1
|
Dupre N, Riou MC, Isaac J, Ferre F, Cormier-Daire V, Kerner S, de La Dure-Molla M, Nowwarote N, Acevedo AC, Fournier BPJ. Root resorptions induced by genetic disorders: A systematic review. Oral Dis 2024; 30:3799-3812. [PMID: 38566363 DOI: 10.1111/odi.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Root resorption in permanent teeth is a common pathological process that often follows dental trauma or orthodontic treatment. More rarely, root resorption is a feature of genetic disorders and can help with diagnosis. Thus, the present review aims to determine which genetic disorders could induce pathological root resorptions and thus which mutated genes could be associated with them. METHODS We conducted a systematic review following the PRISMA guidelines. Articles describing root resorptions in patients with genetic disorders were included from PubMed, Embase, Web of Science, and Google Scholar. We synthesized the genetic disorder, the type, severity, and extent of the resorptions, as well as the other systemic and oral symptoms and histological features. RESULTS The synthetic analysis included 25 studies among 937 identified records. We analyzed 21 case reports, three case series, and one cohort study. Overall, we highlighted 14 different pathologies with described root resorptions. Depending on the pathology, the sites of resorption, their extent, and their severity showed differences. CONCLUSION With 14 genetic pathologies suspected to induce root resorptions, our findings are significant and enrich a previous classification. Among them, three metabolic disorders, three calcium-phosphorus metabolism disorders, and osteolysis disorders were identified.
Collapse
Affiliation(s)
- Nicolas Dupre
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Margot C Riou
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Juliane Isaac
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - François Ferre
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Valérie Cormier-Daire
- Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France
| | - Stéphane Kerner
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
- Department of Periodontics, School of Dentistry, Loma Linda University, Loma Linda, California, USA
- Post-Graduate Program in Periodontology and Implant Dentistry, EFP, Université Paris Cité, Paris, France
| | - Muriel de La Dure-Molla
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
- Reference Center for Skeletal Dysplasia, INSERM UMR1163, Institut Imagine, Necker Hospital, Université Paris Cité, Paris, France
| | - Nunthawan Nowwarote
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| | - Ana Carolina Acevedo
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
- Laboratory of Oral Histopathology, Faculty of Health Sciences, University of Brasilia, Brasilia, Brazil
- Oral Care Center for Inherited Diseases, University Hospital of Brasilia, Brasilia, Brazil
| | - Benjamin P J Fournier
- Reference Center for Oral and Dental Rare Diseases, APHP, ORARES, Rothschild Hospital, Paris, France
- Centre de Recherche Des Cordeliers, Laboratory of Molecular Oral Pathophysiology, Université Paris Cité, Sorbonne Université, INSERM, Paris, France
- Department of Periodontology, Oral Biology, Pediatric Dentistry, and Oral Surgery, Faculty of Odontology, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Hassona Y, Hassan S, Atef A, Flaifl Y, AlShammas F, Abdaljaleel M. Primary hyperoxaluria: Description of a new oral finding and review of literature. SPECIAL CARE IN DENTISTRY 2024; 44:1041-1048. [PMID: 38321570 DOI: 10.1111/scd.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/04/2024] [Accepted: 01/20/2024] [Indexed: 02/08/2024]
Abstract
OBJECTIVES Oro-dental manifestations of hyperoxaluria and dental management of affected patients are rarely reported in the literature. We describe a new oral presentation of primary hyperoxaluria (PH) and review relevant literature about oro-dental manifestations and management of dental complications of hyperoxaluria. METHODS A case report of a 44-year-old female who presented with symptoms of temporomandibular joint dysfunction due to hyperoxaluria was described according to the CARE guidelines. In addition, an extensive search of biomedical databases (PubMed, Medline, Google Scholar, and Embase) for articles describing oro-dental manifestations and/or dental management in patients with hyperoxaluria was performed using the key words ("oral" and/or "hyperoxaluria" and/or "dental" and/or "oxalosis"). Included articles were reviewed and data about patient demographics, disease type and stage, oral and dental manifestations, and dental treatment outcome were retrieved and analyzed. RESULTS A total of 14 articles describing the oral and dental manifestations in 15 patients with hyperoxaluria were included. Tooth mobility, root resorption, and radiographic alterations were consistently described in all cases. Oral manifestations were described mainly in PH at late stages, and only after the onset of chronic renal disease. Dental management in all reported cases was palliative and aimed to relive pain and treat periodontal infection. Tooth loss due to extraction or uncontrolled mobility was the ultimate outcome in almost all reported cases. CONCLUSION Oral and dental manifestations in hyperoxaluria are rarely reported in the literature. Management of tooth mobility and root resorption in hyperoxaluria is challenging and clinical guidelines and evidence-based recommendations are lacking. Early diagnosis and treatment of hyperoxaluria might be the only effective approach to prevent dental and periodontal complications of the disease.
Collapse
Affiliation(s)
- Yazan Hassona
- Faculty of Dentistry, Centre for Oral Diseases Studies (CODS), Al-Ahliyya Amman University, Amman, Jordan
- School of Dentistry, The University of Jordan, Amman, Jordan
| | - Sora Hassan
- School of Dentistry, The University of Jordan, Amman, Jordan
| | - Alaa Atef
- School of Dentistry, The University of Jordan, Amman, Jordan
| | - Yara Flaifl
- School of Dentistry, The University of Jordan, Amman, Jordan
| | - Faris AlShammas
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Maram Abdaljaleel
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Kapferer-Seebacher I, Foradori L, Zschocke J, Schilke R. Rare Genetic Disorders Affecting the Periodontal Supporting Tissues in Adolescence. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.687510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In adolescents periodontal destruction may be the primary manifestation of an as yet unrecognized rare systemic disease, and it may be up to the periodontist to make the correct tentative diagnosis. Many genetic diseases that present with primary periodontal manifestations in adolescence affect immune function, sometimes with only mild or absent systemic features. They include periodontal Ehlers-Danlos syndrome (lack of attached gingiva, various connective tissue abnormalities), Papillon-Lefèvre syndrome (palmoplantar hyperkeratosis), and plasminogen deficiency (fibrin deposition within mucous membranes). Other immune disorders with severe periodontitis manifesting in adolescence are usually diagnosed in early childhood due to unmistakeable systemic features. They include Cohen syndrome (developmental disorder, truncal obesity, and microcephaly), Hermansky-Pudlak Syndrome (oculocutaneous albinism, bleeding diathesis, and other systemic manifestations), glycogen storage disease type 1b, and Chediak-Higashi syndrome (pyogenic infections, albinism, and neuropathy). The structural integrity of periodontal tissue is affected in genodermatoses such as Kindler syndrome, a type of epidermolysis bullosa. In primary hyperoxaluria, inflammatory periodontal destruction is associated with renal calculi. Breakdown of periodontal tissues independent of dental plaque biofilm-induced periodontitis is found in hypophosphatasia (highly variable skeletal hypomineralization) or isolated odontohypophosphatasia, hypophosphatemic rickets and primary hyperparathyroidism. Finally, alveolar osteolysis mimicking localized periodontitis may be due to neoplastic processes, e.g., in neurofibromatosis type 1 (typical skin features including café au lait macules and neurofibromas), Langerhans cell histiocytosis (locally destructive proliferation of bone marrow-derived immature myeloid dendritic cells), and Gorham-Stout disease (diffuse cystic angiomatosis of bone).
Collapse
|
4
|
Vincent KM, Azzopardi PV, Mittler S, Grohe B. The solubility of calcium oxalates explains some aspects of their underrepresentation in the oral cavity. Arch Oral Biol 2020; 121:104965. [PMID: 33157495 DOI: 10.1016/j.archoralbio.2020.104965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Clarifying the discrepancy between frequently high oxalate concentrations present in saliva, but negligible amounts of calcium oxalate deposits found on oral surfaces. METHODS Studying the calcium oxalate concentration range that can lead to heterogeneous crystallization in the oral cavity. a) Minimum: calcium oxalate monohydrate (COM) seed crystals were pre-grown ([Ca2+] = [C2O42-] = 1 mM, 30 min, 37 °C), and then re-immersed for ≥6 h to find the solubility equilibrium concentration (no growth, no dissolution). The concentrations tested were [Ca2+]/[C2O42-] : 0.055/0.050, 0.060/0.055, 0.070/0.065 and 0.080/0.075 mM. Supersaturations were calculated via the Debye-Hückel-theory and COM morphologies examined by scanning electron microscopy (SEM). b) Maximum (at the heterogeneous/homogeneous crystallization equilibrium): hydroxyapatite (HA) seed crystals were used to heterogeneously crystallize COM (37 °C, 24 h), using oxalate concentrations between 0.2 and 0.5 mM and calcium concentrations of 0.5 mM. COM-forming oxalate consumption was spectroscopically examined; COM precipitates were investigated by SEM; and HA identity was confirmed by X-ray analysis. RESULTS Within the concentration range of [Ca2+]/[C2O42-]:0.060/0.055 mM (minimum) and [Ca2+]/[C2O42-]:0.50/0.25 mM (maximum) COM precipitates heterogeneously. In terms of mass, this corresponds to a range of 8.04-36.53 mg/l (daily) or an average of 14.32 mg COM (mimicking e.g. plaque mineralization). Higher concentrations react homogeneously (mimicking precipitation within saliva). CONCLUSION In vivo, only ∼0.05 % oxalate present in saliva reacts with oral surfaces daily, corresponding to ∼0.0665 μmol/l or ∼9.72 μg COM per day. Calcium-consuming calcium phosphate formation and phosphoproteins such as statherin obviously hinder intraoral COM formation.
Collapse
Affiliation(s)
- Krista M Vincent
- School of Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Paul V Azzopardi
- School of Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Silvia Mittler
- Department of Physics and Astronomy, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Bernd Grohe
- Lawson Health Research Institute, St. Joseph's Hospital, London, Ontario, N6A 4V2, Canada.
| |
Collapse
|