1
|
Mohaghegh S, Alirezaei F, Ahmadi N, Kouhestani F, Motamedian SR. Application of chemical factors for acceleration of consolidation phase of the distraction osteogenesis: a scoping review. Oral Maxillofac Surg 2023; 27:559-579. [PMID: 35852720 DOI: 10.1007/s10006-022-01097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This study aimed to analyze the effect of injecting chemical factors compared to conventional distraction osteogenesis (DO) treatment on the bone formation of the distracted area of the maxillofacial region in human and animal studies. METHOD Electronic search was done in PubMed, Scopus, Embase, and Cochrane database for studies published until September 2021. The studies' risk of bias (ROB) was assessed using the Cochrane Collaborations and NIH quality assessment tools. Meta-analyses were performed to assess the difference in the amount of bone formation and maximal load tolerance. RESULTS Among a total of 58 included studies, eight studies analyzed the bone formation rate of the distracted area in human models and others in animal models. Results of the human studies showed acceptable outcomes in the case of using bone morphogenic protein-2 (BMP-2), autologous bone-platelet gel, and calcium sulfate. However, using platelet reach plasma does not increase the rate of bone formation significantly. Quantitative analyses showed that both BMP-2 (SMD = 26.57; 95% CI = 18.86 to 34.28) and neuron growth factor (NGF) (SMD = 16.19; 95% CI = 9.64 to 22.75) increase the amount of bone formation. Besides, NGF increased the amount of load tolerance significantly (SMD = 30.03; 95% CI = 19.91 to 40.16). Additionally, BMP-2 has no significant impact on the post-treatment maxillary length (SMD = 9.19; 95% CI = - 2.35 to 20.73). CONCLUSION Limited number of human studies with low quality used chemical factors to enhance osteogenesis and showed acceptable results. However, more studies with higher quality are required.
Collapse
Affiliation(s)
- Sadra Mohaghegh
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Fatemeh Alirezaei
- Department of Orthodontics, School of Dentistry, Babol University of Medical Sciences, Babol, Iran
| | - Nima Ahmadi
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran
| | - Farnaz Kouhestani
- Department of Periodontics, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences and Department of Orthodontics, Shahid Beheshti University of Medical Sciences, Tehran, 1983963113, Iran.
| |
Collapse
|
2
|
Han JJ, Yang HJ, Hwang SJ. Enhanced Bone Regeneration by Bone Morphogenetic Protein-2 after Pretreatment with Low-Intensity Pulsed Ultrasound in Distraction Osteogenesis. Tissue Eng Regen Med 2022; 19:871-886. [PMID: 35594008 DOI: 10.1007/s13770-022-00457-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein 2 (BMP-2) and low-intensity pulsed ultrasound (LIPUS) have been used to enhance bone healing in distraction osteogenesis (DO). The aim of this study was to assess the synergistic effect of BMP-2 and LIPUS on bone regeneration in DO and to determine the optimal treatment strategy for enhanced bone regeneration. METHODS Rat mesenchymal stromal cells were treated with various application protocols of BMP-2 and LIPUS, and cell proliferation, alkaline phosphatase activity, and osteogenesis-related marker expression were evaluated. In vivo experiments were performed in a rabbit DO model according to the application protocols with different timings of BMP-2 and LIPUS application. RESULTS Application of BMP-2 after LIPUS pretreatment (BMP-2 after LIPUS) showed greater cell proliferation than LIPUS treatment alone, and higher ALP activity than all other treatment protocols. BMP-2 after LIPUS also exhibited increased gene expression levels of ALP, Cbfa1, and Osterix compared with LIPUS treatment alone. In vivo experiments revealed no significant differences in bone healing based on the timing of LIPUS treatment in DO. The combination of BMP-2 and LIPUS resulted in increased bone volume and bone mineral density compared with BMP-2 or LIPUS. Regarding the timing of BMP-2 application, the application of BMP-2 after LIPUS pretreatment led to greater bone volume than the application of BMP-2 before LIPUS. CONCLUSION The results of this study suggest that the combined treatment of BMP-2 and LIPUS can lead to enhanced bone healing in DO and that effective bone healing can be achieved through the application of LIPUS before BMP-2.
Collapse
Affiliation(s)
- Jeong Joon Han
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.,Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hoon Joo Yang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea.,Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Soon Jung Hwang
- Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea. .,Hwang Soon Jung's Dental Clinic for Oral and Maxillofacial Surgery, 349, Woonam Building 2, 3F, Gangnam-daero, Seocho-gu, Seoul, 06626, Republic of Korea.
| |
Collapse
|
3
|
In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater 2020; 108:326-336. [PMID: 32160962 DOI: 10.1016/j.actbio.2020.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
Gene delivery offers promising outcomes for functional recovery or regeneration of lost tissues at cellular and tissue levels. However, more efficient carriers are needed to safely and locally delivery of genetic materials. Herein, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexe (NC) platforms for bone tissue regeneration. pDNA encoding human bone morphogenesis protein-2 (BMP-2) was used as a gene of interest. Formation and fine-tuning of nanocomplexes (NCs) between pDNA and chitosan (CS) as carriers were performed using a micromixer platform. Flow characteristics were adjusted to tune mixing time and consequently size, zeta potential, and compactness of assembled NCs. Subsequently, NCs were immobilized on a nanofibrous Poly(ε-caprolactone) (PCL) scaffold functionalized with metalloprotease-sensitive peptide (MMP-sensitive). This construct can provide an environmental-sensitive and localized gene delivery platform. Osteogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) was studied using chemical and biological assays. The presented results converge to indicate a great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine. STATEMENT OF SIGNIFICANCE: In this study, we demonstrate microfluidic-assisted synthesis of plasmid DNA (pDNA)-based nanocomplexes (NCs) platforms for bone tissue regeneration. We used pDNA encoding human bone morphogenesis protein-2 (BMP-2) as the gene of interest. Using micromixer platform nanocomplexes (NCs) between pDNA and chitosan (CS) were fabricated and optimized. NCs were immobilized on a nanofibrous polycaprolactone scaffold functionalized with metalloprotease-sensitive peptide. In vitro and in vivo assays confirmed the osteogenic differentiation of mesenchymal stem cells (MSCs). The obtained data indicated great potential of the developed methodology for in situ bone tissue engineering using immobilized microfluidic-synthesized gene delivery nanocomplexes, which is readily expandable in the field of regenerative nanomedicine.
Collapse
|
4
|
Senel E, Ozkan E, Bereket MC, Onger ME. The assessment of new bone formation induced by unfocused extracorporeal shock wave therapy applied on pre-surgical phase of distraction osteogenesis. Eur Oral Res 2019; 53:125-131. [PMID: 31579893 PMCID: PMC6761485 DOI: 10.26650/eor.20190041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose: This study aims to evaluate the effects of extracorporeal shock wave therapy
applied before and/or immediately after the osteotomy on the maturation during
the consolidation phase. Materials and methods: 21 female New Zealand rabbits were used in the study. Subjects were divided
randomly into three groups: Control (Distraction without ESWT), A (Distraction
+ESWT After Osteotomy), AB (Distraction+ESWT After and Before Osteotomy).
ESWT (500 pulses, 5 Hz, 0.19 mJ/mm2 energy flux density) was applied to group
A and group AB after 5, 12 and 19 days after osteotomy and group AB only on
days 7,14 and 21 before osteotomy. On the 28th day of the consolidation period,
all subjects were sacrificed. Dual-energy x-ray absorptiometry (DEXA) was used
to determine bone mineral density (BMD) and bone mineral content (BMC), and
stereological methods were used to determine the new bone, connective tissue
and neovascularization volumes. Results: As a result of DEXA examinations made on the 1st and 4th week of consolidation,
there was no significant difference between groups regarding BMD and BMC
values. According to the results of stereological examination, when the connective
tissue and new bone tissue were evaluated, higher values were observed in AB
when compared to A, and in AB and A compared to the control group, but the
differences are not statistically significant. There was no difference between the
groups in terms of neovascularization. Conclusion: ESWT in these parameters was not positively effective in bone maturation during
consolidation when applied before osteotomy or both before and after osteotomy.
Collapse
Affiliation(s)
- Erman Senel
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Pamukkale University, Denizli,Turkey
| | - Enes Ozkan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Istanbul Medeniyet University, Istanbul, Turkey
| | - Mehmet Cihan Bereket
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ondokuz Mayis University, Samsun, Turkey
| | - Mehmet Emin Onger
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayis University,Samsun, Turkey
| |
Collapse
|
5
|
Abstract
Jaw bones and teeth originate from the first pharyngeal arch and develop in closely related ways. Reciprocal epithelial-mesenchymal interactions are required for the early patterning and morphogenesis of both tissues. Here we review the cellular contribution during the development of the jaw bones and teeth. We also highlight signaling networks as well as transcription factors mediating tissue-tissue interactions that are essential for jaw bone and tooth development. Finally, we discuss the potential for stem cell mediated regenerative therapies to mitigate disorders and injuries that affect these organs.
Collapse
Affiliation(s)
- Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
6
|
Alshahrani I. Biomolecular phases in transverse palatal distraction: A review. Saudi J Biol Sci 2018; 25:1322-1325. [PMID: 30505176 PMCID: PMC6252022 DOI: 10.1016/j.sjbs.2018.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 11/17/2022] Open
Abstract
Transverse palatal distraction is a biological process of regenerating new bone and enveloping soft tissues in the maxillary palate region. This technique is similar to Osteo-distraction (OD) procedure for bone lengthening in which gradual and controlled traction forces are applied on the osteotomy gaps to produce new bone in between the surgically separated bone segments. This review describes the different phases after osteotomy and the biological process involved during the new bone and soft tissue formation. The mechanical environment formed in the distraction area is due to the traction forces by the distractor appliance. This environment stimulates differentiation of pluripotent cells, neovascularization, osteogenesis and remodeling of newly formed bone. The role of different pro-inflammatory cytokines, interleukins, bone morphogenic proteins, transforming growth factors, fibroblast growth factors-2) and extracellular matrix proteins (osteonectin, osteopontin) during the distraction phases has been described in detail. Also, an important note on the nutritional aspect during Osteo-distraction will benefit the clinicians to guide their patients after osteotomy throughout the distraction process.
Collapse
|
7
|
Gurler G, Gursoy B. Investigation of effects of low level laser therapy in distraction osteogenesis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2018; 119:469-476. [PMID: 29885471 DOI: 10.1016/j.jormas.2018.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
PURPOSE The purpose of the study was to investigate the histopathological effects of low level laser therapy (LLLT) application in distraction osteogenesis (DO). MATERIALS AND METHODS Twenty adult female New Zealand white rabbits were included in the study. Under general anesthesia unilateral mandibular corpus osteotomy was performed. Custom made external distractors were placed to right mandibles of rabbits. After five days of latency period, distractors were activated once a day for 5 days with 1mm/day frequency. Animals in the study group were exposed to LLLT from six different points transcutanously after each distractor activation. Control group was not exposed to laser irradiation. Animals were sacrificed after 15 and 30 days of consolidation periods and mandibles were processed for histopathological investigation under light microscope. Bone healing was analyzed with a semi-quantitative 4 point scale. RESULTS Osteoblastic activity and vascularization were found higher in the study group than control group after 15 days consolidation. Chondroblastic activity of the control group was significantly higher than the study group in both 15 and 30 days of consolidation groups. Osteoblastic activity and trabecular bone formation were found significantly higher in the study group than the control group after 15 days consolidation. CONCLUSIONS The use of LLLT in activation period of distraction osteogenesis stimulates bone repair in the early stages of distraction osteogenesis by inducing intramembranous healing and less cartilage tissue formation in the bone callus.
Collapse
Affiliation(s)
- G Gurler
- Istanbul Medipol University, School of Dentistry, Department of Oral and Maxillofacial Surgery, Ataturk Bulvari No 27, 34083 Unkapani-Fatih Istanbul, Turkey.
| | - B Gursoy
- University of Kyrenia, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, University of Kyrenia, Şehit Yahya Bakır Sokak, Karakum Kyrenia, TRNC.
| |
Collapse
|
8
|
Wang C, Zang H, Zhou D. Bone morphogenetic protein-2 exhibits therapeutic benefits for osteonecrosis of the femoral head through induction of cartilage and bone cells. Exp Ther Med 2018; 15:4298-4308. [PMID: 29849774 PMCID: PMC5962870 DOI: 10.3892/etm.2018.5941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022] Open
Abstract
Osteonecrosis of the femoral head is an orthopedic disease caused by femoral head damage or insufficient blood supply, which leads to the death of bone cells and bone marrow. Osteonecrosis of the femoral head leads to changes in the structure of the femoral head, femoral head collapse and joint dysfunction. Bone morphogenetic protein-2 (BMP-2) exhibits beneficial effects on bone formation, repair and angiogenesis at the femoral head. In the present study, the therapeutic effects of recombinant human BMP-2 containing an Fc fragment (rBMP-2/Fc) were investigated on a steroid induced mouse model of osteonecrosis of the femoral head. Bone cell viability was used to determine the in vitro effects of rBMP-2/Fc. The therapeutic efficacies of rBMP-2/Fc on mice with osteonecrosis of the femoral head were evaluated using clinical arthritis scores. The expression levels of inflammatory factors in the mice were analyzed by reverse transcription-quantitative polymerase chain reaction. Histological analysis was used to evaluate the effects of rBMP-2/Fc on the femoral head. The results revealed that rBMP-2/Fc treatment significantly increased the IL-6, IL-10, vascular endothelial growth factor and macrophage colony-stimulating factor expression levels in synovial cells compared with the control group (P<0.01). Furthermore, it was observed that rBMP-2/Fc significantly improved the viability and growth of synovial cells (P<0.01) through the nuclear factor (NF)-κB signaling pathway. Treatment with rBMP-2/Fc significantly decreased receptor activator of NF-κB ligand expression levels. Furthermore, in vivo experiments demonstrated that rBMP-2/Fc treatment markedly relieved the arthralgia and damage caused by osteonecrosis of the femoral head. In conclusion, rBMP-2/Fc treatment may be beneficial for articular cartilage repair by the upregulation of angiogenesis factors through the down regulation of the NF-κB signaling pathway in mice with osteonecrosis of the femoral head. This preclinical data suggests that rBMP-2/Fc may be a promising novel agent for treatment of osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Chunhui Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Huimei Zang
- Department of Cardiovascular Medicine, Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function, Jinan, Shandong 250012, P.R. China
| | - Dongsheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
9
|
Zhen R, Yang J, Wang Y, Li Y, Chen B, Song Y, Ma G, Yang B. Hepatocyte growth factor improves bone regeneration via the bone morphogenetic protein‑2‑mediated NF‑κB signaling pathway. Mol Med Rep 2018; 17:6045-6053. [PMID: 29436622 DOI: 10.3892/mmr.2018.8559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/03/2017] [Indexed: 11/05/2022] Open
Abstract
Bone regeneration is an important process associated with the treatment of osteonecrosis, which is caused by various factors. Hepatocyte growth factor (HGF) is an active biological factor that has multifunctional roles in cell biology, life sciences and clinical medicine. It has previously been suggested that bone morphogenetic protein (BMP)‑2 exerts beneficial roles in bone formation, repair and angiogenesis in the femoral head. The present study aimed to investigate the benefits and molecular mechanisms of HGF in bone regeneration. The viability of osteoblasts and osteoclasts were studied in vitro. In addition, the expression levels of tumor necrosis factor (TNF)‑α, monocyte chemotactic protein (MCP)‑1, interleukin (IL)‑1 and IL‑6 were detected in a mouse fracture model following treatment with HGF. The expression and activity of nuclear factor (NF)‑κB were also analyzed in osteocytes post‑treatment with HGF. Histological analysis was used to determine the therapeutic effects of HGF on mice with fractures. The migration and differentiation of osteoblasts and osteoclasts were investigated in HGF‑incubated cells. Furthermore, angiogenesis and BMP‑2 expression were analyzed in the mouse fracture model post‑treatment with HGF. The results indicated that HGF regulates the cell viability of osteoblasts and osteoclasts, and also balanced the ratio between osteoblasts and osteoclasts. In addition, HGF decreased the serum expression levels of TNF‑α, MCP‑1, IL‑1 and IL‑6 in experimental mice. The results of a mechanistic analysis demonstrated that HGF upregulated p65, IκB kinase‑β and IκBα expression in osteoblasts from experimental mice. In addition, the expression levels of vascular endothelial growth factor, BMP‑2 receptor, receptor activator of NF‑κB ligand and macrophage colony‑stimulating factor were upregulated by HGF, which may effectively promote blood vessel regeneration, and contribute to the formation and revascularization of tissue‑engineered bone. Furthermore, HGF promoted BMP‑2 expression and enhanced angiogenesis at the fracture location. These results suggested that HGF treatment may significantly promote bone regeneration in a mouse fracture model. In conclusion, these results indicated that HGF is involved in bone regeneration, angiogenesis and the balance between osteoblasts and osteoclasts, thus suggesting that HGF may be considered a potential agent for the treatment of fractures via the promotion of bone regeneration through regulation of the BMP‑2‑mediated NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Ruixin Zhen
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Jianing Yang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Yu Wang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Yubo Li
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Bin Chen
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Youxin Song
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Guiyun Ma
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| | - Bo Yang
- Department of Spinal Surgery, Chengde Medical College Affiliated Hospital, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
10
|
Biology of Bone Formation, Fracture Healing, and Distraction Osteogenesis. J Craniofac Surg 2017; 28:1380-1389. [DOI: 10.1097/scs.0000000000003625] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Synergetic effect of topological cue and periodic mechanical tension-stress on osteogenic differentiation of rat bone mesenchymal stem cells. Colloids Surf B Biointerfaces 2017; 154:1-9. [PMID: 28268191 DOI: 10.1016/j.colsurfb.2017.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are able to self-renew and differentiate into tissues of mesenchymal origin, making them to be significant for cell-based therapies, such as metabolic bone diseases and bone repair. Regulating the differentiation of MSCs is significant for bone regeneration. Electrospun fibers mimicking natural extracellular matrix (ECM), is an effective artificial ECM to regulate the behaviors and fates of MSCs. The aligned electrospun fibers can modulate polar cell pattern of bone mesenchymal stem cells, which leads to more obvious osteogenic differentiation. Apart from the topographic effect of electrospun fibers, mechanical cues can also intervene the cell behaviors. In this study, the osteogenic differentiation of rat bone mesenchymal stem cells was evaluated, which were cultured on aligned/random electrospun fiber mats materials under mechanical tension intervention. Scanning electron microscope and immune-fluorescent staining were used to directly observe the polarity changing of cellular morphology and cytoskeleton. The results proved that aligned electrospun fibers could be more conducive to promote osteogenic differentiation of rat bone mesenchymal stem cells and this promotion of osteogenic differentiation was enhanced by tension intervention. These results were correlated to the quantitative real-time PCR assay. In general, culturing rat bone mesenchymal stem cells on electrospun fibers under the intervention of mechanical tension is an effective way to mimic a more real cellular microenvironment.
Collapse
|
12
|
Jiang X, Zhang Y, Fan X, Deng X, Zhu Y, Li F. The effects of hypoxia-inducible factor (HIF)-1α protein on bone regeneration during distraction osteogenesis: an animal study. Int J Oral Maxillofac Surg 2016; 45:267-72. [DOI: 10.1016/j.ijom.2015.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/07/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
|
13
|
Dhaliwal K, Kunchur R, Farhadieh R. Review of the cellular and biological principles of distraction osteogenesis: An in vivo bioreactor tissue engineering model. J Plast Reconstr Aesthet Surg 2015; 69:e19-26. [PMID: 26725979 DOI: 10.1016/j.bjps.2015.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/22/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
Distraction osteogenesis (DO) is a widely used technique in plastic and orthopaedic surgery. During the process, mechanical force is applied to fractured bone to enhance the regenerative processes and induce new bone formation. Although there is an abundance of literature on the clinical process of DO, there is a distinct lack of focus on the underlying biological principles governing this process. DO follows the basic premises of tissue engineering. The mechanical stress stimulates mesenchymal stem cell differentiation down an osteoblastic lineage on a matrix background. The aim of this review is to give an overview of the current knowledge of the molecular mechanism governing this process.
Collapse
Affiliation(s)
- K Dhaliwal
- St George's NHS Trust, Tooting, London, SW17 0QT, UK.
| | - R Kunchur
- Plastic & Reconstructive Surgery Department, Australian National University, Canberra ACT 0200, Australia
| | - R Farhadieh
- Plastic & Reconstructive Surgery Department, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
14
|
Zeng Z, Yin X, Zhang X, Jing D, Feng X. Cyclic stretch enhances bone morphogenetic protein-2-induced osteoblastic differentiation through the inhibition of Hey1. Int J Mol Med 2015; 36:1273-81. [PMID: 26647760 PMCID: PMC4601743 DOI: 10.3892/ijmm.2015.2354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Substantial evidence has indicated that osteoblastic differentiation may be regulated by mechanical loads or bone morphogenetic protein-2 (BMP-2). BMP-2-induced in vivo osteogenesis can be significantly enhanced in the presence of mechanical stimuli, revealing the therapeutic potential of the combined application of BMP-2 and mechanical loads in clinical bone diseases (e.g., bone fractures and osteoporosis); however, the underlying mechanisms remain elusive. In this study, we found that cyclic stretch or BMP-2 alone increased the expression of osteoblastic differentiation markers, including alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2), as shown by RT-qPCR, western blot analysis and ALP activity test. Furthermore, our results revealed that cyclic mechanical stretch with 10% elongation at 0.1 Hz significantly enhanced the BMP-2-induced upregulation of ALP and Runx2 expression in osteoblast-like MC3T3-E1 cells. Cyclic stretch also inhibited the BMP-2-induced upregulation of Hes-related family bHLH transcription factor with YRPW motif 1 (Hey1, measured by RT-qPCR and immunofluorescence staining), a potent negative regulator of osteogenesis. Moreover, the transient transfection of a Hey1 expression plasmid (pcDNA3.1-Hey1) significantly reversed the effects of cyclic stretch on the BMP-2-induced upregulation of differentiation markers in the MC3T3-E1 cells. This revealed the importance of Hey1 in modulating BMP-2-induced osteoblastic differentiation in response to cyclic stretch. Taken together, our results demonstrated that cyclic stretch enhanced the BMP-2-induced osteoblastic differentiation through the inhibition of Hey1. The present study broadens our fundamental knowledge of osteoblastic mechanotransduction and also sheds new insight into the mechanisms through which the combined application of BMP-2 and mechanical load promotes osteogenesis.
Collapse
Affiliation(s)
- Zhaobin Zeng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiao Yin
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaodong Zhang
- Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110840, P.R. China
| | - Da Jing
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Feng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
15
|
Compton J, Fragomen A, Rozbruch SR. Skeletal Repair in Distraction Osteogenesis: Mechanisms and Enhancements. JBJS Rev 2015; 3:01874474-201508000-00002. [PMID: 27490473 DOI: 10.2106/jbjs.rvw.n.00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jocelyn Compton
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10031
| | - Austin Fragomen
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| | - S Robert Rozbruch
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| |
Collapse
|
16
|
Bragdon B, Lybrand K, Gerstenfeld L. Overview of biological mechanisms and applications of three murine models of bone repair: closed fracture with intramedullary fixation, distraction osteogenesis, and marrow ablation by reaming. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2015; 5:21-34. [PMID: 25727198 PMCID: PMC4358754 DOI: 10.1002/9780470942390.mo140166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fractures are one of the most common large-organ, traumatic injuries in humans, and osteoporosis-related fractures are the fastest growing health care problem of aging. Elective orthopedic surgeries of the bones and joints also represent some of most common forms of elective surgeries performed. Optimal repair of skeletal tissues is necessary for successful outcomes of these many different orthopedic surgical treatments. Research focused on post-natal skeletal repair is therefore of immense clinical importance and of particular relevance in situations in which bone tissue healing is compromised due to the extent of tissue trauma or specific medical co-morbidities. Three commonly used murine surgical models of bone healing, closed fracture with intramedullary fixation, distraction osteogenesis (DO), and marrow ablation by reaming, are presented. The biological aspects of these models are contrasted and the types of research questions that may be addressed with these models are presented.
Collapse
Affiliation(s)
- Beth Bragdon
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| | - Kyle Lybrand
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| | - Louis Gerstenfeld
- Orthopaedic Research Laboratory, Boston University School of Medicine. Department of Orthopeadic Surgery Boston University Medical Center
| |
Collapse
|
17
|
Makhdom AM, Nayef L, Tabrizian M, Hamdy RC. The potential roles of nanobiomaterials in distraction osteogenesis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1-18. [DOI: 10.1016/j.nano.2014.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/25/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
18
|
Fishero BA, Kohli N, Das A, Christophel JJ, Cui Q. Current concepts of bone tissue engineering for craniofacial bone defect repair. Craniomaxillofac Trauma Reconstr 2014; 8:23-30. [PMID: 25709750 DOI: 10.1055/s-0034-1393724] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair.
Collapse
Affiliation(s)
- Brian Alan Fishero
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Nikita Kohli
- Department of Otolaryngology-Head and Neck Surgery, SUNY Downstate Medical Center, Brooklyn, New York
| | - Anusuya Das
- Orthopaedic Surgery Research Center, University of Virginia, Charlottesville, Virginia
| | - John Jared Christophel
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Quanjun Cui
- Department of Orthopaedic Surgery, School of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
19
|
The Molecular and Cellular Events That Take Place during Craniofacial Distraction Osteogenesis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2014; 2:e98. [PMID: 25289295 PMCID: PMC4174219 DOI: 10.1097/gox.0000000000000043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/04/2013] [Indexed: 12/26/2022]
Abstract
Summary: Gradual bone lengthening using distraction osteogenesis principles is the gold standard for the treatment of hypoplastic facial bones. However, the long treatment time is a major disadvantage of the lengthening procedures. The aim of this study is to review the current literature and summarize the cellular and molecular events occurring during membranous craniofacial distraction osteogenesis. Mechanical stimulation by distraction induces biological responses of skeletal regeneration that is accomplished by a cascade of biological processes that may include differentiation of pluripotential tissue, angiogenesis, osteogenesis, mineralization, and remodeling. There are complex interactions between bone-forming osteoblasts and other cells present within the bone microenvironment, particularly vascular endothelial cells that may be pivotal members of a complex interactive communication network in bone. Studies have implicated number of cytokines that are intimately involved in the regulation of bone synthesis and turnover. The gene regulation of numerous cytokines (transforming growth factor-β, bone morphogenetic proteins, insulin-like growth factor-1, and fibroblast growth factor-2) and extracellular matrix proteins (osteonectin, osteopontin) during distraction osteogenesis has been best characterized and discussed. Understanding the biomolecular mechanisms that mediate membranous distraction osteogenesis may guide the development of targeted strategies designed to improve distraction osteogenesis and accelerate bone regeneration that may lead to shorten the treatment duration.
Collapse
|
20
|
Makhdom AM, Hamdy RC. The Role of Growth Factors on Acceleration of Bone Regeneration During Distraction Osteogenesis. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:442-53. [DOI: 10.1089/ten.teb.2012.0717] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Asim M. Makhdom
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
- Department of Orthopaedic Surgery, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reggie C. Hamdy
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Hong P, Boyd D, Beyea SD, Bezuhly M. Enhancement of bone consolidation in mandibular distraction osteogenesis: A contemporary review of experimental studies involving adjuvant therapies. J Plast Reconstr Aesthet Surg 2013; 66:883-95. [DOI: 10.1016/j.bjps.2013.03.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 02/14/2013] [Accepted: 03/16/2013] [Indexed: 11/28/2022]
|
22
|
Yonezawa H, Yamada SI, Yanamoto S, Yoshitomi I, Kawasaki G, Umeda M. Effect of polyglycolic acid sheets with fibrin glue (MCFP technique) on the healing of wounds after partial resection of the border of the tongue in rabbits: a preliminary study. Br J Oral Maxillofac Surg 2012; 50:459-63. [DOI: 10.1016/j.bjoms.2011.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/16/2011] [Indexed: 11/28/2022]
|
23
|
Influence of rhBMP-2 on bone formation and osseointegration in different implant systems after sinus-floor elevation. An in vivo study on sheep. J Craniomaxillofac Surg 2010; 38:571-9. [DOI: 10.1016/j.jcms.2010.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 11/10/2009] [Accepted: 02/10/2010] [Indexed: 11/23/2022] Open
|
24
|
Wei H, Zili L, Yuanlu C, Biao Y, Cheng L, Xiaoxia W, Yang L, Xing W. Effect of icariin on bone formation during distraction osteogenesis in the rabbit mandible. Int J Oral Maxillofac Surg 2010; 40:413-8. [PMID: 21084174 DOI: 10.1016/j.ijom.2010.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 10/21/2009] [Accepted: 10/14/2010] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the effect of icariin on bone formation during mandibular distraction. 40 Rabbits were randomly divided into experimental and control groups. Mandibular distraction was performed 5 days after unilateral mandibular osteotomy using a custom-made external distractor at a rate of 0.5mm/12h for 10 days. From the first day of distraction, icariin (2.5mg/kg · day) was orally administered to the experimental group and placebo to the controls. 10 Rabbits were killed at the end of weeks 2 and 4 of the consolidation phase. The distracted hemimandible was harvested and newly formed bone was evaluated by soft radiography, histology and bone histomorphometry. Regenerated bone was evaluated for bone mineral density by dual-energy X-ray absorptiometry. The experimental group had fewer radiolucent areas on soft radiography. Bone mineral density of regenerated bone was higher in the experimental than in the control group at 2 and 4 weeks. At 4 weeks, the experimental group had greater volumes of new bone, higher trabecular number, and less trabecular separation than the controls. Oral administration of icariin could promote bone formation during mandibular distraction osteogenesis and might be a promising method for shortening the course of distraction osteogenesis.
Collapse
Affiliation(s)
- H Wei
- Center of Orthognathic Surgery, Peking University School of Stomatology, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Effects of Nerve Growth Factor Delivery Via a Gel to Inferior Alveolar Nerve in Mandibular Distraction Osteogenesis. J Craniofac Surg 2009; 20:2188-92. [DOI: 10.1097/scs.0b013e3181bf04c7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
27
|
Issa JPM, do Nascimento C, Lamano T, Iyomasa MM, Sebald W, de Albuquerque Jr RF. Effect of recombinant human bone morphogenetic protein-2 on bone formation in the acute distraction osteogenesis of rat mandibles. Clin Oral Implants Res 2009; 20:1286-92. [DOI: 10.1111/j.1600-0501.2009.01799.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Peltomäki T. Stability, adaptation and growth following distraction osteogenesis in the craniofacial region. Orthod Craniofac Res 2009; 12:187-94. [DOI: 10.1111/j.1601-6343.2009.01452.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Kılıç E, Özeç İ, Yeler H, Korkmaz A, Ayas B, Gümüş C. Effects of Simvastatin on Mandibular Distraction Osteogenesis. J Oral Maxillofac Surg 2008; 66:2233-8. [DOI: 10.1016/j.joms.2008.05.362] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 02/05/2008] [Accepted: 05/13/2008] [Indexed: 01/05/2023]
|
30
|
Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 2008; 87:107-18. [PMID: 18218835 DOI: 10.1177/154405910808700215] [Citation(s) in RCA: 468] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fracture healing and distraction osteogenesis have important applications in orthopedic, maxillofacial, and periodontal treatment. In this review, the cellular and molecular mechanisms that regulate fracture repair are contrasted with bone regeneration that occurs during distraction osteogenesis. While both processes have many common features, unique differences are observed in the temporal appearance and expression of specific molecular factors that regulate each. The relative importance of inflammatory cytokines in normal and diabetic healing, the transforming growth factor beta superfamily of bone morphogenetic mediators, and the process of angiogenesis are discussed as they relate to bone repair. A complete summary of biological activities and functions of various bioactive factors may be found at COPE (Cytokines & Cells Online Pathfinder Encyclopedia), http://www.copewithcytokines.de/cope.cgi.
Collapse
Affiliation(s)
- Z S Ai-Aql
- Orthopaedic Surgical Research Laboratory, Department of Orthopaedic Surgery, Boston University Medical Center, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
31
|
Djasim UM, Wolvius EB, Van Neck JW, Van Wamel A, Weinans H, Van Der Wal KGH. Single versus triple daily activation of the distractor: no significant effects of frequency of distraction on bone regenerate quantity and architecture. J Craniomaxillofac Surg 2008; 36:143-151. [PMID: 18359239 DOI: 10.1016/j.jcms.2007.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES To study the effect of two different frequencies of distraction on the quantity and architecture of bone regenerate using micro-computed tomography, and to determine whether radiographic and ultrasonographic bone-fill scores provide reliable predictive value for the amount of new bone in the distraction area. MATERIAL AND METHODS Twenty-six skeletally mature rabbits underwent three full days of latency, after which midface distraction was started. Low-frequency group (n=12): a distraction rate of 0.9 mm/d achieved by one daily activation for 11 days to create a 10mm distraction gap. High-frequency group (n=12): idem, but three daily activations were used instead of one. Control group (n=2) underwent no distraction. After 21 days of consolidation, bone-fill in the distraction area was assessed by means of ultrasonography and radiography. Micro-computed tomography was used to quantify new bone formation and bone architecture. RESULTS Relative bone volume (BV/TV) showed a tendency towards a difference (P=0.09) between the low and high-frequency groups. No significant differences were found for bone architecture. No significant correlation between BV/TV values and bone-fill scores was found. CONCLUSIONS An increase in rhythm from one to three activations daily does not create significantly more bone. Bone-fill score values provided no reliable predictive value for the amount of new bone formation.
Collapse
Affiliation(s)
- Urville Mardijanto Djasim
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (Chair: Prof. K.G.H. van der Wal, DDS, MD, PhD).
| | - Eppo Bonne Wolvius
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (Chair: Prof. K.G.H. van der Wal, DDS, MD, PhD)
| | - Johan Wilhelm Van Neck
- Department of Plastic and Reconstructive Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (Chair: Prof. S.E.R. Hovius, MD, PhD)
| | - Annemieke Van Wamel
- Department of Biomedical Engineering, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (Chair: Prof. A.F.W. van der Steen, PhD)
| | - Harrie Weinans
- Orthopaedic Research Laboratory of the Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (Chair: Prof. H. Weinans, PhD)
| | - Karel George Hendrik Van Der Wal
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands (Chair: Prof. K.G.H. van der Wal, DDS, MD, PhD)
| |
Collapse
|
32
|
AI-Aql Z, Alagl A, Graves D, Gerstenfeld L, Einhorn T. Molecular Mechanisms Controlling Bone Formation during Fracture Healing and Distraction Osteogenesis. J Dent Res 2008. [DOI: 10.1177/154405910808700215 (in engl)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fracture healing and distraction osteogenesis have important applications in orthopedic, maxillofacial, and periodontal treatment. In this review, the cellular and molecular mechanisms that regulate fracture repair are contrasted with bone regeneration that occurs during distraction osteogenesis. While both processes have many common features, unique differences are observed in the temporal appearance and expression of specific molecular factors that regulate each. The relative importance of inflammatory cytokines in normal and diabetic healing, the transforming growth factor beta superfamily of bone morphogenetic mediators, and the process of angiogenesis are discussed as they relate to bone repair. A complete summary of biological activities and functions of various bioactive factors may be found at COPE (Cytokines & Cells Online Pathfinder Encyclopedia), http://www.copewithcytokines.de/cope.cgi .
Collapse
Affiliation(s)
- Z.S. AI-Aql
- Orthopaedic Surgical Research Laboratory, Department of Orthopaedic Surgery, Boston University Medical Center, Doctors’ Office Building, Suite 808, 720 Harrison Avenue, Boston, MA 02118, USA
- Department of Orthodontics and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA; and
- Department of Preventive Dental Sciences, College of Dentistry, King Faisal University, Alkhobar, Saudi Arabia, 31952
| | - A.S. Alagl
- Orthopaedic Surgical Research Laboratory, Department of Orthopaedic Surgery, Boston University Medical Center, Doctors’ Office Building, Suite 808, 720 Harrison Avenue, Boston, MA 02118, USA
- Department of Orthodontics and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA; and
- Department of Preventive Dental Sciences, College of Dentistry, King Faisal University, Alkhobar, Saudi Arabia, 31952
| | - D.T. Graves
- Orthopaedic Surgical Research Laboratory, Department of Orthopaedic Surgery, Boston University Medical Center, Doctors’ Office Building, Suite 808, 720 Harrison Avenue, Boston, MA 02118, USA
- Department of Orthodontics and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA; and
- Department of Preventive Dental Sciences, College of Dentistry, King Faisal University, Alkhobar, Saudi Arabia, 31952
| | - L.C. Gerstenfeld
- Orthopaedic Surgical Research Laboratory, Department of Orthopaedic Surgery, Boston University Medical Center, Doctors’ Office Building, Suite 808, 720 Harrison Avenue, Boston, MA 02118, USA
- Department of Orthodontics and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA; and
- Department of Preventive Dental Sciences, College of Dentistry, King Faisal University, Alkhobar, Saudi Arabia, 31952
| | - T.A. Einhorn
- Orthopaedic Surgical Research Laboratory, Department of Orthopaedic Surgery, Boston University Medical Center, Doctors’ Office Building, Suite 808, 720 Harrison Avenue, Boston, MA 02118, USA
- Department of Orthodontics and
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA; and
- Department of Preventive Dental Sciences, College of Dentistry, King Faisal University, Alkhobar, Saudi Arabia, 31952
| |
Collapse
|