1
|
Butz I, Fernandez M, Uneri A, Theodore N, Anderson WS, Siewerdsen JH. Performance assessment of surgical tracking systems based on statistical process control and longitudinal QA. Comput Assist Surg (Abingdon) 2023; 28:2275522. [PMID: 37942523 DOI: 10.1080/24699322.2023.2275522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
A system for performance assessment and quality assurance (QA) of surgical trackers is reported based on principles of geometric accuracy and statistical process control (SPC) for routine longitudinal testing. A simple QA test phantom was designed, where the number and distribution of registration fiducials was determined drawing from analytical models for target registration error (TRE). A tracker testbed was configured with open-source software for measurement of a TRE-based accuracy metric ε and Jitter (J ). Six trackers were tested: 2 electromagnetic (EM - Aurora); and 4 infrared (IR - 1 Spectra, 1 Vega, and 2 Vicra) - all NDI (Waterloo, ON). Phase I SPC analysis of Shewhart mean (x ¯ ) and standard deviation (s ) determined system control limits. Phase II involved weekly QA of each system for up to 32 weeks and identified Pass, Note, Alert, and Failure action rules. The process permitted QA in <1 min. Phase I control limits were established for all trackers: EM trackers exhibited higher upper control limits than IR trackers in ε (EM: x ¯ ε ∼ 2.8-3.3 mm, IR: x ¯ ε ∼ 1.6-2.0 mm) and Jitter (EM: x ¯ jitter ∼ 0.30-0.33 mm, IR: x ¯ jitter ∼ 0.08-0.10 mm), and older trackers showed evidence of degradation - e.g. higher Jitter for the older Vicra (p-value < .05). Phase II longitudinal tests yielded 676 outcomes in which a total of 4 Failures were noted - 3 resolved by intervention (metal interference for EM trackers) - and 1 owing to restrictive control limits for a new system (Vega). Weekly tests also yielded 40 Notes and 16 Alerts - each spontaneously resolved in subsequent monitoring.
Collapse
Affiliation(s)
- I Butz
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - M Fernandez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - A Uneri
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - N Theodore
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - W S Anderson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - J H Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
The Feasibility of Electromagnetic Navigation Technique to Achieve Preoperative Plan in Mandibular Angle Osteotomy. J Craniofac Surg 2023; 34:830-833. [PMID: 36745139 DOI: 10.1097/scs.0000000000009168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/02/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In contrast to the most commonly used optical navigation system, electromagnetic navigation has huge potential in operations with a narrow field. The purpose of this experiment was to test and confirm whether the electromagnetic navigation method the authors developed for mandibular angle osteotomy (MAO) met clinical requirements. METHODS Using a dental splint that could be repeatedly mounted on teeth, registration between surgical plan and actual field was performed automatically. RESULTS Navigation of MAO was first performed on 10 mandibular models. The position precision measured using a coordinate measuring machine was 1.30±0.61 mm. Then, a navigation experiment was performed on 4 patients. Accuracy in actual operation measured by the NDI pointing sensor was 1.89±0.76 mm. Our noninvasive automatic registration process reduced the surgical exposure time and eliminated the bias of the manual selection of registration points. CONCLUSIONS This preliminary study confirmed the feasibility of the electromagnetic navigation technique in terms of both applicability and accuracy in MAO surgery.
Collapse
|
3
|
Sun M, Lin L, Chen X, Xu C, Zin MA, Han W, Chai G. Robot-assisted mandibular angle osteotomy using electromagnetic navigation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:567. [PMID: 33987265 PMCID: PMC8105801 DOI: 10.21037/atm-20-6305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/08/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND To explore the potential of electromagnetic (EM) navigation technology in the field of robot-assisted surgery, we set up a maxillofacial surgical robotic system (MSRS) guided by an EM navigation tool. Mandibular angle osteotomy was used to analyze the feasibility in confined surgical areas. METHODS Model and animal experiments were implemented to validate the system precision. Before the experiment, a customized dental splint was made and then fixed with a standard navigation part. An accurate 3D surgical plan was designed based on the preoperative CT scan. During the experiment, the splint was rigidly mounted on teeth for navigation registration, so the robot could position a specially designed template to guide the accurate osteotomy according to the preoperative plan. For the model experiment, a Coordinate Measuring Machine was used to measure the template's position and angle. For the animal experiment, surgeons completed the surgery by moving a saw along the template, while a postoperative CT scan was carried out to calculate the precision. RESULTS All procedures were successfully completed, with no complications in any of the experimental animals. In the model experiment, the accuracy of the navigation position and angle was 0.44±0.19 mm and 3.5°±2.1°, respectively. In the animal experiment, the lateral osteotomy line error was 0.83±0.62 mm, the interior error was 1.06±1.03 mm, and the angle between the actual cutting plane and preoperative planning plane was 5.9°±4.7°. CONCLUSIONS Robot-assisted surgery with EM navigation resulted feasible in the real operating environment. Moreover, this system's precision could meet clinical needs, while the proposed procedure was safe and easy on animals. Consequently, this approach has the potential to be applied to clinical craniomaxillofacial practice in the near future.
Collapse
Affiliation(s)
- Mengzhe Sun
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Forming Technology & Equipment, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Chen
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Xu
- Institute of Forming Technology & Equipment, Shanghai Jiao Tong University, Shanghai, China
| | - Mar Aung Zin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenqing Han
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Chai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Medical Instrumentation, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Maternal and Child Health Care Hospital of Hainan Province, Haikou, China
| |
Collapse
|
4
|
Brouwer de Koning SG, Geldof F, van Veen RLP, van Alphen MJA, Karssemakers LHE, Nijkamp J, Schreuder WH, Ruers TJM, Karakullukcu MB. Electromagnetic surgical navigation in patients undergoing mandibular surgery. Sci Rep 2021; 11:4657. [PMID: 33633247 PMCID: PMC7907338 DOI: 10.1038/s41598-021-84129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to evaluate the feasibility of electromagnetic (EM) navigation for guidance on osteotomies in patients undergoing oncologic mandibular surgery. Preoperatively, a 3D rendered model of the mandible was constructed from diagnostic computed tomography (CT) images. Cutting guides and patient specific reconstruction plates were designed and printed for intraoperative use. Intraoperative patient registration was performed using a cone beam CT scan (CBCT). The location of the mandible was tracked with an EM sensor fixated to the mandible. The real-time location of both the mandible and a pointer were displayed on the navigation system. Accuracy measurements were performed by pinpointing four anatomical landmarks and four landmarks on the cutting guide using the pointer on the patient and comparing these locations to the corresponding locations on the CBCT. Differences between actual and virtual locations were expressed as target registration error (TRE). The procedure was performed in eleven patients. TREs were 3.2 ± 1.1 mm and 2.6 ± 1.5 mm using anatomical landmarks and landmarks on the cutting guide, respectively. The navigation procedure added on average half an hour to the duration of the surgery. This is the first study that reports on the accuracy of EM navigation in patients undergoing mandibular surgery.
Collapse
Affiliation(s)
- S G Brouwer de Koning
- Department of Surgical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - F Geldof
- Department of Surgical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - R L P van Veen
- Department of Head and Neck Surgery & Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Head and Neck Surgery & Oncology, Verwelius 3D Lab, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - M J A van Alphen
- Department of Head and Neck Surgery & Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Head and Neck Surgery & Oncology, Verwelius 3D Lab, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - L H E Karssemakers
- Department of Head and Neck Surgery & Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Head and Neck Surgery & Oncology, Verwelius 3D Lab, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - J Nijkamp
- Department of Surgical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - W H Schreuder
- Department of Head and Neck Surgery & Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Head and Neck Surgery & Oncology, Verwelius 3D Lab, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| | - T J M Ruers
- Department of Surgical Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.,Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - M B Karakullukcu
- Department of Head and Neck Surgery & Oncology, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands.,Department of Head and Neck Surgery & Oncology, Verwelius 3D Lab, Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Applicability of a single camera-based catheter navigation system using teeth arch as an anatomical landmark for superselective intraarterial infusion in advanced oral cancer treatment. Med Biol Eng Comput 2021; 59:663-672. [PMID: 33594630 PMCID: PMC7925455 DOI: 10.1007/s11517-021-02326-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 01/18/2021] [Indexed: 11/05/2022]
Abstract
Superselective intraarterial infusion chemoradiotherapy is a modality of oral cancer therapy in which the artery feeding the tumor is catheterized. 3D information about the carotid artery is required to enable the surgeon to judge whether to advance, retract, or rotate the catheter. For this purpose, we proposed and conducted a model experiment to assess a new method of catheterization that applies a tracking system using registration with a monocular camera using the maxillary arch as the anatomical landmark. In this method, the preoperative 3D computer tomography angiographic image of the carotid artery that the catheter will be passed through is overlaid on the 2D video image. The mean TRE was 0.96 ± 0.36 mm and 0.88 ± 0.31 mm and 1.12 ± 0.46 mm when images were registered with the anterior and posterior teeth as the landmarks, respectively; the difference was not significant (p = 0.21). This tracking system that enables markerless registration simply by taking images of the maxillary anterior teeth with a single camera was convenient and effective for catheterization. In this study, we propose the new application of this tracking system and a novel method of catheterization for superselective intraarterial infusion chemoradiotherapy for oral cancer. In retrograde superselective intraarterial catheterization, a catheter is inserted into a tumor-feeding artery originating from the external carotid artery (ECA) (the lingual artery [LA], facial artery [FA], or maxillary artery [MA]). Because the maxillary dentition is located near the external carotid artery, we focused on real-time markerless registration using maxillary dentition fixed to the skull. ![]()
Collapse
|
6
|
Gao Y, Qin C, Tao B, Hu J, Wu Y, Chen X. An electromagnetic tracking implantation navigation system in dentistry with virtual calibration. Int J Med Robot 2021; 17:e2215. [PMID: 33369868 DOI: 10.1002/rcs.2215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dental implant placement navigation systems based on optical tracking have been widely used in clinics. However, electromagnetic (EM) navigation method that does not suffer from problems of hidden line-of-light has not yet been described. METHODS This work proposes an EM-guided navigation method named TianShu-ESNS with virtual calibration. Model (12 implants) and animal experiments (pig head: six implants) were conducted to evaluate its performance and stability. RESULT The mean virtual calibration error was 0.83 ± 0.20 mm. The mean deviations at the entry point, end point and angle in the phantom experiment of TianShu-ESNS were 1.23 ± 0.17 mm, 1.59 ± 0.20 mm and 1.83 ± 0.27°, respectively. In the animal experiment, the same deviations were 1.25 ± 0.07 mm, 1.57 ± 0.35 mm and 1.90 ± 0.60°, respectively. CONCLUSIONS The experimental results show that TianShu-ESNS with the virtual calibration method could serve as a promising tool to eliminate the line-of-light hidden problem and simplify operation procedure in dental implant placement.
Collapse
Affiliation(s)
- Yao Gao
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxia Qin
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Baoxin Tao
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junlei Hu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiqun Wu
- Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Chen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Udhay P. Navigation-guided surgery in orbital trauma. TNOA JOURNAL OF OPHTHALMIC SCIENCE AND RESEARCH 2021. [DOI: 10.4103/tjosr.tjosr_104_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Dynamic Navigation for Zygomatic Implants: A Case Report about a Protocol with Intraoral Anchored Reference Tool and an Up-To-Date Review of the Available Protocols. Methods Protoc 2020; 3:mps3040075. [PMID: 33167345 PMCID: PMC7711909 DOI: 10.3390/mps3040075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Dynamic Navigation is a computer-aided technology that allows the surgeon to track the grip instruments while preparing the implant site in real time based on radiological anatomy and accurate pre-operative planning. The support of this technology to the zygoma implant placement aims to reduce the risks and the errors associated with this complex surgical and prosthetic treatment. Various navigation systems are available to clinicians currently, distinguished by handling, reliability, and the associated economic and biological benefits and disadvantages. The present paper reports on the different protocols of dynamic navigations following a standard workflow in correlation with zygomatic implant supported rehabilitations and describes a case of maxillary atrophy successfully resolved with this technology. An innovative and minimally invasive dynamic navigation system, with the use of an intraoral anchored trust marker plate and a patient reference tool, has been adopted to support the accurate insertion of four zygomatic implants, which rapidly resolved maxillary atrophy from a 75-year-old male system. This approach provided an optimal implant placement accuracy reducing surgical invasiveness.
Collapse
|
9
|
Quantitative Augmented Reality-Assisted Free-Hand Orthognathic Surgery Using Electromagnetic Tracking and Skin-Attached Dynamic Reference. J Craniofac Surg 2020; 31:2175-2181. [PMID: 33136850 DOI: 10.1097/scs.0000000000006739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to develop a quantitative AR-assisted free-hand orthognathic surgery method using electromagnetic (EM) tracking and skin-attached dynamic reference. The authors proposed a novel, simplified, and convenient workflow for augmented reality (AR)-assisted orthognathic surgery based on optical marker-less tracking, a comfortable display, and a non-invasive, skin-attached dynamic reference frame. The 2 registrations between the physical (EM tracking) and CT image spaces and between the physical and AR camera spaces, essential processes in AR-assisted surgery, were pre-operatively performed using the registration body complex and 3D depth camera. The intraoperative model of the maxillary bone segment (MBS) was superimposed on the real patient image with the simulated goal model on a flat-panel display, and the MBS was freely handled for repositioning with respect to the skin-attached dynamic reference tool (SRT) with quantitative visualization of landmarks of interest using only EM tracking. To evaluate the accuracy of AR-assisted Le Fort I surgery, the MBS of the phantom was simulated and repositioned by 6 translational and three rotational movements. The mean absolute deviations (MADs) between the simulation and post-operative positions of MBS landmarks by the SRT were 0.20, 0.34, 0.29, and 0.55 mm in x- (left lateral, right lateral), y- (setback, advance), and z- (impaction, elongation) directions, and RMS, respectively, while those by the BRT were 0.23, 0.37, 0.30, and 0.60 mm. There were no significant differences between the translation and rotation surgeries or among surgeries in the x-, y-, and z-axes for the SRT. The MADs in the x-, y-, and z-axes exhibited no significant differences between the SRT and BRT. The developed method showed high accuracy and reliability in free-hand orthognathic surgery using EM tracking and skin-attached dynamic reference.
Collapse
|
10
|
A surgical navigated cutting guide for mandibular osteotomies: accuracy and reproducibility of an image-guided mandibular osteotomy. Int J Comput Assist Radiol Surg 2020; 15:1719-1725. [PMID: 32725399 DOI: 10.1007/s11548-020-02234-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE 3D-printed cutting guides are the current standard to translate the virtual surgery plan to the intraoperative setting. The production of these patient-specific cutting guides is time-consuming and costly, and therefore, alternative approaches are currently subject of research. The aim of this study was to assess the accuracy and reproducibility of using a novel electromagnetic (EM) navigated surgical cutting guide to perform virtually planned osteotomies in mandible models. METHODS A novel 3D navigated cutting guide (dubbed Bladerunner) was designed and evaluated with a total of 20 osteotomies, performed on plaster mandibular models according to preoperative planning using EM navigation. The pre- and postoperative scans were registered, and the difference between the preoperatively planned osteotomy and the performed osteotomy was expressed as the distance between the planned and performed cutting planes, and the yaw and roll angles between the planes. RESULTS The mean difference in distance between the planned osteotomy and performed osteotomy was 1.1 mm (STD 0.6 mm), the mean yaw was 1.8° (STD 1.4°), and mean roll was 1.6° (STD 1.3°). CONCLUSION The proposed EM navigated cutting guide for mandibular osteotomies demonstrated accurate positioning of the cutting plane according to the preoperative virtual surgical plan with respect to distance, yaw and roll angles. This novel approach has the potential to make the use of 3D-printed cutting guides obsolete, thereby decreasing the interval between diagnosis and surgery, reduce cost and allow for adaptation of the virtual plan in case of rapid tumor proliferation or unanticipated in situ deviations from the preoperative CT/MR imaging.
Collapse
|
11
|
Electromagnetic Navigation in Craniofacial Surgery Based on Automatic Registration of Dental Splints. J Craniofac Surg 2020; 31:393-396. [PMID: 31842079 DOI: 10.1097/scs.0000000000006038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Optical navigation method cannot be used in partial craniofacial surgery due to light blocking. At present, electromagnetic navigation method can be used instead. The occlusal splint obtained from the patient's dental mold is used in the traditional electromagnetic navigation registration. Then, marker points are selected manually for registration through imaging data during the operation, which leads to the deviation of selection. In this study, the self-developed registration software was used to perform automatic registration in the intraoperative registration. Experimental results showed that it has higher accuracy and faster speed, and is suitable for the actual operation process in clinical environment compared with the traditional manual registration.
Collapse
|
12
|
Udhay P, Bhattacharjee K, Ananthnarayanan P, Sundar G. Computer-assisted navigation in orbitofacial surgery. Indian J Ophthalmol 2019; 67:995-1003. [PMID: 31238394 PMCID: PMC6611296 DOI: 10.4103/ijo.ijo_807_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this systematic review is to investigate the most common indications, treatment, and outcomes of computer-assisted surgery (CAS) in ophthalmological practice. CAS has evolved over the years from a neurosurgical tool to maxillofacial as well as an instrument to orbitofacial surgeries. A detailed and organized scrutiny in relevant electronic databases, journals, and bibliographies of the cited articles was carried out. Clinical studies with a minimum of two study cases were included. Navigation surgery, posttraumatic orbital reconstruction, computer-assisted orbital surgery, image-guided orbital decompression, and optic canal decompression (OCD) were the areas of interest. The search generated 42 articles describing the use of navigation in facial surgery: 22 on orbital reconstructions, 5 related to lacrimal sac surgery, 4 on orbital decompression, 2 articles each on intraorbital foreign body and intraorbital tumors, 2 on faciomaxillary surgeries, 3 on cranial surgery, and 2 articles on navigation-guided OCD in traumatic optic neuropathy. In general, CAS is reported to be a useful tool for surgical planning, execution, evaluation, and research. The largest numbers of studies and patients were related to trauma. Treatment of complex orbital fractures was greatly improved by the use of CAS compared with empirically treated control groups. CAS seems to add a favourable potential to the surgical armamentarium. Planning details of the surgical approach in a three-dimensional virtual environment and execution with real-time guidance can help in considerable enhancement of precision. Financial investments and steep learning curve are the main hindrances to its popularity.
Collapse
Affiliation(s)
- Priti Udhay
- DRR Eye Care and Oculoplasty Hospital, Chennai, Tamil Nadu, India
| | | | - P Ananthnarayanan
- Department of Maxillofacial Surgery, Ananthan Facial Surgery, Chennai, Tamil Nadu, India
| | - Gangadhar Sundar
- Department of Ophthalmic Plastic and Reconstructive Surgery, National University Hospital, Singapore
| |
Collapse
|
13
|
Sorriento A, Porfido MB, Mazzoleni S, Calvosa G, Tenucci M, Ciuti G, Dario P. Optical and Electromagnetic Tracking Systems for Biomedical Applications: A Critical Review on Potentialities and Limitations. IEEE Rev Biomed Eng 2019; 13:212-232. [PMID: 31484133 DOI: 10.1109/rbme.2019.2939091] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Optical and electromagnetic tracking systems represent the two main technologies integrated into commercially-available surgical navigators for computer-assisted image-guided surgery so far. Optical Tracking Systems (OTSs) work within the optical spectrum to track the position and orientation, i.e., pose of target surgical instruments. OTSs are characterized by high accuracy and robustness to environmental conditions. The main limitation of OTSs is the need of a direct line-of-sight between the optical markers and the camera sensor, rigidly fixed into the operating theatre. Electromagnetic Tracking Systems (EMTSs) use electromagnetic field generator to detect the pose of electromagnetic sensors. EMTSs do not require such a direct line-of-sight, however the presence of metal or ferromagnetic sources in the operating workspace can significantly affect the measurement accuracy. The aim of the proposed review is to provide a complete and detailed overview of optical and electromagnetic tracking systems, including working principles, source of error and validation protocols. Moreover, commercial and research-oriented solutions, as well as clinical applications, are described for both technologies. Finally, a critical comparative analysis of the state of the art which highlights the potentialities and the limitations of each tracking system for a medical use is provided.
Collapse
|
14
|
Wu Y, Wang F, Huang W, Fan S. Real-Time Navigation in Zygomatic Implant Placement. Oral Maxillofac Surg Clin North Am 2019; 31:357-367. [DOI: 10.1016/j.coms.2019.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Hwang YE, Kang SH, Kim HK. Errors according to the number of registered markers used in navigation-assisted surgery of the mandible. Head Face Med 2019; 15:6. [PMID: 30736796 PMCID: PMC6368779 DOI: 10.1186/s13005-019-0190-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/31/2019] [Indexed: 12/05/2022] Open
Abstract
Background The aim of this study was to evaluate the accuracy of navigation according to the number of markers in terms of target registration errors (TREs) at each anatomical location during the registration process of the navigation system for the mandible. Methods The TREs were measured in five different experiments, varying only in the number of registration reference markers, which ranged from three to seven. To measure the TREs according to the number of registration reference markers, two experimental navigation devices were used: 1) Cbyon navigation surgery equipment 2) Polaris optical tracker. Both experiments were conducted to obtain the TREs at the anatomical locations of the mandible according to the number of registration markers during the navigation process. Statistical analysis was performed using the SPSS 23.0 software. Results At all anatomical locations, errors were 2 mm or less. Further, significant differences in the target errors measured by the Cbyon system were found according to the number of registration markers. Significant differences in the target errors measured by the Polaris optical tracker were found according to the registration markers at the posterior border only. In both groups, the target errors did not decrease as the number of registration markers increased. Conclusions This study demonstrates that an increase in the number of registration markers is not associated with a decrease in the TRE, and that a specific number of registration markers could reduce the TREs at each anatomical site. It is important to determine the minimum number of image registration markers at which the smallest TRE would be observed for different surgical sites.
Collapse
Affiliation(s)
- Young-Eun Hwang
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, South Korea
| | - Sang-Hoon Kang
- Department of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea.,Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, Seoul, Republic of Korea
| | - Hang-Keun Kim
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, South Korea. .,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea.
| |
Collapse
|
16
|
Lee SJ, Yang HJ, Choi MH, Woo SY, Huh KH, Lee SS, Heo MS, Choi SC, Hwang SJ, Yi WJ. Real-time augmented model guidance for mandibular proximal segment repositioning in orthognathic surgery, using electromagnetic tracking. J Craniomaxillofac Surg 2018; 47:127-137. [PMID: 30447987 DOI: 10.1016/j.jcms.2018.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022] Open
Abstract
It is essential to reposition the mandibular proximal segment (MPS) as close to its original position as possible during orthognathic surgery. Conventional methods cannot pinpoint the exact position of the condyle in the fossa in real time during repositioning. In this study, based on an improved registration method and a separable electromagnetic tracking tool, we developed a real-time, augmented, model-guided method for MPS surgery to reposition the condyle into its original position more accurately. After virtual surgery planning, using a complex maxillomandibular model, the final position of the virtual MPS model was simulated via 3D rotations. The displacements resulting from the MPS simulation were applied to the MPS landmarks to indicate their final postoperative positions. We designed a new registration body with 24 fiducial points for registration, and determined the optimal point group on the registration body through a phantom study. The registration between the patient's CT image and physical spaces was performed preoperatively using the optimal points. We also developed a separable frame for installing the electromagnetic tracking tool on the patient's MPS. During MPS surgery, the electromagnetic tracking tool was repeatedly attached to, and separated from, the MPS using the separable frame. The MPS movement resulting from the surgeon's manipulation was tracked by the electromagnetic tracking system. The augmented condyle model and its landmarks were visualized continuously in real time with respect to the simulated model and landmarks. Our method also provides augmented 3D coronal and sagittal views of the fossa and condyle, to allow the surgeon to examine the 3D condyle-fossa positional relationship more accurately. The root mean square differences between the simulated and intraoperative MPS models, and between the simulated and postoperative CT models, were 1.71 ± 0.63 mm and 1.89 ± 0.22 mm respectively at three condylar landmarks. Thus, the surgeons could perform MPS repositioning conveniently and accurately based on real-time augmented model guidance on the 3D condyle positional relationship with respect to the glenoid fossa, using augmented and simulated models and landmarks.
Collapse
Affiliation(s)
- Sang-Jeong Lee
- Department of Biomedical Radiation Sciences (Head: Sung-Joon Ye, PhD), Graduate School of Convergence Science and Technology, Seoul National University, South Korea
| | - Hoon Joo Yang
- Orthognathic Surgery Center (Head: Soon Jung Hwang, DDS, MD, PhD), Seoul National University Dental Hospital, South Korea
| | - Min-Hyuk Choi
- Department of Biomedical Radiation Sciences (Head: Sung-Joon Ye, PhD), Graduate School of Convergence Science and Technology, Seoul National University, South Korea
| | - Sang-Yoon Woo
- Department of Biomedical Radiation Sciences (Head: Sung-Joon Ye, PhD), Graduate School of Convergence Science and Technology, Seoul National University, South Korea
| | - Kyung-Hoe Huh
- Department of Oral and Maxillofacial Radiology (Head: Min-Suk Heo, DDS, PhD), School of Dentistry and Dental Research Institute, Seoul National University, South Korea
| | - Sam-Sun Lee
- Department of Oral and Maxillofacial Radiology (Head: Min-Suk Heo, DDS, PhD), School of Dentistry and Dental Research Institute, Seoul National University, South Korea
| | - Min-Suk Heo
- Department of Oral and Maxillofacial Radiology (Head: Min-Suk Heo, DDS, PhD), School of Dentistry and Dental Research Institute, Seoul National University, South Korea
| | - Soon-Chul Choi
- Department of Oral and Maxillofacial Radiology (Head: Min-Suk Heo, DDS, PhD), School of Dentistry and Dental Research Institute, Seoul National University, South Korea
| | - Soon Jung Hwang
- Department of Oral and Maxillofacial Surgery (Head: Jin-Young Choi, DDS, MD, PhD), School of Dentistry, Dental Research Institute, BK21 Plus, Seoul National University, South Korea.
| | - Won-Jin Yi
- Department of Biomedical Radiation Sciences (Head: Sung-Joon Ye, PhD), Graduate School of Convergence Science and Technology, Seoul National University, South Korea; Department of Oral and Maxillofacial Radiology (Head: Min-Suk Heo, DDS, PhD), School of Dentistry and Dental Research Institute, Seoul National University, South Korea.
| |
Collapse
|
17
|
Franz L, Isola M, Bagatto D, Tuniz F, Robiony M. A novel approach to skull-base and orbital osteotomies through virtual planning and navigation. Laryngoscope 2018; 129:823-831. [PMID: 30151894 DOI: 10.1002/lary.27479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Computer-assisted planning of osteotomy lines, coupled with navigation-guided performance of planned osteotomies, is a highly innovative approach to skull-base and orbital surgery. The aim of this pilot study is to provide an assessment of the accuracy of this novel approach in guiding the correct positioning of osteotomy lines in frontal, temporal, and orbital regions, defining the agreement between the spatial position of the planned and performed osteotomies. METHODS Fifteen patients with orbital, frontal sinus, and lateral skull-base diseases underwent virtual surgical planning. Osteotomies to access the orbit, frontal sinus, and lateral skull base were planned on computer tomography-based three-dimensional models. The planned osteotomies were reproduced on the operating field using a navigation system. The positions of the performed and planned osteotomies were compared. The results were described as the mean positional difference between planned and performed osteotomies and as Lin's concordance coefficient, and Bland-Altman limits of agreement were also defined. RESULTS The overall mean difference was 0.719 mm (95% confidence interval [CI]: 0.472 to 0.965 mm). Overall, Lin's concordance coefficient was 0.997 (95% CI: 0.996 to 0.998), and overall Bland-Altman limits of agreement ranged from -1.407 to 2.844 mm. The smallest mean difference (0.587 mm, 95% CI: 0.244 to 0.931 mm) was calculated in the orbit group, whereas the highest mean difference (0.904 mm, 95% CI: 0.428 to 1.379 mm) was described in the lateral skull-base group. CONCLUSION This study's results support the use of this novel planning and navigation protocol for guiding osteotomy in anterior and lateral skull-base surgery, providing a clinical validation of this technique. LEVEL OF EVIDENCE 4 Laryngoscope, 00:1-9, 2018 Laryngoscope, 129:823-831, 2019.
Collapse
Affiliation(s)
- Leonardo Franz
- Department of Maxillofacial Surgery, Academic Hospital of Udine, Department of Medicine, University of Udine, Udine, Italy
| | - Miriam Isola
- Department of Maxillofacial Surgery, Academic Hospital of Udine, Department of Medicine, University of Udine, Udine, Italy.,Institute of Statistics, Department of Medicine, University of Udine
| | | | - Francesco Tuniz
- Department of Neurosurgery , Academic Hospital of Udine, Udine, Italy
| | - Massimo Robiony
- Department of Maxillofacial Surgery, Academic Hospital of Udine, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
18
|
Berger M, Nova I, Kallus S, Ristow O, Eisenmann U, Dickhaus H, Engel M, Freudlsperger C, Hoffmann J, Seeberger R. Electromagnetic navigated condylar positioning after high oblique sagittal split osteotomy of the mandible: a guided method to attain pristine temporomandibular joint conditions. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 125:407-414.e1. [PMID: 29402731 DOI: 10.1016/j.oooo.2017.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/03/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Reproduction of the exact preoperative proximal-mandible position after osteotomy in orthognathic surgery is difficult to achieve. This clinical pilot study evaluated an electromagnetic (EM) navigation system for condylar positioning after high-oblique sagittal split osteotomy (HSSO). STUDY DESIGN After HSSO as part of 2-jaw surgery, the position of 10 condyles was intraoperatively guided by an EM navigation system. As controls, 10 proximal segments were positioned by standard manual replacement. Accuracy was measured by pre- and postoperative cone beam computed tomography imaging. RESULTS Overall, EM condyle repositioning was equally accurate compared with manual repositioning (P > .05). Subdivided into 3 axes, significant differences could be identified (P < .05). Nevertheless, no significantly and clinically relevant dislocations of the proximal segment of either the EM or the manual repositioning method could be shown (P > .05). CONCLUSIONS This pilot study introduces a guided method for proximal segment positioning after HSSO by applying the intraoperative EM system. The data demonstrate the high accuracy of EM navigation, although manual replacement of the condyles could not be surpassed. However, EM navigation can avoid clinically hidden, severe malpositioning of the condyles.
Collapse
Affiliation(s)
- Moritz Berger
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany.
| | - Igor Nova
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany
| | - Sebastian Kallus
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany
| | - Oliver Ristow
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Urs Eisenmann
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany
| | - Hartmut Dickhaus
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany
| | - Michael Engel
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | | | - Jürgen Hoffmann
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Robin Seeberger
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| |
Collapse
|
19
|
Janssen N, Eppenga R, Peeters MJV, van Duijnhoven F, Oldenburg H, van der Hage J, Rutgers E, Sonke JJ, Kuhlmann K, Ruers T, Nijkamp J. Real-time wireless tumor tracking during breast conserving surgery. Int J Comput Assist Radiol Surg 2017; 13:531-539. [PMID: 29134472 DOI: 10.1007/s11548-017-1684-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate a novel surgical navigation system for breast conserving surgery (BCS), based on real-time tumor tracking using the Calypso[Formula: see text] 4D Localization System (Varian Medical Systems Inc., USA). Navigation-guided breast conserving surgery (Nav-BCS) was compared to conventional iodine seed-guided BCS ([Formula: see text]I-BCS). METHODS Two breast phantom types were produced, containing spherical and complex tumors in which wireless transponders (Nav-BCS) or a iodine seed ([Formula: see text]I-BCS) were implanted. For navigation, orthogonal views and 3D volume renders of a CT of the phantom were shown, including a tumor segmentation and a predetermined resection margin. In the same views, a surgical pointer was tracked and visualized. [Formula: see text]I-BCS was performed according to standard protocol. Five surgical breast oncologists first performed a practice session with Nav-BCS, followed by two Nav-BCS and [Formula: see text]I-BCS sessions on spherical and complex tumors. Postoperative CT images of all resection specimens were registered to the preoperative CT. Main outcome measures were the minimum resection margin (in mm) and the excision times. RESULTS The rate of incomplete tumor resections was 6.7% for Nav-BCS and 20% for [Formula: see text]I-BCS. The minimum resection margins on the spherical tumors were 3.0 ± 1.4 mm for Nav-BCS and 2.5 ± 1.6 mm for [Formula: see text]I-BCS (p = 0.63). For the complex tumors, these were 2.2 ± 1.1 mm (Nav-BCS) and 0.9 ± 2.4 mm ([Formula: see text]I-BCS) (p = 0.32). Mean excision times on spherical and complex tumors were 9.5 ± 2.7 min and 9.4 ± 2.6 min (Nav-BCS), compared to 5.8 ± 2.2 min and 4.7 ± 3.4 min ([Formula: see text]I-BCS, both (p < 0.05). CONCLUSIONS The presented surgical navigation system improved the intra-operative awareness about tumor position and orientation, with the potential to improve surgical outcomes for non-palpable breast tumors. Results are positive, and participating surgeons were enthusiastic, but extended surgical experience on real breast tissue is required.
Collapse
Affiliation(s)
- Natasja Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roeland Eppenga
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Hester Oldenburg
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos van der Hage
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emiel Rutgers
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Koert Kuhlmann
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Theo Ruers
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Nanobiophysics Group, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Jasper Nijkamp
- Department of Surgical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Can electromagnetic-navigated maxillary positioning replace occlusional splints in orthognathic surgery? A clinical pilot study. J Craniomaxillofac Surg 2017; 45:1593-1599. [DOI: 10.1016/j.jcms.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 11/20/2022] Open
|
21
|
Franz L, Isola M, Bagatto D, Calzolari F, Travan L, Robiony M. A Novel Protocol for Planning and Navigation in Craniofacial Surgery: A Preclinical Surgical Study. J Oral Maxillofac Surg 2017; 75:1971-1979. [DOI: 10.1016/j.joms.2017.04.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 10/19/2022]
|
22
|
Electromagnetically tracked personalized templates for surgical navigation. Int J Comput Assist Radiol Surg 2017; 12:1049-1058. [PMID: 28332159 DOI: 10.1007/s11548-017-1563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
Abstract
PURPOSE An electromagnetic (EM) surgical tracking system was developed for orthopedic navigation. The reportedly poor accuracy of point-based EM navigation was improved by using anatomical impressions, which were EM-tracked personalized templates. Lines, rather than points, were consistently used for calibration and error evaluation. METHODS Technical accuracy was tested using models derived from CT scans of ten cadaver shoulders. Tracked impressions were first designed, calibrated, and tested using lines as fiducial objects. Next, tracked impressions were tested against EM point-based navigation and optical point-based navigation, in environments that were either relatively empty or that included surgical instruments. Finally, a tracked impression was tested on a cadaver forearm in a simulated fracture-repair task. RESULTS Calibration of anatomical impressions to EM tracking was highly accurate, with mean fiducial localization errors in positions of 0.3 mm and in angles of [Formula: see text]. Technical accuracy on physical shoulder models was also highly accurate; in an EM field with surgical instruments, the mean of target registration errors in positions was 2.2 mm and in angles was [Formula: see text]. Preclinical accuracy in a cadaver forearm in positions was 0.4 mm and in angles was [Formula: see text]. The technical accuracy was significantly better than point-based navigation, whether by EM tracking or by optical tracking. The preclinical accuracy was comparable to that achieved by point-based optical navigation. CONCLUSIONS EM-tracked impressions-a hybrid of personalized templates and EM navigation-are a promising technology for orthopedic applications. The two technical contributions are the novel hybrid navigation and the consistent use of lines as fiducial objects, replacing traditional point-based computations. The accuracy improvement was attributed to the combination of physical surfaces and line directions in the processes of calibration and registration. The technical studies and preclinical trial suggest that EM-tracked impressions are an accurate, ergonomic innovation in image-guided orthopedic surgery.
Collapse
|
23
|
Samarakkody ZM, Abdullah B. The use of image guided navigational tracking systems for endoscopic sinus surgery and skull base surgery: A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ejenta.2016.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Berger M, Nova I, Kallus S, Ristow O, Eisenmann U, Freudlsperger C, Seeberger R, Hoffmann J, Dickhaus H. Electromagnetic navigated positioning of the maxilla after Le Fort I osteotomy in preclinical orthognathic surgery cases. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 123:298-304. [PMID: 28049608 DOI: 10.1016/j.oooo.2016.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Inaccuracies in orthognathic surgery can be caused during face-bow registration, model surgery on plaster models, and intermaxillary splint manufacturing. Electromagnetic (EM) navigation is a promising method for splintless digitized maxillary positioning. STUDY DESIGN After performing Le Fort I osteotomy on 10 plastic skulls, the target position of the maxilla was guided by an EM navigation system. Specially implemented software illustrated the target position by real-time multistage colored three-dimensional imaging. Accuracy was determined by using pre- and postoperative cone beam computed tomography. RESULTS The high accuracy of the EM system was underlined by the fact that it had a navigated maxilla position discrepancy of only 0.4 mm, which was verified by postoperative cone beam computed tomography. CONCLUSIONS This preclinical study demonstrates a precise digitized approach for splintless maxillary repositioning after Le Fort I osteotomy. The accuracy and intuitive illustration of the introduced EM navigation system is promising for potential daily use in orthognathic surgery.
Collapse
Affiliation(s)
- Moritz Berger
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Igor Nova
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Kallus
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Ristow
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Urs Eisenmann
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Freudlsperger
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Robin Seeberger
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Hoffmann
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Hartmut Dickhaus
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Using Free Navigation Reference Points and Prefabricated Bone Plates for Zygoma Fracture Model Surgeries. J Med Biol Eng 2016; 36:316-324. [PMID: 27441035 PMCID: PMC4935740 DOI: 10.1007/s40846-016-0144-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/13/2015] [Indexed: 12/03/2022]
Abstract
Surgical navigation systems have been an important tool in maxillofacial surgery, helping surgeons create a presurgical plan, locate lesions, and provide guidance. For secondary facial bone reductions, a good presurgical plan and proper execution are the key to success. Previous studies used predetermined markers and screw holes as navigation references; however, unexpected situations may occur, making the predetermined surgical plan unreliable. Instead of determining positions preoperatively, this study proposes a method that surgeons can use intraoperatively to choose surface markers in a more flexible manner. Eight zygomatic fractures were created in four skull models, and preoperative computed tomography (CT) image data were imported into a self-developed navigation program for presurgical planning. This program also calculates the ideal positions of navigation references points for screw holes. During reduction surgery, markers on fractured bone are selected, registered, and calculated as free navigation reference points (FNRPs). The surface markers and FNRPs are used to monitor the position of the dislocated bone. Titanium bone plates were prefabricated on stereolithography models for osteosynthesis. Two reductions with only FNRPs, as well as six reductions with FNRPs and prefabricated bone plates, were successfully performed. Postoperative CT data were obtained, and surgical errors in the six-reduction group were evaluated. The average deviation from the screw hole drilling positions was 0.92 ± 0.38 mm. The average deviation included displacement and rotation of the zygomas. The mean displacement was 0.83 ± 0.38 mm, and the average rotations around the x, y, and z axes were 0.66 ± 0.59°, 0.77 ± 0.54°, and 0.79 ± 0.42°, respectively. The results show that combining presurgical planning and the developed navigation program to generate FNRPs for assisting in secondary zygoma reduction is an accurate and practical method. Further study is necessary to prove its clinical value.
Collapse
|
26
|
Adolphs N, Ernst N, Keeve E, Hoffmeister B. Contemporary Correction of Dentofacial Anomalies: A Clinical Assessment. Dent J (Basel) 2016; 4:dj4020011. [PMID: 29563453 PMCID: PMC5851261 DOI: 10.3390/dj4020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 11/16/2022] Open
Abstract
Contemporary computer-assisted technologies can support the surgical team in the treatment of patients affected by dentofacial deformities. Based on own experiences of 350 patients that received orthognathic surgery by the same team from 2007 to 2015, this clinical review is intended to give an overview of the results and risks related to the surgical correction of dentofacial anomalies. Different clinical and technological innovations that can contribute to improve the planning and transfer of corrective dentofacial surgery are discussed as well. However, despite the presence of modern technologies, a patient-specific approach and solid craftsmanship remain the key factors in this elective surgery.
Collapse
Affiliation(s)
- Nicolai Adolphs
- Department of Craniomaxillofacial Surgery, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Mittelallee 2, Berlin 13353, Germany.
| | - Nicole Ernst
- Department of Craniomaxillofacial Surgery, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Mittelallee 2, Berlin 13353, Germany.
| | - Erwin Keeve
- Department of Craniomaxillofacial Surgery, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Mittelallee 2, Berlin 13353, Germany.
| | - Bodo Hoffmeister
- Department of Craniomaxillofacial Surgery, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Mittelallee 2, Berlin 13353, Germany.
| |
Collapse
|
27
|
Lee SJ, Woo SY, Huh KH, Lee SS, Heo MS, Choi SC, Han JJ, Yang HJ, Hwang SJ, Yi WJ. Virtual skeletal complex model- and landmark-guided orthognathic surgery system. J Craniomaxillofac Surg 2016; 44:557-68. [PMID: 27012762 DOI: 10.1016/j.jcms.2016.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 01/30/2016] [Accepted: 02/19/2016] [Indexed: 11/26/2022] Open
Abstract
In this study, correction of the maxillofacial deformities was performed by repositioning bone segments to an appropriate location according to the preoperative planning in orthognathic surgery. The surgery was planned using the patient's virtual skeletal models fused with optically scanned three-dimensional dentition. The virtual maxillomandibular complex (MMC) model of the patient's final occlusal relationship was generated by fusion of the maxillary and mandibular models with scanned occlusion. The final position of the MMC was simulated preoperatively by planning and was used as a goal model for guidance. During surgery, the intraoperative registration was finished immediately using only software processing. For accurate repositioning, the intraoperative MMC model was visualized on the monitor with respect to the simulated MMC model, and the intraoperative positions of multiple landmarks were also visualized on the MMC surface model. The deviation errors between the intraoperative and the final positions of each landmark were visualized quantitatively. As a result, the surgeon could easily recognize the three-dimensional deviation of the intraoperative MMC state from the final goal model without manually applying a pointing tool, and could also quickly determine the amount and direction of further MMC movements needed to reach the goal position. The surgeon could also perform various osteotomies and remove bone interference conveniently, as the maxillary tracking tool could be separated from the MMC. The root mean square (RMS) difference between the preoperative planning and the intraoperative guidance was 1.16 ± 0.34 mm immediately after repositioning. After surgery, the RMS differences between the planning and the postoperative computed tomographic model were 1.31 ± 0.28 mm and 1.74 ± 0.73 mm for the maxillary and mandibular landmarks, respectively. Our method provides accurate and flexible guidance for bimaxillary orthognathic surgery based on intraoperative visualization and quantification of deviations for simulated postoperative MMC and landmarks. The guidance using simulated skeletal models and landmarks can complement and improve conventional navigational surgery for bone repositioning in the craniomaxillofacial area.
Collapse
Affiliation(s)
- Sang-Jeong Lee
- Department of Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Sang-Yoon Woo
- Department of Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Kyung-Hoe Huh
- Department of Oral and Maxillofacial Radiology, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sam-Sun Lee
- Department of Oral and Maxillofacial Radiology, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Min-Suk Heo
- Department of Oral and Maxillofacial Radiology, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Soon-Chul Choi
- Department of Oral and Maxillofacial Radiology, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jeong Joon Han
- Department of Oral and Maxillofacial Surgery, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hoon Joo Yang
- Department of Oral and Maxillofacial Surgery, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Soon Jung Hwang
- Department of Oral and Maxillofacial Surgery, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.
| | - Won-Jin Yi
- Department of Oral and Maxillofacial Radiology, BK21, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea.
| |
Collapse
|
28
|
A novel navigation system for maxillary positioning in orthognathic surgery: Preclinical evaluation. J Craniomaxillofac Surg 2015; 43:1723-30. [DOI: 10.1016/j.jcms.2015.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/22/2022] Open
|
29
|
Berger M, Kallus S, Nova I, Ristow O, Eisenmann U, Dickhaus H, Kuhle R, Hoffmann J, Seeberger R. Approach to intraoperative electromagnetic navigation in orthognathic surgery: A phantom skull based trial. J Craniomaxillofac Surg 2015; 43:1731-6. [PMID: 26421472 DOI: 10.1016/j.jcms.2015.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION Intraoperative guidance using electromagnetic navigation is an upcoming method in maxillofacial surgery. However, due to their unwieldy structures, especially the line-of-sight problem, optical navigation devices are not used for daily orthognathic surgery. Therefore, orthognathic surgery was simulated on study phantom skulls, evaluating the accuracy and handling of a new electromagnetic tracking system. MATERIAL AND METHODS Le-Fort I osteotomies were performed on 10 plastic skulls. Orthognathic surgical planning was done in the conventional way using plaster models. Accuracy of the gold standard, splint-based model surgery versus an electromagnetic tracking system was evaluated by measuring the actual maxillary deviation using bimaxillary splints and preoperative and postoperative cone beam computer tomography imaging. The distance of five anatomical marker points were compared pre- and postoperatively. RESULTS The electromagnetic tracking system was significantly more accurate in all measured parameters compared with the gold standard using bimaxillary splints (p < 0.01). The data shows a discrepancy between the model surgical plans and the actual correction of the upper jaw of 0.8 mm. Using the electromagnetic tracking, we could reduce the discrepancy of the maxillary transposition between the planned and actual orthognathic surgery to 0.3 mm on average. DISCUSSION The data of this preliminary study shows a high level of accuracy in surgical orthognathic performance using electromagnetic navigation, and may offer greater precision than the conventional plaster model surgery with bimaxillary splints. CONCLUSION This preliminary work shows great potential for the establishment of an intraoperative electromagnetic navigation system for maxillofacial surgery.
Collapse
Affiliation(s)
- Moritz Berger
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany.
| | - Sebastian Kallus
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany
| | - Igor Nova
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany
| | - Oliver Ristow
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Urs Eisenmann
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany
| | - Hartmut Dickhaus
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Germany
| | - Reinald Kuhle
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Jürgen Hoffmann
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| | - Robin Seeberger
- Department of Oral and Maxillofacial Surgery, University Hospital Heidelberg, Germany
| |
Collapse
|
30
|
An integrated orthognathic surgery system for virtual planning and image-guided transfer without intermediate splint. J Craniomaxillofac Surg 2014; 42:2010-7. [DOI: 10.1016/j.jcms.2014.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/22/2014] [Accepted: 09/25/2014] [Indexed: 11/22/2022] Open
|
31
|
An advanced navigational surgery system for dental implants completed in a single visit: an in vitro study. J Craniomaxillofac Surg 2014; 43:117-25. [PMID: 25434287 DOI: 10.1016/j.jcms.2014.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/31/2014] [Accepted: 10/22/2014] [Indexed: 11/23/2022] Open
Abstract
In this study, we have developed an advanced navigational implant surgery system to overcome some disadvantages of the conventional method and have evaluated the accuracy of the system under in vitro environment. The patient splint for registration and tracking was improvised using a bite splint without laboratory work and the offset of an exchanged drill was calibrated directly without pivoting during surgery. The mean target registration errors (TRE) were 0.35 ± 0.11 mm using the registration body, 0.34 ± 0.18 mm for the registration method with prerecorded fiducials, and 0.35 ± 0.16 mm for the direct calibration of a drill offset. The mean positional deviations between the planned and placed implants in 110 implant surgeries were 0.41 ± 0.12 mm at the center point of the platform and 0.56 ± 0.14 mm at the center point of the apex. The mean angular deviation was 2.64°± 1.31 for the long axis of the implant. In conclusion, the developed system exhibited high accuracy, and the improved tools and simplified procedures increased the convenience and availability. With this advanced approach, it will be possible to complete dental implant surgery during a single visit at local clinics using a navigational guidance involving cone-beam computed tomographic images.
Collapse
|
32
|
Bobek SL. Applications of Navigation for Orthognathic Surgery. Oral Maxillofac Surg Clin North Am 2014; 26:587-98. [DOI: 10.1016/j.coms.2014.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Electromagnetic tracking in surgical and interventional environments: usability study. Int J Comput Assist Radiol Surg 2014; 10:253-62. [PMID: 25193146 DOI: 10.1007/s11548-014-1110-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/10/2014] [Indexed: 12/13/2022]
|
34
|
Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L. Electromagnetic tracking in medicine--a review of technology, validation, and applications. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1702-1725. [PMID: 24816547 DOI: 10.1109/tmi.2014.2321777] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Object tracking is a key enabling technology in the context of computer-assisted medical interventions. Allowing the continuous localization of medical instruments and patient anatomy, it is a prerequisite for providing instrument guidance to subsurface anatomical structures. The only widely used technique that enables real-time tracking of small objects without line-of-sight restrictions is electromagnetic (EM) tracking. While EM tracking has been the subject of many research efforts, clinical applications have been slow to emerge. The aim of this review paper is therefore to provide insight into the future potential and limitations of EM tracking for medical use. We describe the basic working principles of EM tracking systems, list the main sources of error, and summarize the published studies on tracking accuracy, precision and robustness along with the corresponding validation protocols proposed. State-of-the-art approaches to error compensation are also reviewed in depth. Finally, an overview of the clinical applications addressed with EM tracking is given. Throughout the paper, we report not only on scientific progress, but also provide a review on commercial systems. Given the continuous debate on the applicability of EM tracking in medicine, this paper provides a timely overview of the state-of-the-art in the field.
Collapse
|
35
|
Kang SH, Lee JW, Lim SH, Kim YH, Kim MK. Verification of the usability of a navigation method in dental implant surgery: in vitro comparison with the stereolithographic surgical guide template method. J Craniomaxillofac Surg 2014; 42:1530-5. [PMID: 24954760 DOI: 10.1016/j.jcms.2014.04.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/26/2014] [Accepted: 04/22/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study investigates the usefulness of a navigation method using a reference frame directly fixed to the mandible compared to the stereolithographic (STL) surgical guide template method in dental implant surgery. MATERIALS AND METHODS Twenty rapid prototyping (RP) mandibular models were divided into two groups. Simulation surgery was performed using SimPlant software for both groups. The actual dental implants were placed in the RP models using a real-time navigation system or the surgical guide template, which was fabricated based on STL data by a 3-dimensional printer. Positional implantation errors were measured by comparing the simulation surgery implant positions to the actual postoperative implant positions. RESULTS The vertical distance error of the top surface area in the first molar region was not significantly different between groups. Otherwise, the implantation method using real-time navigation showed greater errors except for the horizontal and vertical errors in the apical area of the canine region. CONCLUSION The STL surgical guide template was associated with fewer errors than the real-time navigation method in dental implant surgery.
Collapse
Affiliation(s)
- Sang-Hoon Kang
- Department of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea; Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| | - Jae-Won Lee
- Department of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Se-Ho Lim
- Department of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Yeon-Ho Kim
- Department of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Moon-Key Kim
- Department of Oral and Maxillofacial Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea; Department of Oral and Maxillofacial Surgery, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| |
Collapse
|
36
|
Sadjadi H, Hashtrudi-Zaad K, Fichtinger G. Needle deflection estimation: prostate brachytherapy phantom experiments. Int J Comput Assist Radiol Surg 2014; 9:921-9. [PMID: 24531917 DOI: 10.1007/s11548-014-0985-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/06/2014] [Indexed: 11/27/2022]
Abstract
PURPOSE The performance of a fusion-based needle deflection estimation method was experimentally evaluated using prostate brachytherapy phantoms. The accuracy of the needle deflection estimation was determined. The robustness of the approach with variations in needle insertion speed and soft tissue biomechanical properties was investigated. METHODS A needle deflection estimation method was developed to determine the amount of needle bending during insertion into deformable tissue by combining a kinematic deflection model with measurements taken from two electromagnetic trackers placed at the tip and the base of the needle. Experimental verification of this method for use in prostate brachytherapy needle insertion procedures was performed. A total of 21 beveled tip, 18 ga, 200 mm needles were manually inserted at various speeds through a template and toward different targets distributed within 3 soft tissue mimicking polyvinyl chloride prostate phantoms of varying stiffness. The tracked positions of both the needle tip and base were recorded, and Kalman filters were applied to fuse the sensory information. The estimation results were validated using ground truth obtained from fluoroscopy images. RESULTS The manual insertion speed ranged from 8 to 34 mm/s, needle deflection ranged from 5 to 8 mm at an insertion depth of 76 mm, and the elastic modulus of the soft tissue ranged from 50 to 150 kPa. The accuracy and robustness of the estimation method were verified within these ranges. When compared to purely model-based estimation, we observed a reduction in needle tip position estimation error by [Formula: see text] % (mean [Formula: see text] SD) and the cumulative deflection error by [Formula: see text] %. CONCLUSIONS Fusion of electromagnetic sensors demonstrated significant improvement in estimating needle deflection compared to model-based methods. The method has potential clinical applicability in the guidance of needle placement medical interventions, particularly prostate brachytherapy.
Collapse
Affiliation(s)
- Hossein Sadjadi
- Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, ON, K7L 3N6, Canada. .,BioRobotics Research Laboratory, Department of Electrical and Computer Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Keyvan Hashtrudi-Zaad
- BioRobotics Research Laboratory, Department of Electrical and Computer Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Gabor Fichtinger
- Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
37
|
García-Vázquez V, Marinetto E, Santos-Miranda JA, Calvo FA, Desco M, Pascau J. Feasibility of integrating a multi-camera optical tracking system in intra-operative electron radiation therapy scenarios. Phys Med Biol 2013; 58:8769-82. [PMID: 24301181 DOI: 10.1088/0031-9155/58/24/8769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intra-operative electron radiation therapy (IOERT) combines surgery and ionizing radiation applied directly to an exposed unresected tumour mass or to a post-resection tumour bed. The radiation is collimated and conducted by a specific applicator docked to the linear accelerator. The dose distribution in tissues to be irradiated and in organs at risk can be planned through a pre-operative computed tomography (CT) study. However, surgical retraction of structures and resection of a tumour affecting normal tissues significantly modify the patient's geometry. Therefore, the treatment parameters (applicator dimension, pose (position and orientation), bevel angle, and beam energy) may require the original IOERT treatment plan to be modified depending on the actual surgical scenario. We propose the use of a multi-camera optical tracking system to reliably record the actual pose of the IOERT applicator in relation to the patient's anatomy in an environment prone to occlusion problems. This information can be integrated in the radio-surgical treatment planning system in order to generate a real-time accurate description of the IOERT scenario. We assessed the accuracy of the applicator pose by performing a phantom-based study that resembled three real clinical IOERT scenarios. The error obtained (2 mm) was below the acceptance threshold for external radiotherapy practice, thus encouraging future implementation of this approach in real clinical IOERT scenarios.
Collapse
Affiliation(s)
- V García-Vázquez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain. Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Yu H, Shen SG, Wang X, Zhang L, Zhang S. The indication and application of computer-assisted navigation in oral and maxillofacial surgery—Shanghai's experience based on 104 cases. J Craniomaxillofac Surg 2013; 41:770-4. [DOI: 10.1016/j.jcms.2013.01.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 11/16/2022] Open
|
39
|
Kim SH, Kim DS, Huh KH, Lee SS, Heo MS, Choi SC, Hwang SJ, Yi WJ. Direct and continuous localization of anatomical landmarks for image-guided orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:402-10. [DOI: 10.1016/j.oooo.2013.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/23/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
|
40
|
Sadjadi H, Hashtrudi-Zaad K, Fichtinger G. Fusion of Electromagnetic Trackers to Improve Needle Deflection Estimation: Simulation Study. IEEE Trans Biomed Eng 2013; 60:2706-15. [DOI: 10.1109/tbme.2013.2262658] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Benassarou M, Benassarou A, Meyer C. La navigation en chirurgie orthognathique. Application à l’ostéotomie de Le Fort I. ACTA ACUST UNITED AC 2013; 114:219-227. [DOI: 10.1016/j.revsto.2013.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/03/2013] [Indexed: 12/01/2022]
|