed a significant decline in the regenerative capacity of the pancreas in old mice. Despite similar morphology and transcriptional profiles between the pancreas of young and old mice under homeostasis, the aged pancreas is primed to generate an exacerbated proinflammatory reaction in response to injury. Specifically, we observed notable upregulation of Junb expression in acinar cells and aberrant myofibroblast activation in the aged pancreas. Conclusion The response of acinar cells to injury in the pancreas of aged mice is characterized by an increased susceptibility to inflammation and stromal reactions. Our findings uncover a pre-existing proinflammatory state in aged acinar cells, offering insights into potential strategies to prevent the onset of pancreatic insufficiency and the development of inflammatory conditions. These insights hold implications for preventing conditions such as chronic pancreatitis and pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Kristina Høj
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Baldan
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Philip Allan Seymour
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Vestrup Rift
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jane Preuss Hasselby
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Luis Arnes
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Norgard RJ, Budhani P, O'Brien SA, Xia Y, Egan JN, Flynn B, Tagore JR, Seco J, Peet GW, Mikucka A, Wasti R, Chan LC, Hinkel M, Martinez-Morilla S, Pignatelli J, Trapani F, Corse E, Feng D, Kostyrko K, Hofmann MH, Liu K, Kashyap AS. Reshaping the Tumor Microenvironment of KRASG12D Pancreatic Ductal Adenocarcinoma with Combined SOS1 and MEK Inhibition for Improved Immunotherapy Response. CANCER RESEARCH COMMUNICATIONS 2024; 4:1548-1560. [PMID: 38727236 PMCID: PMC11191876 DOI: 10.1158/2767-9764.crc-24-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/23/2024]
Abstract
KRAS inhibitors have demonstrated exciting preclinical and clinical responses, although resistance occurs rapidly. Here, we investigate the effects of KRAS-targeting therapies on the tumor microenvironment using a library of KrasG12D, p53-mutant, murine pancreatic ductal adenocarcinoma-derived cell lines (KPCY) to leverage immune-oncology combination strategies for long-term tumor efficacy. Our findings show that SOS1 and MEK inhibitors (SOS1i+MEKi) suppressed tumor growth in syngeneic models and increased intratumoral CD8+ T cells without durable responses. Single-cell RNA sequencing revealed an increase in inflammatory cancer-associated fibroblasts (iCAF), M2 macrophages, and a decreased dendritic cell (DC) quality that ultimately resulted in a highly immunosuppressive microenvironment driven by IL6+ iCAFs. Agonist CD40 treatment was effective to revert macrophage polarization and overcome the lack of mature antigen-presenting DCs after SOS1i+MEKi therapy. Treatment increased the overall survival of KPCY tumor-bearing mice. The addition of checkpoint blockade to SOS1i+MEKi combination resulted in tumor-free mice with established immune memory. Our data suggest that KRAS inhibition affects myeloid cell maturation and highlights the need for combining KRAS cancer-targeted therapy with myeloid activation to enhance and prolong antitumor effects. SIGNIFICANCE Combination of SOS1 and MEK inhibitors increase T cell infiltration while blunting pro-immune myeloid cell maturation and highlights the need for combining KRAS cancer-targeted therapy with myeloid activation to enhance and prolong anti-tumor effects.
Collapse
Affiliation(s)
- Robert J. Norgard
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Pratha Budhani
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Sarah A. O'Brien
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Youli Xia
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Jessica N. Egan
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Brianna Flynn
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Joshua R. Tagore
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Joseph Seco
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Gregory W. Peet
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Ania Mikucka
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Ruby Wasti
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Li-Chuan Chan
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Melanie Hinkel
- Late Stage Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Sandra Martinez-Morilla
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Jeanine Pignatelli
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Francesca Trapani
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Emily Corse
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Di Feng
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Kaja Kostyrko
- Late Stage Cancer Research, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Marco H. Hofmann
- Cancer Pharmacology and Disease Positioning Department, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Kang Liu
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Abhishek S. Kashyap
- Cancer Immunology and Immune Modulation, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| |
Collapse
|
16
|
Park J, Overbey EG, Narayanan SA, Kim J, Tierney BT, Damle N, Najjar D, Ryon KA, Proszynski J, Kleinman A, Hirschberg JW, MacKay M, Afshin EE, Granstein R, Gurvitch J, Hudson BM, Rininger A, Mullane S, Church SE, Meydan C, Church G, Beheshti A, Mateus J, Mason CE. Spatial multi-omics of human skin reveals KRAS and inflammatory responses to spaceflight. Nat Commun 2024; 15:4773. [PMID: 38862494 PMCID: PMC11166909 DOI: 10.1038/s41467-024-48625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/26/2024] [Indexed: 06/13/2024] Open
Abstract
Spaceflight can change metabolic, immunological, and biological homeostasis and cause skin rashes and irritation, yet the molecular basis remains unclear. To investigate the impact of short-duration spaceflight on the skin, we conducted skin biopsies on the Inspiration4 crew members before (L-44) and after (R + 1) flight. Leveraging multi-omics assays including GeoMx™ Digital Spatial Profiler, single-cell RNA/ATAC-seq, and metagenomics/metatranscriptomics, we assessed spatial gene expressions and associated microbial and immune changes across 95 skin regions in four compartments: outer epidermis, inner epidermis, outer dermis, and vasculature. Post-flight samples showed significant up-regulation of genes related to inflammation and KRAS signaling across all skin regions. These spaceflight-associated changes mapped to specific cellular responses, including altered interferon responses, DNA damage, epithelial barrier disruptions, T-cell migration, and hindered regeneration were located primarily in outer tissue compartments. We also linked epithelial disruption to microbial shifts in skin swab and immune cell activity to PBMC single-cell data from the same crew and timepoints. Our findings present the inaugural collection and examination of astronaut skin, offering insights for future space missions and response countermeasures.
Collapse
Affiliation(s)
- Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eliah G Overbey
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - S Anand Narayanan
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Braden T Tierney
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Deena Najjar
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jacqueline Proszynski
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Ashley Kleinman
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeremy Wain Hirschberg
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Matthew MacKay
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Evan E Afshin
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Richard Granstein
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Justin Gurvitch
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Aney KJ, Jeong WJ, Vallejo AF, Burdziak C, Chen E, Wang A, Koak P, Wise K, Jensen K, Pe'er D, Dougan SK, Martelotto L, Nissim S. Novel Approach for Pancreas Transcriptomics Reveals the Cellular Landscape in Homeostasis and Acute Pancreatitis. Gastroenterology 2024; 166:1100-1113. [PMID: 38325760 PMCID: PMC11102849 DOI: 10.1053/j.gastro.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND & AIMS Acinar cells produce digestive enzymes that impede transcriptomic characterization of the exocrine pancreas. Thus, single-cell RNA-sequencing studies of the pancreas underrepresent acinar cells relative to histological expectations, and a robust approach to capture pancreatic cell responses in disease states is needed. We sought to innovate a method that overcomes these challenges to accelerate study of the pancreas in health and disease. METHODS We leverage FixNCut, a single-cell RNA-sequencing approach in which tissue is reversibly fixed with dithiobis(succinimidyl propionate) before dissociation and single-cell preparation. We apply FixNCut to an established mouse model of acute pancreatitis, validate findings using GeoMx whole transcriptome atlas profiling, and integrate our data with prior studies to compare our method in both mouse and human pancreas datasets. RESULTS FixNCut achieves unprecedented definition of challenging pancreatic cells, including acinar and immune populations in homeostasis and acute pancreatitis, and identifies changes in all major cell types during injury and recovery. We define the acinar transcriptome during homeostasis and acinar-to-ductal metaplasia and establish a unique gene set to measure deviation from normal acinar identity. We characterize pancreatic immune cells, and analysis of T-cell subsets reveals a polarization of the homeostatic pancreas toward type-2 immunity. We report immune responses during acute pancreatitis and recovery, including early neutrophil infiltration, expansion of dendritic cell subsets, and a substantial shift in the transcriptome of macrophages due to both resident macrophage activation and monocyte infiltration. CONCLUSIONS FixNCut preserves pancreatic transcriptomes to uncover novel cell states during homeostasis and following pancreatitis, establishing a broadly applicable approach and reference atlas for study of pancreas biology and disease.
Collapse
Affiliation(s)
- Katherine J Aney
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts; Health Sciences & Technology Program, Harvard-MIT, Boston, Massachusetts; Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Woo-Jeong Jeong
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Cassandra Burdziak
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ethan Chen
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Austin Wang
- Harvard University, Cambridge, Massachusetts
| | - Pal Koak
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kellie Wise
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, South Australia, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, South Australia, Australia
| | - Kirk Jensen
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, South Australia, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, South Australia, Australia; Australian Genome Research Facility, Melbourne, Victoria, Australia
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Stephanie K Dougan
- Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics (ACE), University of Adelaide, South Australia, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, South Australia, Australia.
| | - Sahar Nissim
- Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts; Health Sciences & Technology Program, Harvard-MIT, Boston, Massachusetts; Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts; Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
18
|
Park JH, Mortaja M, Son HG, Zhao X, Sloat LM, Azin M, Wang J, Collier MR, Tummala KS, Mandinova A, Bardeesy N, Semenov YR, Mino-Kenudson M, Demehri S. Statin prevents cancer development in chronic inflammation by blocking interleukin 33 expression. Nat Commun 2024; 15:4099. [PMID: 38816352 PMCID: PMC11139893 DOI: 10.1038/s41467-024-48441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic inflammation is a major cause of cancer worldwide. Interleukin 33 (IL-33) is a critical initiator of cancer-prone chronic inflammation; however, its induction mechanism by environmental causes of chronic inflammation is unknown. Herein, we demonstrate that Toll-like receptor (TLR)3/4-TBK1-IRF3 pathway activation links environmental insults to IL-33 induction in the skin and pancreas inflammation. An FDA-approved drug library screen identifies pitavastatin to effectively suppress IL-33 expression by blocking TBK1 membrane recruitment/activation through the mevalonate pathway inhibition. Accordingly, pitavastatin prevents chronic pancreatitis and its cancer sequela in an IL-33-dependent manner. The IRF3-IL-33 axis is highly active in chronic pancreatitis and its associated pancreatic cancer in humans. Interestingly, pitavastatin use correlates with a significantly reduced risk of chronic pancreatitis and pancreatic cancer in patients. Our findings demonstrate that blocking the TBK1-IRF3-IL-33 signaling axis suppresses cancer-prone chronic inflammation. Statins present a safe and effective prophylactic strategy to prevent chronic inflammation and its cancer sequela.
Collapse
Affiliation(s)
- Jong Ho Park
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Anatomy, School of Medicine, Keimyung University, Daegu, South Korea
| | - Mahsa Mortaja
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xutu Zhao
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lauren M Sloat
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael R Collier
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Krishna S Tummala
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Quantitative Biosciences, Merck Research Laboratories, Boston, MA, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Yevgeniy R Semenov
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, USA
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Liou GY, Byrd CJ, Storz P, Messex JK. Cytokine CCL9 Mediates Oncogenic KRAS-Induced Pancreatic Acinar-to-Ductal Metaplasia by Promoting Reactive Oxygen Species and Metalloproteinases. Int J Mol Sci 2024; 25:4726. [PMID: 38731942 PMCID: PMC11083758 DOI: 10.3390/ijms25094726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Crystal J. Byrd
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Justin K. Messex
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| |
Collapse
|
20
|
Wiley MB, Bauer J, Alvarez V, Mehrotra K, Cheng W, Kolics Z, Giarrizzo M, Ingle K, Bialkowska AB, Jung B. Activin A signaling stimulates neutrophil activation and macrophage migration in pancreatitis. Sci Rep 2024; 14:9382. [PMID: 38654064 PMCID: PMC11039671 DOI: 10.1038/s41598-024-60065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Acute Pancreatitis (AP) is associated with high mortality and current treatment options are limited to supportive care. We found that blockade of activin A (activin) in mice improves outcomes in two murine models of AP. To test the hypothesis that activin is produced early in response to pancreatitis and is maintained throughout disease progression to stimulate immune cells, we first performed digital spatial profiling (DSP) of human chronic pancreatitis (CP) patient tissue. Then, transwell migration assays using RAW264.7 mouse macrophages and qPCR analysis of "neutrophil-like" HL-60 cells were used for functional correlation. Immunofluorescence and western blots on cerulein-induced pancreatitis samples from pancreatic acinar cell-specific Kras knock-in (Ptf1aCreER™; LSL-KrasG12D) and functional WT Ptf1aCreER™ mouse lines mimicking AP and CP to allow for in vivo confirmation. Our data suggest activin promotes neutrophil and macrophage activation both in situ and in vitro, while pancreatic activin production is increased as early as 1 h in response to pancreatitis and is maintained throughout CP in vivo. Taken together, activin is produced early in response to pancreatitis and is maintained throughout disease progression to promote neutrophil and macrophage activation.
Collapse
Affiliation(s)
- Mark B Wiley
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Jessica Bauer
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Valentina Alvarez
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Kunaal Mehrotra
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Wenxuan Cheng
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Zoe Kolics
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Komala Ingle
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Jung
- Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
| |
Collapse
|
21
|
Huang Q, Ge Y, He Y, Wu J, Tong Y, Shang H, Liu X, Ba X, Xia D, Peng E, Chen Z, Tang K. The Application of Nanoparticles Targeting Cancer-Associated Fibroblasts. Int J Nanomedicine 2024; 19:3333-3365. [PMID: 38617796 PMCID: PMC11012801 DOI: 10.2147/ijn.s447350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer-associated fibroblasts (CAF) are the most abundant stromal cells in the tumor microenvironment (TME), especially in solid tumors. It has been confirmed that it can not only interact with tumor cells to promote cancer progression and metastasis, but also affect the infiltration and function of immune cells to induce chemotherapy and immunotherapy resistance. So, targeting CAF has been considered an important method in cancer treatment. The rapid development of nanotechnology provides a good perspective to improve the efficiency of targeting CAF. At present, more and more researches have focused on the application of nanoparticles (NPs) in targeting CAF. These studies explored the effects of different types of NPs on CAF and the multifunctional nanomedicines that can eliminate CAF are able to enhance the EPR effect which facilitate the anti-tumor effect of themselves. There also exist amounts of studies focusing on using NPs to inhibit the activation and function of CAF to improve the therapeutic efficacy. The application of NPs targeting CAF needs to be based on an understanding of CAF biology. Therefore, in this review, we first summarized the latest progress of CAF biology, then discussed the types of CAF-targeting NPs and the main strategies in the current. The aim is to elucidate the application of NPs in targeting CAF and provide new insights for engineering nanomedicine to enhance immune response in cancer treatment.
Collapse
Affiliation(s)
- Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| |
Collapse
|
22
|
Linehan A, O’Reilly M, McDermott R, O’Kane GM. Targeting KRAS mutations in pancreatic cancer: opportunities for future strategies. Front Med (Lausanne) 2024; 11:1369136. [PMID: 38576709 PMCID: PMC10991798 DOI: 10.3389/fmed.2024.1369136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Targeting the RAS pathway remains the holy grail of precision oncology. In the case of pancreatic ductal adenocarcinomas (PDAC), 90-92% harbor mutations in the oncogene KRAS, triggering canonical MAPK signaling. The smooth structure of the altered KRAS protein without a binding pocket and its affinity for GTP have, in the past, hampered drug development. The emergence of KRASG12C covalent inhibitors has provided renewed enthusiasm for targeting KRAS. The numerous pathways implicated in RAS activation do, however, lead to the development of early resistance. In addition, the dense stromal niche and immunosuppressive microenvironment dictated by oncogenic KRAS can influence treatment responses, highlighting the need for a combination-based approach. Given that mutations in KRAS occur early in PDAC tumorigenesis, an understanding of its pleiotropic effects is key to progress in this disease. Herein, we review current perspectives on targeting KRAS with a focus on PDAC.
Collapse
Affiliation(s)
- Anna Linehan
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Mary O’Reilly
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Ray McDermott
- Department of Medical Oncology, St Vincent’s University Hospital, Dublin, Ireland
| | - Grainne M. O’Kane
- Department of Medical Oncology, St James’s Hospital, Dublin, Ireland
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
23
|
Wei D, Wang L, Zuo X, Maitra A, Bresalier RS. A Small Molecule with Big Impact: MRTX1133 Targets the KRASG12D Mutation in Pancreatic Cancer. Clin Cancer Res 2024; 30:655-662. [PMID: 37831007 PMCID: PMC10922474 DOI: 10.1158/1078-0432.ccr-23-2098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
KRAS mutations drive oncogenic alterations in numerous cancers, particularly in human pancreatic ductal adenocarcinoma (PDAC). About 93% of PDACs have KRAS mutations, with G12D (∼42% of cases) and G12V (∼32% of cases) being the most common. The recent approval of sotorasib (AMG510), a small-molecule, covalent, and selective KRASG12C inhibitor, for treating patients with non-small cell lung cancer represents a breakthrough in KRAS targeted therapy. However, there is a need to develop other much-needed KRAS-mutant inhibitors for PDAC therapy. Notably, Mirati Therapeutics recently developed MRTX1133, a small-molecule, noncovalent, and selective KRASG12D inhibitor through extensive structure-based drug design. MRTX1133 has demonstrated potent in vitro and in vivo antitumor efficacy against KRASG12D-mutant cancer cells, especially in PDAC, leading to its recent initiation of a phase I/II clinical trial. Here, we provide a summary of the recent advancements related to the use of MRTX1133 for treating KRASG12D-mutant PDAC, focusing on its efficacy and underlying mechanistic actions. In addition, we discuss potential challenges and future directions for MRTX1133 therapy for PDAC, including overcoming intrinsic and acquired drug resistance, developing effective combination therapies, and improving MRTX1133's oral bioavailability and target spectrum. The promising results obtained from preclinical studies suggest that MRTX1133 could revolutionize the treatment of PDAC, bringing about a paradigm shift in its management.
Collapse
Affiliation(s)
- Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Liang Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Robert S. Bresalier
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
24
|
Xu M, Zhao X, Wen T, Qu X. Unveiling the role of KRAS in tumor immune microenvironment. Biomed Pharmacother 2024; 171:116058. [PMID: 38171240 DOI: 10.1016/j.biopha.2023.116058] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Kirsten rats sarcoma viral oncogene (KRAS), the first discovered human oncogene, has long been recognized as "undruggable". KRAS mutations frequently occur in multiple human cancers including non-small cell lung cancer(NSCLC), colorectal cancer(CRC) and pancreatic ductal adenocarcinoma(PDAC), functioning as a "molecule switch" determining the activation of various oncogenic signaling pathways. Except for its intrinsic pro-tumorigenic role, KRAS alteration also exhibits an unique immune signature characterized by elevated PD-L1 level and high tumor mutational burden(TMB). KRAS mutation shape an immune suppressive microenvironment by impeding effective T cells infiltration and recruiting suppressive immune cells including myeloid-derived suppressor cells(MDSCs), regulatory T cells(Tregs), cancer associated fibroblasts(CAFs). In immune checkpoint inhibitor(ICI) era, NSCLC patients with mutated KRAS tend to be more responsive to ICI than patients with intact KRAS. The hallmark for KRAS mutation is the existence of multiple kinds of co-mutations. Different types of co-alterations have distinct tumor microenvironment(TME) signatures and responses to ICI. TP53 co-mutation possess a "hot" TME and achieve higher response to immunotherapy while other loss of function mutation correlated with a "colder" TME and a poor outcome to ICI-based therapy. The groundbreaking discovery of KRAS G12C inhibitors significantly improved outcomes for this KRAS subtype even though efficacy was limited to NSCLC patients. KRAS G12C inhibitors also restore the suppressive TME, creating an opportunity for combinations with ICI. However, an inevitable challenge to KRAS inhibitors is drug resistance. Promising combination strategies such as combination with SHP2 is an approach deserve further exploration because of their immune modulatory effect.
Collapse
Affiliation(s)
- Miao Xu
- Department of Medical Oncology, the First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Provinces, The First Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Xing Zhao
- Department of Pediatrics, the First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Provinces, The First Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Provinces, The First Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Cancer Research Center of Shenyang, the First Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, Liaoning, China.
| |
Collapse
|
25
|
Bhattacharyya S, Oon C, Diaz L, Sandborg H, Stempinski ES, Saoi M, Morgan TK, López CS, Cross JR, Sherman MH. Autotaxin-lysolipid signaling suppresses a CCL11-eosinophil axis to promote pancreatic cancer progression. NATURE CANCER 2024; 5:283-298. [PMID: 38195933 PMCID: PMC10899115 DOI: 10.1038/s43018-023-00703-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Lipids and their modifying enzymes regulate diverse features of the tumor microenvironment and cancer progression. The secreted enzyme autotaxin (ATX) hydrolyzes extracellular lysophosphatidylcholine to generate the multifunctional lipid mediator lysophosphatidic acid (LPA) and supports the growth of several tumor types, including pancreatic ductal adenocarcinoma (PDAC). Here we show that ATX suppresses the accumulation of eosinophils in the PDAC microenvironment. Genetic or pharmacologic ATX inhibition increased the number of intratumor eosinophils, which promote tumor cell apoptosis locally and suppress tumor progression. Mechanistically, ATX suppresses eosinophil accumulation via an autocrine feedback loop, wherein ATX-LPA signaling negatively regulates the activity of the AP-1 transcription factor c-Jun, in turn suppressing the expression of the potent eosinophil chemoattractant CCL11 (eotaxin-1). Eosinophils were identified in human PDAC specimens, and rare individuals with high intratumor eosinophil abundance had the longest overall survival. Together with recent findings, this study reveals the context-dependent, immune-modulatory potential of ATX-LPA signaling in cancer.
Collapse
Affiliation(s)
- Sohinee Bhattacharyya
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chet Oon
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis Diaz
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Holly Sandborg
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin S Stempinski
- Multiscale Microscopy Core Facility, Oregon Health & Science University, Portland, OR, USA
| | - Michelle Saoi
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Claudia S López
- Multiscale Microscopy Core Facility, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
26
|
Pramanik N, Gupta A, Ghanwatkar Y, Mahato RI. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release 2024; 366:231-260. [PMID: 38171473 PMCID: PMC10922996 DOI: 10.1016/j.jconrel.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Despite significant treatment efforts, pancreatic ductal adenocarcinoma (PDAC), the deadliest solid tumor, is still incurable in the preclinical stages due to multifacet stroma, dense desmoplasia, and immune regression. Additionally, tumor heterogeneity and metabolic changes are linked to low grade clinical translational outcomes, which has prompted the investigation of the mechanisms underlying chemoresistance and the creation of effective treatment approaches by selectively targeting genetic pathways. Since targeting upstream molecules in first-line oncogenic signaling pathways typically has little clinical impact, downstream signaling pathways have instead been targeted in both preclinical and clinical studies. In this review, we discuss how the complexity of various tumor microenvironment (TME) components and the oncogenic signaling pathways that they are connected to actively contribute to the development and spread of PDAC, as well as the ways that recent therapeutic approaches have been targeted to restore it. We also illustrate how many endogenous stimuli-responsive linker-based nanocarriers have recently been developed for the specific targeting of distinct oncogenes and their downstream signaling cascades as well as their ongoing clinical trials. We also discuss the present challenges, prospects, and difficulties in the development of first-line oncogene-targeting medicines for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Nilkamal Pramanik
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya Gupta
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
27
|
Zhang G, Shu Z, Yu J, Li J, Yi P, Wu B, Deng D, Yan S, Li Y, Ren D, Hou Y, Lan C. High ANO1 expression is a prognostic factor and correlated with an immunosuppressive tumor microenvironment in pancreatic cancer. Front Immunol 2024; 15:1341209. [PMID: 38352864 PMCID: PMC10861777 DOI: 10.3389/fimmu.2024.1341209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background Aminooctylamine (ANO1) plays an oncogenic role in various cancers. However. its role in pancreatic cancer (PC) has rarely been studied. This study investigated the prognostic value of ANO1 and its correlation with the tumor microenvironment (TME) in PC. Methods Consecutive patients with PC (n = 119) were enrolled. The expression of ANO1 in cancer cells, the expression of fibroblast activation protein (FAP) and alpha smooth muscle actin in cancer-associated fibroblasts (CAFs), and the numbers of CD8- and FOXP3-positive tumor-infiltrating lymphocytes (TILs) were evaluated using immunohistochemistry. The prognostic value of ANO1 and its correlation with CAF subgroups and TILs were analyzed. The possible mechanism of ANO1 in the TME of PC was predicted using the the Cancer Genome Atlas (TCGA) dataset. Results The expression of AN01 was correlated with overall survival (OS) and disease-free survival. Multi-factor analysis showed that high ANO1 expression was an independent adverse prognostic factor for OS (hazard ratio, 4.137; P = 0.001). ANO1 expression was positively correlated with the expression of FAP in CAFs (P < 0.001) and negatively correlated with the number of CD8-positive TILs (P = 0.005), which was also validated by bioinformatics analysis in the TCGA dataset. Moreover, bioinformatic analysis of the TCGA dataset revealed that ANO1 may induce an immunosuppressive tumor microenvironment in pancreatic cancer in a paracrine manner. Conclusion ANO1 is a prognostic factor in patients with PC after radical resection. ANO1 may induce an immunosuppressive tumor microenvironment in PC in a paracrine manner, suggesting that ANO1 may be a novel therapeutic target.
Collapse
Affiliation(s)
- Guangnian Zhang
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhihui Shu
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jun Yu
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jianshui Li
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Pengsheng Yi
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bin Wu
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dawei Deng
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shu Yan
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Li
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Dongmei Ren
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Lan
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
28
|
Sini MC, Doro MG, Frogheri L, Zinellu A, Paliogiannis P, Porcu A, Scognamillo F, Delogu D, Santeufemia DA, Persico I, Palomba G, Maestrale GB, Cossu A, Palmieri G. Combination of mutations in genes controlling DNA repair and high mutational load plays a prognostic role in pancreatic ductal adenocarcinoma (PDAC): a retrospective real-life study in Sardinian population. J Transl Med 2024; 22:108. [PMID: 38280995 PMCID: PMC10821545 DOI: 10.1186/s12967-024-04923-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Patients with pancreatic ductal adenocarcinoma (PDCA) carrying impaired mismatch repair mechanisms seem to have an outcome advantage under treatment with conventional chemotherapy, whereas the role for the tumor mutation burden on prognosis is controversial. In this study, we evaluated the prognostic role of the mutated genes involved in genome damage repair in a real-life series of PDAC patients in a hospital-based manner from the main Institution deputed to surgically treat such a disease in North Sardinia. METHODS A cohort of fifty-five consecutive PDAC patients with potentially resectable/border line resectable PDAC (stage IIB-III) or oligometastatic disease (stage IV) and tumor tissue availability underwent next-generation sequencing (NGS)-based analysis using a panel containing driver oncogenes and tumor suppressor genes as well as genes controlling DNA repair mechanisms. RESULTS Genes involved in the both genome damage repair (DR) and DNA mismatch repair (MMR) were found mutated in 17 (31%) and 15 (27%) cases, respectively. One fourth of PDAC cases (14/55; 25.5%) carried tumors presenting a combination of mutations in repair genes (DR and MMR) and the highest mutation load rates (MLR-H). After correction for confounders (surgery, adjuvant therapy, stage T, and metastasis), multivariate Cox regression analysis indicated that mutations in DR genes (HR = 3.0126, 95% CI 1.0707 to 8.4764, p = 0.0367) and the MLR (HR = 1.0018, 95%CI 1.0005 to 1.0032, p = 0.009) were significantly related to worse survival. CONCLUSIONS The combination of mutated repair genes and MLR-H, which is associated with a worse survival in our series of PDAC patients treated with conventional chemotherapy protocols, might become a predictive biomarker of response to immunotherapy in addition to its prognostic role in predicting survival.
Collapse
Affiliation(s)
- Maria Cristina Sini
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Maria Grazia Doro
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Laura Frogheri
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Alberto Porcu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Fabrizio Scognamillo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Daniele Delogu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Traversa La Crucca 3, 07100, Sassari, Italy
| | | | - Ivana Persico
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Grazia Palomba
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Giovanni Battista Maestrale
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy
| | - Antonio Cossu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Genetic Biomedical Research (IRGB), National Research Council (CNR), Sassari, Italy.
- Immuno-Oncology & Targeted Cancer Biotherapies, University of Sassari, Sassari, Italy.
| |
Collapse
|
29
|
Hamel Z, Sanchez S, Standing D, Anant S. Role of STAT3 in pancreatic cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:20-34. [PMID: 38464736 PMCID: PMC10918236 DOI: 10.37349/etat.2024.00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 03/12/2024] Open
Abstract
Pancreatic cancer remains a serious and deadly disease, impacting people globally. There remain prominent gaps in the current understanding of the disease, specifically regarding the role of the signal transducer and activator of transcription (STAT) family of proteins in pancreatic tumors. STAT proteins, particularly STAT3, play important roles in pancreatic cancer, especially pancreatic ductal adenocarcinoma (PDAC), which is the most prevalent histotype. The role of STAT3 across a continuum of molecular processes, such as PDAC tumorigenesis and progression, immune escape, drug resistance and stemness, and modulation of the tumor microenvironment (TME), are only a tip of the iceberg. In some ways, the role of STAT3 in PDAC may hold greater importance than that of oncogenic Kirsten rat sarcoma virus (KRAS). This makes STAT3 a highly attractive target for developing targeted therapies for the treatment of pancreatic cancer. In this review, the current knowledge of STAT3 in pancreatic cancer has been summarized, particularly relating to STAT3 activation in cancer cells, cells of the TME, and the state of targeting STAT3 in pre-clinical and clinical trials of PDAC.
Collapse
Affiliation(s)
- Zachary Hamel
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sierra Sanchez
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
30
|
Müller S, Krishnamurty AT. One Mutation to Rule Them All: Mutant KRAS Controls Tumor Intrinsic and Microenvironment Signaling. Cancer Res 2024; 84:6-8. [PMID: 38016110 DOI: 10.1158/0008-5472.can-23-3682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
In a recent study published in Cancer Discovery, Hsu and colleagues employ an elegant combination of single-cell and bulk RNA sequencing experiments from mouse and human colorectal cancer samples, patient-derived organoids, two-dimensional in vitro systems, and in vivo validation in genetically engineered colorectal cancer mouse models to investigate how mutant KRAS (KRAS*) impacts the tumor microenvironment. They identify a molecular signaling cascade downstream of KRAS* that activates a specific program of lipid-rich cancer-associated fibroblasts, promoting tumor angiogenesis and progression. These findings may lead to new therapeutic strategies for patients with colorectal cancer with KRAS*.
Collapse
|
31
|
Encarnación-Rosado J, Sohn ASW, Biancur DE, Lin EY, Osorio-Vasquez V, Rodrick T, González-Baerga D, Zhao E, Yokoyama Y, Simeone DM, Jones DR, Parker SJ, Wild R, Kimmelman AC. Targeting pancreatic cancer metabolic dependencies through glutamine antagonism. NATURE CANCER 2024; 5:85-99. [PMID: 37814010 PMCID: PMC10824664 DOI: 10.1038/s43018-023-00647-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells use glutamine (Gln) to support proliferation and redox balance. Early attempts to inhibit Gln metabolism using glutaminase inhibitors resulted in rapid metabolic reprogramming and therapeutic resistance. Here, we demonstrated that treating PDAC cells with a Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), led to a metabolic crisis in vitro. In addition, we observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. We found that extracellular signal-regulated kinase (ERK) signaling is increased as a compensatory mechanism. Combinatorial treatment with DRP-104 and trametinib led to a significant increase in survival in a syngeneic model of PDAC. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. The combination with an ERK signaling pathway inhibitor could further improve the therapeutic outcome.
Collapse
Affiliation(s)
- Joel Encarnación-Rosado
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Albert S W Sohn
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Douglas E Biancur
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elaine Y Lin
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victoria Osorio-Vasquez
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tori Rodrick
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Diana González-Baerga
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ende Zhao
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Diane M Simeone
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Drew R Jones
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Seth J Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Wild
- Dracen Pharmaceuticals, Inc., San Diego, CA, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Abstract
This commentary highlights the key recent advances made in the field of pancreatic cancer. Although there has yet to be a major breakthrough in clinical care for the majority of patients, significant strides have been made in understanding the complex biology of this malignancy and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Emilie A.K. Warren
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Gregory B. Lesinski
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Shishir K. Maithel
- Division of Surgical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| |
Collapse
|
33
|
Hsu WH, LaBella KA, Lin Y, Xu P, Lee R, Hsieh CE, Yang L, Zhou A, Blecher JM, Wu CJ, Lin K, Shang X, Jiang S, Spring DJ, Xia Y, Chen P, Shen JP, Kopetz S, DePinho RA. Oncogenic KRAS Drives Lipofibrogenesis to Promote Angiogenesis and Colon Cancer Progression. Cancer Discov 2023; 13:2652-2673. [PMID: 37768068 PMCID: PMC10807546 DOI: 10.1158/2159-8290.cd-22-1467] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/01/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Oncogenic KRAS (KRAS*) contributes to many cancer hallmarks. In colorectal cancer, KRAS* suppresses antitumor immunity to promote tumor invasion and metastasis. Here, we uncovered that KRAS* transforms the phenotype of carcinoma-associated fibroblasts (CAF) into lipid-laden CAFs, promoting angiogenesis and tumor progression. Mechanistically, KRAS* activates the transcription factor CP2 (TFCP2) that upregulates the expression of the proadipogenic factors BMP4 and WNT5B, triggering the transformation of CAFs into lipid-rich CAFs. These lipid-rich CAFs, in turn, produce VEGFA to spur angiogenesis. In KRAS*-driven colorectal cancer mouse models, genetic or pharmacologic neutralization of TFCP2 reduced lipid-rich CAFs, lessened tumor angiogenesis, and improved overall survival. Correspondingly, in human colorectal cancer, lipid-rich CAF and TFCP2 signatures correlate with worse prognosis. This work unveils a new role for KRAS* in transforming CAFs, driving tumor angiogenesis and disease progression, providing an actionable therapeutic intervention for KRAS*-driven colorectal cancer. SIGNIFICANCE This study identified a molecular mechanism contributing to KRAS*-driven colorectal cancer progression via fibroblast transformation in the tumor microenvironment to produce VEGFA driving tumor angiogenesis. In preclinical models, targeting the KRAS*-TFCP2-VEGFA axis impaired tumor progression, revealing a potential novel therapeutic option for patients with KRAS*-driven colorectal cancer. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kyle A. LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiyun Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ping Xu
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rumi Lee
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cheng-En Hsieh
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Yang
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ashley Zhou
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan M. Blecher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kangyu Lin
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Denise J. Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Xia
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peiwen Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
34
|
Hilmi M, Delaye M, Muzzolini M, Nicolle R, Cros J, Hammel P, Cardot-Ruffino V, Neuzillet C. The immunological landscape in pancreatic ductal adenocarcinoma and overcoming resistance to immunotherapy. Lancet Gastroenterol Hepatol 2023; 8:1129-1142. [PMID: 37866368 DOI: 10.1016/s2468-1253(23)00207-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 10/24/2023]
Abstract
Pancreatic ductal adenocarcinoma is associated with a poor prognosis and there are few treatment options. The development of immunotherapy in pancreatic ductal adenocarcinoma has been difficult, and immune checkpoint inhibitors are only effective in a very small subset of patients. Most obstacles for treatment have been related to intertumoural and intratumoural heterogeneity, the composition of tumour stroma, and crosstalk with cancer cells. Improved molecular characterisation of pancreatic ductal adenocarcinoma and a better understanding of its microenvironment have paved the way for novel immunotherapy strategies, including the identification of predictive biomarkers, the development of rational combinations to optimise effectiveness, and the targeting of new mechanisms. Future immunotherapy strategies should consider individual characteristics to move beyond the traditional immune targets and circumvent the resistance to therapies that have been developed so far.
Collapse
Affiliation(s)
- Marc Hilmi
- Gastrointestinal Oncology, Medical Oncology Department, Institut Curie, Université Versailles Saint-Quentin-Université Paris-Saclay, Saint-Cloud, France; Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris, France
| | - Matthieu Delaye
- Gastrointestinal Oncology, Medical Oncology Department, Institut Curie, Université Versailles Saint-Quentin-Université Paris-Saclay, Saint-Cloud, France; Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris, France
| | - Milena Muzzolini
- Digestive Surgery Department, Ambroise Paré Hospital, APHP, Université Versailles Saint-Quentin-Université Paris-Saclay, Boulogne Billancourt, France
| | - Rémy Nicolle
- Université Paris Cité, Centre de Recherche sur l'Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, Paris, France
| | - Jérôme Cros
- Université Paris Cité, Pathology Department, Beaujon Hospital, FHU MOSAIC, AP-HP, Clichy, France
| | - Pascal Hammel
- Université Paris-Saclay, Department of Digestive and Medical Oncology, Paul-Brousse Hospital (APHP Sud), Villejuif, France
| | | | - Cindy Neuzillet
- Gastrointestinal Oncology, Medical Oncology Department, Institut Curie, Université Versailles Saint-Quentin-Université Paris-Saclay, Saint-Cloud, France; Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Paris, France.
| |
Collapse
|
35
|
Cheng NC, Vonderheide RH. Immune vulnerabilities of mutant KRAS in pancreatic cancer. Trends Cancer 2023; 9:928-936. [PMID: 37524642 PMCID: PMC10592263 DOI: 10.1016/j.trecan.2023.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
The 40-year desire to target the mutant Kirsten rat sarcoma (KRAS) gene (mKRAS) therapeutically is being realized with more and more broadly applicable and tumor-specific small-molecule inhibitors. Immunologically, mKRAS has equal desirability as a target. Tumor KRAS signaling plays a large role in shaping the immunosuppressive nature of the tumor microenvironment, especially in pancreatic cancer, leaving mKRAS inhibitors with potentially powerful immune modulatory capabilities that could be exploited in immunological-oncological combinations. mKRAS is itself an immunological antigen, a 'shared neoepitope' linked to the oncogenic process, validated biochemically and immunologically. Novel approaches in the clinic are taking advantage of the fact that mKRAS peptides are naturally processed and presented in tumors by the major histocompatibility complex (MHC).
Collapse
Affiliation(s)
- Noah C Cheng
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
36
|
Thielman NRJ, Funes V, Davuluri S, Ibanez HE, Sun WC, Fu J, Li K, Muth S, Pan X, Fujiwara K, Thomas D, Henderson M, Teh SS, Zhu Q, Thompson E, Jaffee EM, Kolodkin A, Meng F, Zheng L. Tumor- and Nerve-Derived Axon Guidance Molecule Promotes Pancreatic Ductal Adenocarcinoma Progression and Metastasis through Macrophage Reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563862. [PMID: 37961340 PMCID: PMC10634802 DOI: 10.1101/2023.10.24.563862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Axon guidance molecules were found to be the gene family most frequently altered in pancreatic ductal adenocarcinoma (PDA) through mutations and copy number changes. However, the exact molecular mechanism regarding PDA development remained unclear. Using genetically engineered mouse models to examine one of the axon guidance molecules, semaphorin 3D (SEMA3D), we found a dual role for tumor-derived SEMA3D in malignant transformation of pancreatic epithelial cells and a role for nerve-derived SEMA3D in PDA development. This was demonstrated by the pancreatic-specific knockout of the SEMA3D gene from the KRAS G12D and TP53 R 172 H mutation knock-in, PDX1-Cre (KPC) mouse model which demonstrated a delayed tumor initiation and growth comparing to the original KPC mouse model. Our results showed that SEMA3D knockout skews the macrophages in the pancreas away from M2 polarization, providing a potential mechanistic role of tumor-derived SEMA3D in PDA development. The KPC mice with the SEMA3D knockout remained metastasis-free, however, died from primary tumor growth. We then tested the hypothesis that a potential compensation mechanism could result from SEMA3D which is naturally expressed by the intratumoral nerves. Our study further revealed that nerve-derived SEMA3D does not reprogram macrophages directly, but reprograms macrophages indirectly through ARF6 signaling and lactate production in PDA tumor cells. SEMA3D increases tumor-secreted lactate which is sensed by GPCR132 on macrophages and subsequently stimulates pro-tumorigenic M2 polarization in vivo. Tumor intrinsic- and extrinsic-SEMA3D induced ARF6 signaling through its receptor Plexin D1 in a mutant KRAS-dependent manner. Consistently, RNA sequencing database analysis revealed an association of higher KRAS MUT expression with an increase in SEMA3D and ARF6 expression in human PDAs. Moreover, multiplex immunohistochemistry analysis showed an increased number of M2-polarized macrophages proximal to nerves in human PDA tissue expressing SEMA3D. Thus, this study suggests altered expression of SEMA3D in tumor cells lead to acquisition of cancer-promoting functions and the axon guidance signaling originating from nerves is "hijacked" by tumor cells to support their growth. Other axon guidance and neuronal development molecules may play a similar dual role which is worth further investigation. One sentence summary Tumor- and nerve-derived SEMA3D promotes tumor progression and metastasis through macrophage reprogramming in the tumor microenvironment. STATEMENT OF SIGNIFICANCE This study established the dual role of axon guidance molecule, SEMA3D, in the malignant transformation of pancreatic epithelial cells and of nerve-derived SEMA3D in PDA progression and metastasis. It revealed macrophage reprogramming as the mechanism underlying bothroles. Together, this research elucidated how inflammatory responses promote invasive PDA progression and metastasis through an oncogenic process.
Collapse
|
37
|
Yeh C, Park W, Yaeger R. KRAS G12D inhibition in pancreatic cancer: Fas expression facilitates immune clearance. Dev Cell 2023; 58:1515-1516. [PMID: 37699334 DOI: 10.1016/j.devcel.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023]
Abstract
In an article in this issue of Developmental Cell and in a second paper in Cancer Cell, Mahadevan et al. demonstrate that KrasG12D suppression remodels the immunosuppressive microenvironment of KrasG12D pancreatic cancers, recruits activated CD8+ cytotoxic T cells, and epigenetically upregulates Fas expression in cancer cells, leading to tumor clearance via Fas/FasL-mediated apoptosis.
Collapse
Affiliation(s)
- Celine Yeh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY 10065, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
38
|
Bednar F, Pasca di Magliano M. Calligraphy tool offers clues to the origin of pancreatic cancer. Nature 2023; 621:265-266. [PMID: 37587278 DOI: 10.1038/d41586-023-02518-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
39
|
Zhang K, Chen Y, Zhu J, Ge X, Wu J, Xu P, Yao J. Advancement of single-cell sequencing for clinical diagnosis and treatment of pancreatic cancer. Front Med (Lausanne) 2023; 10:1213136. [PMID: 37720505 PMCID: PMC10501729 DOI: 10.3389/fmed.2023.1213136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Single-cell sequencing is a high-throughput technique that enables detection of genomic, transcriptomic, and epigenomic information at the individual cell level, offering significant advantages in detecting cellular heterogeneity, precise cell classification, and identifying rare subpopulations. The technique holds tremendous potential in improving the diagnosis and treatment of pancreatic cancer. Moreover, single-cell sequencing provides unique insights into the mechanisms of pancreatic cancer metastasis and cachexia, paving the way for developing novel preventive strategies. Overall, single-cell sequencing has immense potential in promoting early diagnosis, guiding personalized treatment, and preventing complications of pancreatic cancer. Emerging single-cell sequencing technologies will undoubtedly enhance our understanding of the complex biology of pancreatic cancer and pave the way for new directions in its clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Ke Zhang
- Dalian Medical University, Dalian, China
| | - Yuan Chen
- Medical College of Yangzhou University, Yangzhou, China
| | - Jie Zhu
- Medical College of Yangzhou University, Yangzhou, China
| | - Xinyu Ge
- Dalian Medical University, Dalian, China
| | - Junqing Wu
- Medical College of Yangzhou University, Yangzhou, China
| | - Peng Xu
- Northern Jiangsu People’s Hospital Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jie Yao
- Northern Jiangsu People’s Hospital Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Sharma D, Wessel CR, Mahdavinia M, Preuss F, Bishehsari F. Reorganization of pancreas circadian transcriptome with aging. Aging (Albany NY) 2023; 15:7909-7921. [PMID: 37647013 PMCID: PMC10497008 DOI: 10.18632/aging.204929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023]
Abstract
The evolutionarily conserved circadian system allows organisms to synchronize internal processes with 24-h cycling environmental timing cues, ensuring optimal adaptation. Like other organs, the pancreas function is under circadian control. Recent evidence suggests that aging by itself is associated with altered circadian homeostasis in different tissues which could affect the organ's resiliency to aging-related pathologies. Pancreas pathologies of either endocrine or exocrine components are age-related. Whether pancreas circadian transcriptome output is affected by age is still unknown. To address this, here we profiled the impact of age on the pancreatic transcriptome over a full circadian cycle and elucidated a circadian transcriptome reorganization of pancreas by aging. Our study highlights gain of rhythms in the extrinsic cellular pathways in the aged pancreas and extends a potential role to fibroblast-associated mechanisms.
Collapse
Affiliation(s)
- Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Caitlin R. Wessel
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mahboobeh Mahdavinia
- Division of Allergy and Immunology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fabian Preuss
- University of Wisconsin-Parkside, Department: Biological Sciences, Kenosha, WI 53144, USA
| | - Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
41
|
Sharma D, Wessel CR, Mahdavinia M, Preuss F, Bishehsari F. Reorganization of Pancreas Circadian Transcriptome with Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541196. [PMID: 37292612 PMCID: PMC10245651 DOI: 10.1101/2023.05.17.541196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The evolutionarily conserved circadian system allows organisms to synchronize internal processes with 24-h cycling environmental timing cues, ensuring optimal adaptation. Like other organs, the pancreas function is under circadian control. Recent evidence suggests that aging by itself is associated with altered circadian homeostasis in different tissues which could affect the organ's resiliency to aging-related pathologies. Pancreas pathologies of either endocrine or exocrine components are age-related. Whether pancreas circadian transcriptome output is affected by age is still unknown. To address this, here we profiled the impact of age on the pancreatic transcriptome over a full circadian cycle and elucidated a circadian transcriptome reorganization of pancreas by aging. Our study highlights gain of rhythms in the extrinsic cellular pathways in the aged pancreas and extends a potential role to fibroblast-associated mechanisms.
Collapse
|
42
|
Burdziak C, Alonso-Curbelo D, Walle T, Reyes J, Barriga FM, Haviv D, Xie Y, Zhao Z, Zhao CJ, Chen HA, Chaudhary O, Masilionis I, Choo ZN, Gao V, Luan W, Wuest A, Ho YJ, Wei Y, Quail DF, Koche R, Mazutis L, Chaligné R, Nawy T, Lowe SW, Pe’er D. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 2023; 380:eadd5327. [PMID: 37167403 PMCID: PMC10316746 DOI: 10.1126/science.add5327] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
The response to tumor-initiating inflammatory and genetic insults can vary among morphologically indistinguishable cells, suggesting as yet uncharacterized roles for epigenetic plasticity during early neoplasia. To investigate the origins and impact of such plasticity, we performed single-cell analyses on normal, inflamed, premalignant, and malignant tissues in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell states that are primed for diverse, late-emerging neoplastic fates and linked these to chromatin remodeling at cell-cell communication loci. Using an inference approach, we revealed signaling gene modules and tissue-level cross-talk, including a neoplasia-driving feedback loop between discrete epithelial and immune cell populations that was functionally validated in mice. Our results uncover a neoplasia-specific tissue-remodeling program that may be exploited for pancreatic cancer interception.
Collapse
Affiliation(s)
- Cassandra Burdziak
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Direna Alonso-Curbelo
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028, Spain
| | - Thomas Walle
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ); Heidelberg 69120, Germany
- Department of Medical Oncology, National Center for Tumor Diseases; Heidelberg University Hospital, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK); Heidelberg 69120, Germany
| | - José Reyes
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Francisco M. Barriga
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Doron Haviv
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Yubin Xie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Zhen Zhao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Chujun Julia Zhao
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
| | - Hsuan-An Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Ignas Masilionis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Zi-Ning Choo
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Vianne Gao
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Wei Luan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Alexandra Wuest
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yuhong Wei
- Rosalind and Morris Goodman Cancer Institute, McGill University; Montreal, QC H3A 1A3, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University; Montreal, QC H3A 1A3, Canada
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
- Institute of Biotechnology, Life Sciences Centre; Vilnius University, Vilnius LT 02158, Lithuania
| | - Ronan Chaligné
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Tal Nawy
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| | - Dana Pe’er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| |
Collapse
|
43
|
Edwards PAW. Re-interpreting tumour behaviour and the tumour microenvironment as normal responses to tissue disorganisation. J Pathol 2023; 260:1-4. [PMID: 36811403 PMCID: PMC10952351 DOI: 10.1002/path.6070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Much of tumour cell biology and the tumour microenvironment may be normal wound-healing responses as a consequence of the disruption of tissue structure. This is why tumours resemble wounds, and many features of the tumour microenvironment, such as the epithelial-mesenchymal transition, cancer-associated fibroblasts, and inflammatory infiltrates, may largely be normal responses to abnormal tissue structure, not an exploitation of wound-healing biology. © 2023 The Author. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
|
44
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 353] [Impact Index Per Article: 176.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Arpinati L, Scherz-Shouval R. From gatekeepers to providers: regulation of immune functions by cancer-associated fibroblasts. Trends Cancer 2023; 9:421-443. [PMID: 36870916 DOI: 10.1016/j.trecan.2023.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are major protumorigenic components of the tumor microenvironment in solid cancers. CAFs are heterogeneous, consisting of multiple subsets that display diverse functions. Recently, CAFs have emerged as major promoters of immune evasion. CAFs favor T cell exclusion and exhaustion, promote recruitment of myeloid-derived suppressor cells, and induce protumoral phenotypic shifts in macrophages and neutrophils. With the growing appreciation of CAF heterogeneity came the understanding that different CAF subpopulations may be driving distinct immune-regulatory effects, interacting with different cell types, and perhaps even driving opposing effects on malignancy. In this review we discuss the current understanding of CAF-immune interactions, their effect on tumor progression and therapeutic response, and the possibility of exploiting CAF-immune interactions as potential targets for cancer therapy.
Collapse
Affiliation(s)
- Ludovica Arpinati
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
46
|
Mainardi S. With a little help from my T friends: T cells increase efficacy of KRAS (G12D) inhibitors. Cell Rep Med 2023; 4:100950. [PMID: 36812887 PMCID: PMC9975326 DOI: 10.1016/j.xcrm.2023.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Mutation-selective KRAS inhibitors are revolutionizing the treatment of RAS-mutant tumors but cannot achieve durable effects alone. Kemp and colleagues1 recently showed how the KRAS-G12D-specific inhibitor MRTX1133, while impairing cancer proliferation, stimulates T cell infiltration, which is crucial for sustained disease control.
Collapse
Affiliation(s)
- Sara Mainardi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
47
|
GLI1 interaction with p300 modulates SDF1 expression in cancer-associated fibroblasts to promote pancreatic cancer cells migration. Biochem J 2023; 480:225-241. [PMID: 36734208 DOI: 10.1042/bcj20220521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs) play an important role in the progression of multiple malignancies. Secretion of cytokines and growth factors underlies the pro-tumoral effect of CAFs. Although this paracrine function has been extensively documented, the molecular mechanisms controlling the expression of these factors remain elusive. In this study, we provide evidence of a novel CAF transcriptional axis regulating the expression of SDF1, a major driver of cancer cell migration, involving the transcription factor GLI1 and histone acetyltransferase p300. We demonstrate that conditioned media from CAFs overexpressing GLI1 induce the migration of pancreatic cancer cells, and this effect is impaired by an SDF1-neutralizing antibody. Using a combination of co-immunoprecipitation, proximity ligation assay and chromatin immunoprecipitation assay, we further demonstrate that GLI1 and p300 physically interact in CAFs to co-occupy and drive SDF1 promoter activity. Mapping experiments highlight the requirement of GLI1 N-terminal for the interaction with p300. Importantly, knockdowns of both GLI1 and p300 reduce SDF1 expression. Further analysis shows that knockdown of GLI1 decreases SDF1 promoter activity, p300 recruitment, and levels of its associated histone marks (H4ac, H3K27ac, and H3K14ac). Finally, we show that the integrity of two GLI binding sites in the SDF1 promoter is required for p300 recruitment. Our findings define a new role for the p300-GLI1 complex in the regulation of SDF1, providing new mechanistic insight into the molecular events controlling pancreatic cancer cells migration.
Collapse
|
48
|
Tanjak P, Chaiboonchoe A, Suwatthanarak T, Acharayothin O, Thanormjit K, Chanthercrob J, Suwatthanarak T, Wannasuphaphol B, Chumchuen K, Suktitipat B, Sampattavanich S, Korphaisarn K, Pongpaibul A, Poungvarin N, Grove H, Riansuwan W, Trakarnsanga A, Methasate A, Pithukpakorn M, Chinswangwatanakul V. The KRAS-Mutant Consensus Molecular Subtype 3 Reveals an Immunosuppressive Tumor Microenvironment in Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15041098. [PMID: 36831441 PMCID: PMC9953921 DOI: 10.3390/cancers15041098] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Colorectal cancers (CRC) with KRAS mutations (KRASmut) are frequently included in consensus molecular subtype 3 (CMS3) with profound metabolic deregulation. We explored the transcriptomic impact of KRASmut, focusing on the tumor microenvironment (TME) and pathways beyond metabolic deregulation. The status of KRASmut in patients with CRC was investigated and overall survival (OS) was compared with wild-type KRAS (KRASwt). Next, we identified CMS, and further investigated differentially expressed genes (DEG) of KRASmut and distinctive pathways. Lastly, we used spatially resolved gene expression profiling to define the effect of KRASmut in the TME regions of CMS3-classified CRC tissues. CRC patients with KRASmut were mainly enriched in CMS3. Their specific enrichments of immune gene signatures in immunosuppressive TME were associated with worse OS. Activation of TGFβ signaling by KRASmut was related to reduced pro-inflammatory and cytokine gene signatures, leading to suppression of immune infiltration. Digital spatial profiling in TME regions of KRASmut CMS3-classified tissues suggested up-regulated genes, CD40, CTLA4, ARG1, STAT3, IDO, and CD274, that could be characteristic of immune suppression in TME. This study may help to depict the complex transcriptomic profile of KRASmut in immunosuppressive TME. Future studies and clinical trials in CRC patients with KRASmut should consider these transcriptional landscapes.
Collapse
Affiliation(s)
- Pariyada Tanjak
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Tharathorn Suwatthanarak
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Onchira Acharayothin
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Kullanist Thanormjit
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jantappapa Chanthercrob
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanawat Suwatthanarak
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Bundit Wannasuphaphol
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Kemmapon Chumchuen
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Bhoom Suktitipat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Integrative Computational Bioscience Center, Mahidol University, Nakhon Pathom 73170, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellent for Systems Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Krittiya Korphaisarn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Harald Grove
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Woramin Riansuwan
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Atthaphorn Trakarnsanga
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Asada Methasate
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
| | - Manop Pithukpakorn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Medical Genetics, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Vitoon Chinswangwatanakul
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Wanglang Road, Bangkok 10700, Thailand
- Siriraj Cancer Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Correspondence:
| |
Collapse
|
49
|
Kemp SB, Cheng N, Markosyan N, Sor R, Kim IK, Hallin J, Shoush J, Quinones L, Brown NV, Bassett JB, Joshi N, Yuan S, Smith M, Vostrejs WP, Perez-Vale KZ, Kahn B, Mo F, Donahue TR, Radu CG, Clendenin C, Christensen JG, Vonderheide RH, Stanger BZ. Efficacy of a Small-Molecule Inhibitor of KrasG12D in Immunocompetent Models of Pancreatic Cancer. Cancer Discov 2023; 13:298-311. [PMID: 36472553 PMCID: PMC9900321 DOI: 10.1158/2159-8290.cd-22-1066] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Mutations in the KRAS oncogene are found in more than 90% of patients with pancreatic ductal adenocarcinoma (PDAC), with Gly-to-Asp mutations (KRASG12D) being the most common. Here, we tested the efficacy of a small-molecule KRASG12D inhibitor, MRTX1133, in implantable and autochthonous PDAC models with an intact immune system. In vitro studies validated the specificity and potency of MRTX1133. In vivo, MRTX1133 prompted deep tumor regressions in all models tested, including complete or near-complete remissions after 14 days. Concomitant with tumor cell apoptosis and proliferative arrest, drug treatment led to marked shifts in the tumor microenvironment (TME), including changes in fibroblasts, matrix, and macrophages. T cells were necessary for MRTX1133's full antitumor effect, and T-cell depletion accelerated tumor regrowth after therapy. These results validate the specificity, potency, and efficacy of MRTX1133 in immunocompetent KRASG12D-mutant PDAC models, providing a rationale for clinical testing and a platform for further investigation of combination therapies. SIGNIFICANCE Pharmacologic inhibition of KRASG12D in pancreatic cancer models with an intact immune system stimulates specific, potent, and durable tumor regressions. In the absence of overt toxicity, these results suggest that this and similar inhibitors should be tested as potential, high-impact novel therapies for patients with PDAC. See related commentary by Redding and Grabocka, p. 260. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Samantha B. Kemp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noah Cheng
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nune Markosyan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rina Sor
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Il-Kyu Kim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | - Jason Shoush
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liz Quinones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Natalie V. Brown
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jared B. Bassett
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nikhil Joshi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Salina Yuan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Molly Smith
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - William P. Vostrejs
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kia Z. Perez-Vale
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin Kahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Feiyan Mo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy R. Donahue
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Cynthia Clendenin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Robert H. Vonderheide
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z. Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
50
|
Menjivar RE, Nwosu ZC, Du W, Donahue KL, Hong HS, Espinoza C, Brown K, Velez-Delgado A, Yan W, Lima F, Bischoff A, Kadiyala P, Salas-Escabillas D, Crawford HC, Bednar F, Carpenter E, Zhang Y, Halbrook CJ, Lyssiotis CA, Pasca di Magliano M. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife 2023; 12:e80721. [PMID: 36727849 PMCID: PMC10260021 DOI: 10.7554/elife.80721] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
An extensive fibroinflammatory stroma rich in macrophages is a hallmark of pancreatic cancer. In this disease, it is well appreciated that macrophages are immunosuppressive and contribute to the poor response to immunotherapy; however, the mechanisms of immune suppression are complex and not fully understood. Immunosuppressive macrophages are classically defined by the expression of the enzyme Arginase 1 (ARG1), which we demonstrated is potently expressed in pancreatic tumor-associated macrophages from both human patients and mouse models. While routinely used as a polarization marker, ARG1 also catabolizes arginine, an amino acid required for T cell activation and proliferation. To investigate this metabolic function, we used a genetic and a pharmacologic approach to target Arg1 in pancreatic cancer. Genetic inactivation of Arg1 in macrophages, using a dual recombinase genetically engineered mouse model of pancreatic cancer, delayed formation of invasive disease, while increasing CD8+ T cell infiltration. Additionally, Arg1 deletion induced compensatory mechanisms, including Arg1 overexpression in epithelial cells, namely Tuft cells, and Arg2 overexpression in a subset of macrophages. To overcome these compensatory mechanisms, we used a pharmacological approach to inhibit arginase. Treatment of established tumors with the arginase inhibitor CB-1158 exhibited further increased CD8+ T cell infiltration, beyond that seen with the macrophage-specific knockout, and sensitized the tumors to anti-PD1 immune checkpoint blockade. Our data demonstrate that Arg1 drives immune suppression in pancreatic cancer by depleting arginine and inhibiting T cell activation.
Collapse
Affiliation(s)
- Rosa E Menjivar
- Cellular and Molecular Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
| | - Zeribe C Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Wenting Du
- Department of Surgery, University of Michigan-Ann ArborAnn ArborUnited States
| | - Katelyn L Donahue
- Cancer Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
| | - Hanna S Hong
- Department of Immunology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Carlos Espinoza
- Department of Surgery, University of Michigan-Ann ArborAnn ArborUnited States
| | - Kristee Brown
- Department of Surgery, University of Michigan-Ann ArborAnn ArborUnited States
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Wei Yan
- Department of Surgery, University of Michigan-Ann ArborAnn ArborUnited States
| | - Fatima Lima
- Department of Surgery, University of Michigan-Ann ArborAnn ArborUnited States
| | - Allison Bischoff
- Cancer Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
| | - Padma Kadiyala
- Department of Immunology, University of Michigan-Ann ArborAnn ArborUnited States
| | | | | | - Filip Bednar
- Department of Surgery, University of Michigan-Ann ArborAnn ArborUnited States
- Rogel Cancer CenterAnn ArborUnited States
| | - Eileen Carpenter
- Rogel Cancer CenterAnn ArborUnited States
- Department of Internal Medicine, Division of Gastroenterolog, University of Michigan-Ann ArborAnn ArborUnited States
| | - Yaqing Zhang
- Department of Surgery, University of Michigan-Ann ArborAnn ArborUnited States
- Rogel Cancer CenterAnn ArborUnited States
| | - Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, IrvineIrvineUnited States
- Chao Family Comprehensive Cancer Center, University of California, IrvineIrvineUnited States
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan-Ann ArborAnn ArborUnited States
- Cancer Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
- Rogel Cancer CenterAnn ArborUnited States
- Department of Internal Medicine, Division of Gastroenterolog, University of Michigan-Ann ArborAnn ArborUnited States
| | - Marina Pasca di Magliano
- Cellular and Molecular Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
- Cancer Biology Program, University of Michigan-Ann ArborAnn ArborUnited States
- Department of Cell and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
- Henry Ford Pancreatic Cancer CenterDetroitUnited States
- Rogel Cancer CenterAnn ArborUnited States
| |
Collapse
|