1
|
Govaere O, Cockell SJ, Zatorska M, Wonders K, Tiniakos D, Frey AM, Palmowksi P, Walker R, Porter A, Trost M, Anstee QM, Daly AK. Pharmacogene expression during progression of metabolic dysfunction-associated steatotic liver disease: Studies on mRNA and protein levels and their relevance to drug treatment. Biochem Pharmacol 2024; 228:116249. [PMID: 38697308 DOI: 10.1016/j.bcp.2024.116249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is common worldwide. Genes and proteins contributing to drug disposition may show altered expression as MASLD progresses. To assess this further, we undertook transcriptomic and proteomic analysis of 137 pharmacogenes in liver biopsies from a large MASLD cohort. We performed sequencing on RNA from 216 liver biopsies (206 MASLD and 10 controls). Untargeted mass spectrometry proteomics was performed on a 103 biopsy subgroup. Selected RNA sequencing signals were replicated with an additional 187 biopsies. Comparison of advanced MASLD (fibrosis score 3/4) with milder disease (fibrosis score 0-2) by RNA sequencing showed significant alterations in expression of certain phase I, phase II and ABC transporters. For cytochromes P450, CYP2C19 showed the most significant decreased expression (30 % of that in mild disease) but significant decreased expression of other CYPs (including CYP2C8 and CYP2E1) also occurred. CYP2C19 also showed a significant decrease comparing the inflammatory form of MASLD (MASH) with non-MASH biopsies. Findings for CYP2C19 were confirmed in the replication cohort. Proteomics on the original discovery cohort confirmed decreased levels of several CYPs as MASLD advanced but this decrease was greatest for CYP2C19 where levels fell to 40 % control. This decrease may result in decreased CYP2C19 activity that could be problematic for prescription of drugs activated or metabolized by CYP2C19 as MASLD advances. More limited decreases for other P450s suggest fewer issues with non-CYP2C19 drug substrates. Negative correlations at RNA level between CYP2C19 and several cytokine genes provided initial insights into the mechanism underlying decreased expression.
Collapse
Affiliation(s)
- Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Imaging and Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Simon J Cockell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Michalina Zatorska
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kristy Wonders
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Pathology, Aretaieio Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrew M Frey
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Pawel Palmowksi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ruth Walker
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Porter
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Matthias Trost
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Burra P, Zanetto A, Schnabl B, Reiberger T, Montano-Loza AJ, Asselta R, Karlsen TH, Tacke F. Hepatic immune regulation and sex disparities. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00974-5. [PMID: 39237606 DOI: 10.1038/s41575-024-00974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/07/2024]
Abstract
Chronic liver disease is a major cause of morbidity and mortality worldwide. Epidemiology, clinical phenotype and response to therapies for gastrointestinal and liver diseases are commonly different between women and men due to sex-specific hormonal, genetic and immune-related factors. The hepatic immune system has unique regulatory functions that promote the induction of intrahepatic tolerance, which is key for maintaining liver health and homeostasis. In liver diseases, hepatic immune alterations are increasingly recognized as a main cofactor responsible for the development and progression of chronic liver injury and fibrosis. In this Review, we discuss the basic mechanisms of sex disparity in hepatic immune regulation and how these mechanisms influence and modify the development of autoimmune liver diseases, genetic liver diseases, portal hypertension and inflammation in chronic liver disease. Alterations in gut microbiota and their crosstalk with the hepatic immune system might affect the progression of liver disease in a sex-specific manner, creating potential opportunities for novel diagnostic and therapeutic approaches to be evaluated in clinical trials. Finally, we identify and propose areas for future basic, translational and clinical research that will advance our understanding of sex disparities in hepatic immunity and liver disease.
Collapse
Affiliation(s)
- Patrizia Burra
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy.
| | - Alberto Zanetto
- Gastroenterology and Multivisceral Transplant Unit, Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, Department of Medicine, University of Alberta Hospital, Edmonton, Alberta, Canada
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tom Hemming Karlsen
- Department of Transplantation Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Clinic of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
3
|
Liu H, Yin G, Kohlhepp MS, Schumacher F, Hundertmark J, Hassan MIA, Heymann F, Puengel T, Kleuser B, Mosig AS, Tacke F, Guillot A. Dissecting Acute Drug-Induced Hepatotoxicity and Therapeutic Responses of Steatotic Liver Disease Using Primary Mouse Liver and Blood Cells in a Liver-On-A-Chip Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403516. [PMID: 38868948 PMCID: PMC11321671 DOI: 10.1002/advs.202403516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Indexed: 06/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is hallmarked by hepatic steatosis, cell injury, inflammation, and fibrosis. This study elaborates on a multicellular biochip-based liver sinusoid model to mimic MASLD pathomechanisms and investigate the therapeutic effects of drug candidates lanifibranor and resmetirom. Mouse liver primary hepatocytes, hepatic stellate cells, Kupffer cells, and endothelial cells are seeded in a dual-chamber biocompatible liver-on-a-chip (LoC). The LoC is then perfused with circulating immune cells (CICs). Acetaminophen (APAP) and free fatty acids (FFAs) treatment recapitulate acute drug-induced liver injury and MASLD, respectively. As a benchmark for the LoC, multiplex immunofluorescence on livers from APAP-injected and dietary MASLD-induced mice reveals characteristic changes on parenchymal and immune cell populations. APAP exposure induces cell death in the LoC, and increased inflammatory cytokine levels in the circulating perfusate. Under FFA stimulation, lipid accumulation, cellular damage, inflammatory secretome, and fibrogenesis are increased in the LoC, reflecting MASLD. Both injury conditions potentiate CIC migration from the perfusate to the LoC cellular layers. Lanifibranor prevents the onset of inflammation, while resmetirom decreases lipid accumulation in hepatocytes and increases the generation of FFA metabolites in the LoC. This study demonstrates the LoC potential for functional and molecular evaluation of liver disease drug candidates.
Collapse
Affiliation(s)
- Hanyang Liu
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Guo Yin
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Fabian Schumacher
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Jana Hundertmark
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | | | - Felix Heymann
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Tobias Puengel
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Burkhard Kleuser
- Institute of PharmacyFreie Universität BerlinKönigin‐Luise‐Str. 2+414195BerlinGermany
| | - Alexander Sandy Mosig
- Institute of Biochemistry IICenter for Sepsis Control and CareJena University Hospital07747JenaGermany
| | - Frank Tacke
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| | - Adrien Guillot
- Department of Hepatology & GastroenterologyCampus Virchow‐Klinikum and Campus Charité MitteCharité – Universitätsmedizin Berlin13353BerlinGermany
| |
Collapse
|
4
|
Roudaut M, Caillaud A, Souguir Z, Bray L, Girardeau A, Rimbert A, Croyal M, Lambert G, Patitucci M, Delpouve G, Vandenhaute É, Le May C, Maubon N, Cariou B, Si‐Tayeb K. Human induced pluripotent stem cells-derived liver organoids grown on a Biomimesys® hyaluronic acid-based hydroscaffold as a new model for studying human lipoprotein metabolism. Bioeng Transl Med 2024; 9:e10659. [PMID: 39036087 PMCID: PMC11256179 DOI: 10.1002/btm2.10659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 07/23/2024] Open
Abstract
The liver plays a key role in the metabolism of lipoproteins, controlling both production and catabolism. To accelerate the development of new lipid-lowering therapies in humans, it is essential to have a relevant in vitro study model available. The current hepatocyte-like cells (HLCs) models derived from hiPSC can be used to model many genetically driven diseases but require further improvement to better recapitulate the complexity of liver functions. Here, we aimed to improve the maturation of HLCs using a three-dimensional (3D) approach using Biomimesys®, a hyaluronic acid-based hydroscaffold in which hiPSCs may directly form aggregates and differentiate toward a functional liver organoid model. After a 28-day differentiation 3D protocol, we showed that many hepatic genes were upregulated in the 3D model (liver organoids) in comparison with the 2D model (HLCs). Liver organoids, grown on Biomimesys®, exhibited an autonomous cell organization, were composed of different cell types and displayed enhanced cytochromes P450 activities compared to HLCs. Regarding the functional capacities of these organoids, we showed that they were able to accumulate lipids (hepatic steatosis), internalize low-density lipoprotein and secrete apolipoprotein B. Interestingly, we showed for the first time that this model was also able to produce apolipoprotein (a), the apolipoprotein (a) specific of Lp(a). This innovative hiPSC-derived liver organoid model may serve as a relevant model for studying human lipopoprotein metabolism, including Lp(a).
Collapse
Affiliation(s)
- Meryl Roudaut
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
- HCS PharmaLilleFrance
| | - Amandine Caillaud
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | | | - Lise Bray
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | - Aurore Girardeau
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | - Antoine Rimbert
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | - Mikaël Croyal
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
- CRNH‐Ouest Mass Spectrometry Core FacilityNantesFrance
| | - Gilles Lambert
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI)Université de La RéunionSaint‐Denisde La RéunionFrance
| | - Murielle Patitucci
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | | | | | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | | | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| | - Karim Si‐Tayeb
- Nantes Université, CHU Nantes, CNRS, Inserm, l'institut du thoraxNantesFrance
| |
Collapse
|
5
|
Guillot A, Tacke F. Liver macrophages revisited: The expanding universe of versatile responses in a spatiotemporal context. Hepatol Commun 2024; 8:e0491. [PMID: 38967563 PMCID: PMC11227356 DOI: 10.1097/hc9.0000000000000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/23/2024] [Indexed: 07/06/2024] Open
Abstract
The liver is a vital organ that continuously adapts to a wide and dynamic diversity of self-antigens and xenobiotics. This involves the active contribution of immune cells, particularly by the liver-resident macrophages, the Kupffer cells (KCs), which exert a variety of central functions in liver homeostasis and disease. As such, KCs interact with their microenvironment to shape the hepatic cellular landscape, control gut-derived signal integration, and modulate metabolism. On injury, the rapid recruitment of bone marrow monocyte-derived macrophages alters this status quo and, when unrestrained, drastically compromises liver homeostasis, immune surveillance, and tissue organization. Several factors determine the functional roles of liver macrophages in these processes, such as their ontogeny, activation/polarization profile and, importantly, spatial distribution within the liver. Loss of tolerance and adaptability of the hepatic immune environment may result in persistent inflammation, hepatic fibrosis, cirrhosis, and a tumorigenic niche promoting liver cancer. In this review, we aim at providing the most recent breakthroughs in our understanding of liver macrophage biology, particularly their diversity and adaptability in the hepatic spatiotemporal context, as well as on potential therapeutic interventions that may hold the key to tackling remaining clinical challenges of varying etiologies in hepatology.
Collapse
|
6
|
Brenner DA. Alternatives to animal testing to assess MASH drugs and hepatotoxicity. Hepatology 2023:01515467-990000000-00632. [PMID: 37934631 PMCID: PMC11070445 DOI: 10.1097/hep.0000000000000669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
The Food and Drug Administration (FDA) Modernization Act 2.0 "allows for alternatives to animal testing for purposes of drug and biological product applications." This provides an opportunity to develop and improve alternatives to animal studies to assess drugs in the liver. Two-dimensional cultures of liver cells fail to maintain their differentiated state and fail to reproduce liver disease phenotypes. Therefore, several platforms using human liver cells are being developed either to (1) assess hepatotoxicity of drugs or (2) create "diseases in a dish" to assess the effectiveness of drugs in treating liver diseases, primarily focused on treating MASH. The technological approaches include precision cut liver slices, human liver spheroids, human liver organoids, bioprinted human liver tissues, and microphysiological systems. This review evaluates each of these technologies and their role in providing alternatives to testing in animals.
Collapse
Affiliation(s)
- David A Brenner
- Sanford Burnham Prebys and UC San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Pérez-Luz S, Lalchandani J, Matamala N, Barrero MJ, Gil-Martín S, Saz SRD, Varona S, Monzón S, Cuesta I, Justo I, Marcacuzco A, Hierro L, Garfia C, Gomez-Mariano G, Janciauskiene S, Martínez-Delgado B. Quantitative Lipid Profiling Reveals Major Differences between Liver Organoids with Normal Pi*M and Deficient Pi*Z Variants of Alpha-1-antitrypsin. Int J Mol Sci 2023; 24:12472. [PMID: 37569847 PMCID: PMC10419530 DOI: 10.3390/ijms241512472] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Different mutations in the SERPINA1 gene result in alpha-1 antitrypsin (AAT) deficiency and in an increased risk for the development of liver diseases. More than 90% of severe deficiency patients are homozygous for Z (Glu342Lys) mutation. This mutation causes Z-AAT polymerization and intrahepatic accumulation which can result in hepatic alterations leading to steatosis, fibrosis, cirrhosis, and/or hepatocarcinoma. We aimed to investigate lipid status in hepatocytes carrying Z and normal M alleles of the SERPINA1 gene. Hepatic organoids were developed to investigate lipid alterations. Lipid accumulation in HepG2 cells overexpressing Z-AAT, as well as in patient-derived hepatic organoids from Pi*MZ and Pi*ZZ individuals, was evaluated by Oil-Red staining in comparison to HepG2 cells expressing M-AAT and liver organoids from Pi*MM controls. Furthermore, mass spectrometry-based lipidomics analysis and transcriptomic profiling were assessed in Pi*MZ and Pi*ZZ organoids. HepG2 cells expressing Z-AAT and liver organoids from Pi*MZ and Pi*ZZ patients showed intracellular accumulation of AAT and high numbers of lipid droplets. These latter paralleled with augmented intrahepatic lipids, and in particular altered proportion of triglycerides, cholesterol esters, and cardiolipins. According to transcriptomic analysis, Pi*ZZ organoids possess many alterations in genes and cellular processes of lipid metabolism with a specific impact on the endoplasmic reticulum, mitochondria, and peroxisome dysfunction. Our data reveal a relationship between intrahepatic accumulation of Z-AAT and alterations in lipid homeostasis, which implies that liver organoids provide an excellent model to study liver diseases related to the mutation of the SERPINA1 gene.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Jaanam Lalchandani
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Maria Jose Barrero
- Models and Mechanisms Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain;
| | - Sara Gil-Martín
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| | - Sheila Ramos-Del Saz
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sarai Varona
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Sara Monzón
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Isabel Cuesta
- Bioinformatics Unit, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.V.); (S.M.); (I.C.)
| | - Iago Justo
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Alberto Marcacuzco
- General and Digestive Surgery Department, Hospital 12 de Octubre, 28041 Madrid, Spain; (I.J.); (A.M.)
| | - Loreto Hierro
- Paediatric Hepatology Service, Research Institute of University Hospital La Paz, (IdiPAZ), 28046 Madrid, Spain;
| | - Cristina Garfia
- Digestive Department, Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Gema Gomez-Mariano
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School, 30625 Hannover, Germany;
| | - Beatriz Martínez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (S.P.-L.); (J.L.); (N.M.); (S.G.-M.); (S.R.-D.S.); (G.G.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER U758, 28029 Madrid, Spain
| |
Collapse
|
8
|
Fang J, Celton-Morizur S, Desdouets C. NAFLD-Related HCC: Focus on the Latest Relevant Preclinical Models. Cancers (Basel) 2023; 15:3723. [PMID: 37509384 PMCID: PMC10377912 DOI: 10.3390/cancers15143723] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the deadliest cancers worldwide. Despite extensive research, the biological mechanisms underlying HCC's development and progression remain only partially understood. Chronic overeating and/or sedentary-lifestyle-associated obesity, which promote Non-Alcoholic Fatty Liver Disease (NAFLD), have recently emerged as worrying risk factors for HCC. NAFLD is characterized by excessive hepatocellular lipid accumulation (steatosis) and affects one quarter of the world's population. Steatosis progresses in the more severe inflammatory form, Non-Alcoholic Steatohepatitis (NASH), potentially leading to HCC. The incidence of NASH is expected to increase by up to 56% over the next 10 years. Better diagnoses and the establishment of effective treatments for NAFLD and HCC will require improvements in our understanding of the fundamental mechanisms of the disease's development. This review describes the pathogenesis of NAFLD and the mechanisms underlying the transition from NAFL/NASH to HCC. We also discuss a selection of appropriate preclinical models of NAFLD for research, from cellular models such as liver-on-a-chip models to in vivo models, focusing particularly on mouse models of dietary NAFLD-HCC.
Collapse
Affiliation(s)
- Jing Fang
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - Séverine Celton-Morizur
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| | - Chantal Desdouets
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France
- Genomic Instability, Metabolism, Immunity and Liver Tumorigenesis Laboratory, Equipe Labellisée Ligue Contre le Cancer, 75005 Paris, France
| |
Collapse
|