1
|
Lyutova E, Tkachuk VA, Zakharkiva AM, Borilo LP, Buzaev AA, Chen YW. Effects of Addition of Lanthanum and Zinc Oxides on the Biological Properties of TiO 2-SiO 2-P 2O 5/CaO on Ion Exchange Resin for Bone Implantation. ACS OMEGA 2024; 9:6880-6887. [PMID: 38371807 PMCID: PMC10870407 DOI: 10.1021/acsomega.3c08268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024]
Abstract
The spherical materials TiO2-SiO2-P2O5/CaO, TiO2-SiO2-P2O5/La2O3, and TiO2-SiO2-P2O5/ZnO deposited on the Tokem-250 cation exchanger have been synthesized with an alcoholic solution by the sol-gel method. The macroporous cation exchanger Tokem-250, which has high Ca2+, Zn2+, and La3+ ion selectivity, was used in the present study. This material has the ability to precipitate and mineralize calcium phosphates on its surface in biological media, since it has high porosity, a homogeneous structure with a uniform variation of elements, and the presence of active centers (Si4+, Ti4+) on the surface. The effect of lanthanum and zinc additives on biological properties has been studied. It was established that accumulation of Ca2+ and Mg2+ occurs faster on the surface of TiO2-SiO2-P2O5/ZnO in the SBF (simulated body fluid) model solution, showing higher reaction capacity. The amount of calcium and phosphorus ions on the surface of sample TiO2-SiO2-P2O5/La2O3 is greater due to the ability of lanthanum to coordinate a large number of ions (lanthanum coordination number is 10). The presence of zinc ions in the system causes the partial hemoglobin release from erythrocytes into the supernatant fluid. The samples with lanthanum ions reduce the amount of protein in plasma after incubation, which has a positive effect on the practical application.
Collapse
Affiliation(s)
- Ekaterina
S. Lyutova
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
| | - Valeriya A. Tkachuk
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
| | | | - Lyudmila P. Borilo
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
| | - Aleksandr A. Buzaev
- National
Research Tomsk State University, 36 Lenina Avenue, Tomsk 634050, Russia
| | - Yu-Wen Chen
- Department
of Chemical Engineering, National central
University, Jhongli 32001, Taiwan
| |
Collapse
|
2
|
Mostafa D, Kassem YM, Omar SS, Shalaby Y. Nano-topographical surface engineering for enhancing bioactivity of PEEK implants (in vitro-histomorphometric study). Clin Oral Investig 2023; 27:6789-6799. [PMID: 37847259 PMCID: PMC10630241 DOI: 10.1007/s00784-023-05291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
OBJECTIVES Dental implants are currently becoming a routine treatment decision in dentistry. Synthetic polyetheretherketone (PEEK) polymer is a prevalent component of dental implantology field. The current study aimed to assess the influence of Nd:YAG laser nano-topographical surface engineering combined with ultraviolet light or platelet rich fibrin on the bioactivity and osseointegration of PEEK implants in laboratory and animal testing model. MATERIALS AND METHODS Computer Aided Design-Computer Aided Manufacturing (CAD CAM) discs of PEEK were used to fabricate PEEK discs (8 mm × 3 mm) N = 36 and implant cylinders (3 mm × 6 mm) N = 72. Specimens were exposed to Nd:YAG laser at wavelength 1064 nm, and surface roughness topography/Ra parameter was recorded in nanometer using atomic force microscopy. Laser modified specimens were divided into three groups: Nd:YAG laser engineered surfaces (control), Nd:YAG laser/UV engineered surfaces and Nd:YAG laser/PRF engineered surfaces (N = 12 discs-N = 24 implants). In vitro bioactivity test was performed, and precipitated apatite minerals were assessed with X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). In vivo histomorphometric analysis was performed in rabbits with BIC% calculation. RESULTS Ra mean value of PEEK laser engineered surfaces was 125.179 nm. For the studied groups, XRD patterns revealed distinctive peaks of different apatite minerals that were demonstrated by SEM as dispersed surface aggregations. There was a significant increase in the BIC% from control group 56.43 (0.97) to laser/UV surfaces 77.30 (0.78) to laser/PRF 84.80 (1.29) (< 0.0001). CONCLUSIONS Successful engineered nano-topographical biomimetic PEEK implant could be achieved by Nd:YAG laser technique associated with improving bioactivity. The combination with UV or PRF could be simple and economic methods to gain more significant improvement of PEEK implant surface bioactivity with superior osteointegration.
Collapse
Affiliation(s)
- Dawlat Mostafa
- Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- College of Dentistry, The Arab Academy for Science and Technology and Maritime Transport (AASTMT), El-Alamein, Egypt.
| | - Youssef M Kassem
- Prosthodontic Department, LSUHSC School of Dentistry, LSU Health Science Center, New Orleans, LA, USA
| | | | | |
Collapse
|
3
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
4
|
Lafzi A, Esmaeil Nejad A, Rezai Rad M, Namdari M, Sabetmoghaddam T. In vitro release of silver ions and expression of osteogenic genes by MC3T3-E1 cell line cultured on nano-hydroxyapatite and silver/strontium-coated titanium plates. Odontology 2023; 111:33-40. [PMID: 36173497 DOI: 10.1007/s10266-022-00747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
Attempts are ongoing to improve the surface properties of dental implants by application of different coatings, aiming to enhance osseointegration, and decrease the adverse effects of titanium and its alloys used in dental implants. Coating of implant surface with hydroxyapatite (HA) is one suggested strategy for this purpose due to its high biocompatibility and similar structure to the adjacent bone. This study aimed to quantify the release of silver ions and expression of osteogenic genes by MC3T3-E1 cells cultured on nano-HA and silver/strontium (Ag/Sr)-coated titanium plates via the electrochemical deposition method. Plates measuring 10 × 10 × 0.9 mm were fabricated from Ti-6Al-4 V alloy, and polished with silicon carbide abrasive papers before electrochemical deposition to create a smooth, mirror-like surface. After applying homogenous nano-HA coatings with/without silver/strontium on the surface of the plates, the composition of coatings was confirmed by energy-dispersive X-ray spectroscopy (EDS), and their morphological properties were analyzed by scanning electron microscopy (SEM). The coated specimens were then immersed in simulated body fluid (SBF), and the concentration of released sliver ions was quantified by spectroscopy at 7-14 days. The MC3T3-E1 osteoblastic cell line was cultured in osteogenic medium for 7-14 days, and after RNA extraction and cDNA synthesis, the expression of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN); osteogenic genes was quantified by polymerase chain reaction (PCR) using SYBR Green Master Mix kit. The expression of genes and the released amount of silver ions were compared between the two groups using the Mann-Whitney U test. The two groups were not significantly different regarding silver ion release at 14 days (P > 0.05). However, silver ion release was significantly higher from nano-HA coatings with silver/strontium at 7 days (P = 0.03). The difference in expression of RUNX2 (P = 0.04), OPN (P = 0.04), and OCN (P = 0.03) genes was also significant between nano-HA coating groups with and without silver/strontium at 7 days, and the expressions were higher in nano-HA with silver/strontium group, but this difference was not significant at 14 days. Addition of silver and strontium to specimens coated with nano-HA increased the release of silver ions within the non-toxic range, and enhanced the expression of osteogenic genes particularly after 7 days.
Collapse
Affiliation(s)
- Ardeshir Lafzi
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Esmaeil Nejad
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, School of Dentistry, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Namdari
- Community Oral Health Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tohid Sabetmoghaddam
- Department of Periodontics, School of Dentistry, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Palierse E, Roquart M, Norvez S, Corté L. Coatings of hydroxyapatite-bioactive glass microparticles for adhesion to biological tissues. RSC Adv 2022; 12:21079-21091. [PMID: 35919836 PMCID: PMC9305725 DOI: 10.1039/d2ra02781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Adsorption of particles across interfaces has been proposed as a way to create adhesion between hydrogels and biological tissues. Here, we explore how this particle bridging approach can be applied to attach a soft polymer substrate to biological tissues, using bioresorbable and nanostructured hydroxyapatite-bioactive glass microparticles. For this, microparticles of aggregated flower-like hydroxyapatite and bioactive glass (HA-BG) were synthesized via a bioinspired route. A deposition technique using suspension spreading was developed to tune the coverage of HA-BG coatings at the surface of weakly cross-linked poly(beta-thioester) films. By varying the concentration of the deposited suspensions, we produced coatings having surface coverages ranging from 4% to 100% and coating densities ranging from 0.02 to 1.0 mg cm-2. The progressive dissolution of these coatings within 21 days in phosphate-buffered saline was followed by SEM. Ex vivo peeling experiments on pig liver capsules demonstrated that HA-BG coatings produce an up-to-two-fold increase in adhesion energy (9.8 ± 1.5 J m-2) as compared to the uncoated film (4.6 ± 0.8 J m-2). Adhesion energy was found to increase with increasing coating density until a maximum at 0.2 mg cm-2, well below full surface coverage, and then it decreased for larger coating densities. Using microscopy observations during and after peeling, we show that this maximum in adhesion corresponds to the appearance of particle stacks, which are easily separated and transferred onto the tissue. Such bioresorbable HA-BG coatings give the possibility of combining particle bridging with the storage and release of active compounds, therefore offering opportunities to design functional bioadhesive surfaces.
Collapse
Affiliation(s)
- Estelle Palierse
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Maïlie Roquart
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
- Centre des Matériaux, MINES Paris, CNRS, PSL University 91003 Evry France
| | - Sophie Norvez
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Laurent Corté
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University 75005 Paris France
- Centre des Matériaux, MINES Paris, CNRS, PSL University 91003 Evry France
| |
Collapse
|
6
|
Gui X, Peng W, Xu X, Su Z, Liu G, Zhou Z, Liu M, Li Z, Song G, Zhou C, Kong Q. Synthesis and application of nanometer hydroxyapatite in biomedicine. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Nano-hydroxyapatite (nano-HA) has been widely studied as a promising biomaterial because of its potential mechanical and biological properties. In this article, different synthesis methods for nano-HA were summarized. Key factors for the synthesis of nano-HA, including reactant concentration, effects of temperature, PH, additives, aging time, and sintering, were separately investigated. The biological performances of the nano-HA depend strongly on its structures, morphology, and crystallite sizes. Nano-HA with different morphologies may cause different biological effects, such as protein adsorption, cell viability and proliferation, angiogenesis, and vascularization. Recent research progress with respect to the biological functions of the nano-HA in some specific biological applications are summarized and the future development of nano-sized hydroxyapatite is prospected.
Collapse
Affiliation(s)
- Xingyu Gui
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Wei Peng
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Xiujuan Xu
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Zixuan Su
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Gang Liu
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Zhigang Zhou
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Zhao Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Geyang Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| |
Collapse
|
7
|
Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact Mater 2022; 12:42-63. [PMID: 35087962 PMCID: PMC8777287 DOI: 10.1016/j.bioactmat.2021.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloys are considered the most suitable absorbable metals for bone fracture fixation implants. The main challenge in absorbable magnesium alloys is their high corrosion/degradation rate that needs to be controlled. Various coatings have been applied to magnesium alloys to slow down their corrosion rates to match their corrosion rate to the regeneration rate of the bone fracture. In this review, a bioactive coating is proposed to slow down the corrosion rate of magnesium alloys and accelerate the bone fracture healing process. The main aim of the bioactive coatings is to enhance the direct attachment of living tissues and thereby facilitate osteoconduction. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are six bioactive agents that show high potential for developing a bioactive coating system for high-performance absorbable magnesium bone implants. In addition to coating, the substrate itself can be made bioactive by alloying magnesium with calcium, zinc, copper, and manganese that were found to promote bone regeneration. Bioactive-coated magnesium implant could accelerate bone fracture healing time to match with magnesium degradation. Hydroxyapatite, collagen type I, recombinant human bone morphogenetic proteins 2, simvastatin, zoledronate, and strontium are high potential bioactive coating materials. The incorporation of Ca, Zn, Cu, Sr, and Mn in Mg base-metal could further enhance bone formation.
Collapse
|
8
|
Nemcakova I, Litvinec A, Mandys V, Potocky S, Plencner M, Doubkova M, Nanka O, Olejnickova V, Sankova B, Bartos M, Ukraintsev E, Babčenko O, Bacakova L, Kromka A, Rezek B, Sedmera D. Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep 2022; 12:5264. [PMID: 35347219 PMCID: PMC8960880 DOI: 10.1038/s41598-022-09183-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/18/2022] [Indexed: 02/06/2023] Open
Abstract
The present study investigates the effect of an oxidized nanocrystalline diamond (O-NCD) coating functionalized with bone morphogenetic protein 7 (BMP-7) on human osteoblast maturation and extracellular matrix mineralization in vitro and on new bone formation in vivo. The chemical structure and the morphology of the NCD coating and the adhesion, thickness and morphology of the superimposed BMP-7 layer have also been assessed. The material analysis proved synthesis of a conformal diamond coating with a fine nanostructured morphology on the Ti6Al4V samples. The homogeneous nanostructured layer of BMP-7 on the NCD coating created by a physisorption method was confirmed by AFM. The osteogenic maturation of hFOB 1.19 cells in vitro was only slightly enhanced by the O-NCD coating alone without any increase in the mineralization of the matrix. Functionalization of the coating with BMP-7 resulted in more pronounced cell osteogenic maturation and increased extracellular matrix mineralization. Similar results were obtained in vivo from micro-CT and histological analyses of rabbit distal femurs with screws implanted for 4 or 12 weeks. While the O-NCD-coated implants alone promoted greater thickness of newly-formed bone in direct contact with the implant surface than the bare material, a further increase was induced by BMP-7. It can be therefore concluded that O-NCD coating functionalized with BMP-7 is a promising surface modification of metallic bone implants in order to improve their osseointegration.
Collapse
Affiliation(s)
- Ivana Nemcakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Andrej Litvinec
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Vaclav Mandys
- Department of Pathology, Charles University, Third Faculty of Medicine, Ruska 2411, 100 00, Prague 10, Czech Republic
| | - Stepan Potocky
- Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00, Prague 6, Czech Republic
| | - Martin Plencner
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Martina Doubkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Ondrej Nanka
- Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Veronika Olejnickova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Barbora Sankova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic
| | - Martin Bartos
- Institute of Dental Medicine, Charles University, First Faculty of Medicine, U Nemocnice 2, 1280 00, Prague 2, Czech Republic
| | - Egor Ukraintsev
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - Oleg Babčenko
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Alexander Kromka
- Institute of Physics, Czech Academy of Sciences, Cukrovarnicka 10, 162 00, Prague 6, Czech Republic
| | - Bohuslav Rezek
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27, Prague 6, Czech Republic
| | - David Sedmera
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic. .,Institute of Anatomy, Charles University, First Faculty of Medicine, U Nemocnice 3, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
9
|
Pitarresi G, Palumbo FS, Fiorica C, Bongiovì F, Martorana A, Federico S, Chinnici CM, Giammona G. Composite Hydrogels of Alkyl Functionalized Gellan Gum Derivative and Hydroxyapatite/Tricalcium Phosphate Nanoparticles as Injectable Scaffolds for bone Regeneration. Macromol Biosci 2021; 22:e2100290. [PMID: 34755459 DOI: 10.1002/mabi.202100290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Indexed: 11/11/2022]
Abstract
An alkyl functionalized gellan gum derivative is here used to produce hydrogels containing hydroxyapatite and tricalcium phosphate nanoparticles as injectable nanostructured scaffolds for bone regeneration. The amphiphilic nature of the polysaccharide derivative along with its thermotropic behavior and ionotropic crosslinking features make possible to produce injectable bone mimetic scaffolds that can be used to release viable cells and osteoinductive biomolecules. The influence of different nanoparticles concentration on the rheological and physicochemical properties of the injectable systems is studied. It is found that the presence of inorganic nanoparticles reinforces the 3D hydrated polymeric networks without influencing their injectability but improving the physicochemical properties of ionotropic crosslinked hydrogels produced with two different curing media. Preliminary cytocompatibility tests performed with murine preosteoblast cells revealed that gellan gum based hydrogels can safely encapsulate viable cells. Loading and release experiments for dexamethasone and stromal cell-derived factor-1 demonstrate the drug delivery features of the obtained injectable systems.
Collapse
Affiliation(s)
- Giovanna Pitarresi
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, Palermo, 90123, Italy
| | - Fabio Salvatore Palumbo
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, Palermo, 90123, Italy
| | - Calogero Fiorica
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, Palermo, 90123, Italy
| | - Flavia Bongiovì
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, Palermo, 90123, Italy
| | - Annalisa Martorana
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, Palermo, 90123, Italy
| | - Salvatore Federico
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, Palermo, 90123, Italy
| | - Cinzia Maria Chinnici
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Palermo, 90127, Italy
| | - Gaetano Giammona
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, Palermo, 90123, Italy
| |
Collapse
|
10
|
Osteosphere Model to Evaluate Cell-Surface Interactions of Implantable Biomaterials. MATERIALS 2021; 14:ma14195858. [PMID: 34640255 PMCID: PMC8510223 DOI: 10.3390/ma14195858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023]
Abstract
Successful biomaterials for bone tissue therapy must present different biocompatible properties, such as the ability to stimulate the migration and proliferation of osteogenic cells on the implantable surface, to increase attachment and avoid the risks of implant movement after surgery. The present work investigates the applicability of a three-dimensional (3D) model of bone cells (osteospheres) in the evaluation of osteoconductive properties of different implant surfaces. Three different titanium surface treatments were tested: machined (MA), sandblasting and acid etching (BE), and Hydroxyapatite coating by plasma spray (PSHA). The surfaces were characterized by Scanning Electron Microscopy (SEM) and atomic force microscopy (AFM), confirming that they present very distinct roughness. After seeding the osteospheres, cell–surface interactions were studied in relation to cell proliferation, migration, and spreading. The results show that BE surfaces present higher densities of cells, leaving the aggregates towards than titanium surfaces, providing more evidence of migration. The PSHA surface presented the lowest performance in all analyses. The results indicate that the 3D model allows the focal analysis of an in vitro cell/surfaces interaction of cells and surfaces. Moreover, by demonstrating the agreement with the clinical data observed in the literature, they suggest a potential use as a predictive preclinical tool for investigating osteoconductive properties of novel biomaterials for bone therapy.
Collapse
|
11
|
The Influence of Nanometals, Dispersed in the Electrophoretic Nanohydroxyapatite Coatings on the Ti13Zr13Nb Alloy, on Their Morphology and Mechanical Properties. MATERIALS 2021; 14:ma14071638. [PMID: 33810612 PMCID: PMC8037798 DOI: 10.3390/ma14071638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/27/2022]
Abstract
In this work, nanohydroxyapatite coatings with nanosilver and nanocopper have been fabricated and studied. The presented results concern coatings with a chemical composition that has never been proposed before. The present research aims to characterize the effects of nanosilver and nanocopper, dispersed in nanohydroxyapatite coatings and deposited on a new, non-toxic Ti13Zr13Nb alloy, on the physical and mechanical properties of coatings. The coatings were obtained by a one-stage electrophoretic process. The surface topography, and the chemical and phase compositions of coatings were examined with scanning electron microscopy, atomic force microscopy, X-ray diffractometry, glow discharge optical emission spectroscopy, and energy-dispersive X-ray spectroscopy. The mechanical properties of coatings were determined by nanoindentation tests, while coatings adhesion was determined by nanoscratch tests. The results demonstrate that copper addition increases the hardness and adhesion. The presence of nanosilver has no significant influence on the adhesion of coatings.
Collapse
|
12
|
Mommaerts MY, Depauw PR, Nout E. Ceramic 3D-Printed Titanium Cranioplasty. Craniomaxillofac Trauma Reconstr 2020; 13:329-333. [PMID: 33456704 PMCID: PMC7797988 DOI: 10.1177/1943387520927916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
STUDY DESIGN Inlay cranioplasties following partial craniectomy in tumor or trauma cases and onlay cranioplasties for reconstructions of residual developmental skull anomalies are frequently performed using CAD-CAM techniques. OBJECTIVE In this case series, we present a novel cranial implant design, being a combination of 3D-printed titanium grade 23 and calcium phosphate paste (CeTi). METHODS The titanium patient-specific implant, manufactured using selective laser melting, has a latticed border with interconnected micropores. The cranioplasty is miniscrew fixed and its border zone subsequently partially filled with calcium phosphate paste to promote osteoinduction and osteoconduction. From April 2017 to April 2019, 8 patients have been treated with such a CeTi implant. The inlay cranioplasties were each time revision surgeries of complicated cases. RESULTS All implants were successful after a limited follow-up time (range 18-42 months). There were no dehiscences and no infections, and no complaints of thermal conduction. CONCLUSIONS The proposed CeTi cranial implant combines the strength of titanium implants with the biological integration potential of ceramic implants and seems particularly resistant to infection, probably due to the biofunctionalized titanium surface and the antimicrobial activity of elevated intracellular free calcium levels.
Collapse
Affiliation(s)
- Maurice Y. Mommaerts
- European Face Centre, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Paul R. Depauw
- Department of Neurosurgery, GH Elisabeth-Tweesteden, Tilburg, The Netherlands
| | - Erik Nout
- Division of Oro-Maxillo-Facial Surgery, GH Elisabeth-Tweesteden, Tilburg, The Netherlands
| |
Collapse
|
13
|
Nanoparticles and Nanostructured Surface Fabrication for Innovative Cranial and Maxillofacial Surgery. MATERIALS 2020; 13:ma13235391. [PMID: 33260938 PMCID: PMC7731022 DOI: 10.3390/ma13235391] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022]
Abstract
A novel strategy to improve the success of soft and hard tissue integration of titanium implants is the use of nanoparticles coatings made from basically any type of biocompatible substance, which can advantageously enhance the properties of the material, as compared to its similar bulk material. So, most of the physical methods approaches involve the compaction of nanoparticles versus micron-level particles to yield surfaces with nanoscale grain boundaries, simultaneously preserving the chemistry of the surface among different topographies. At the same time, nanoparticles have been known as one of the most effective antibacterial agents and can be used as effective growth inhibitors of various microorganisms as an alternative to antibiotics. In this paper, based on literature research, we present a comprehensive review of the mechanical, physical, and chemical methods for creating nano-structured titanium surfaces along with the main nanoparticles used for the surface modification of titanium implants, the fabrication methods, their main features, and the purpose of use. We also present two patented solutions which involve nanoparticles to be used in cranioplasty, i.e., a cranial endoprosthesis with a sliding system to repair the traumatic defects of the skull, and a cranial implant based on titanium mesh with osteointegrating structures and functional nanoparticles. The main outcomes of the patented solutions are: (a) a novel geometry of the implant that allow both flexible adaptation of the implant to the specific anatomy of the patient and the promotion of regeneration of the bone tissue; (b) porous structure and favorable geometry for the absorption of impregnated active substances and cells proliferation; (c) the new implant model fit 100% on the structure of the cranial defect without inducing mechanical stress; (d) allows all kinds of radiological examinations and rapid osteointegration, along with the patient recover in a shorter time.
Collapse
|
14
|
Early Loading of Mandibular Molar Single Implants: 1 Year Results of a Randomized Controlled Clinical Trial. MATERIALS 2020; 13:ma13183912. [PMID: 32899723 PMCID: PMC7559124 DOI: 10.3390/ma13183912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to compare the implant survival, peri-implant marginal bone level, and peri-implant soft tissue of three different types of implants. This was performed with an early loading protocol, using a complete digital workflow, for one year of follow-up. Twenty-four patients with a single missing tooth in the mandibular posterior region were randomly assigned to the control group (SLActive Bone level implant; Institut Straumann AG, Basel, Switzerland), experiment group 1 (CMI IS-III Active implant; Neobiotech Co., Seoul, Korea), and experiment group 2 (CMI IS-III HActive implant; Neobiotech Co., Seoul, Korea). For each patient, a single implant was installed using the surgical template, and all prostheses were fabricated using a computer-aided design/computer-aided manufacturing system on a 3-dimensional model. A provisional prosthesis was implanted at 4 weeks, and a definitive monolithic zirconia prosthesis was substituted 12 weeks following the implant placement. The implant stability quotient (ISQ) and peri-implant soft tissue parameters were measured, and periapical radiographs were taken at 1, 3, 4, 8, 12, 24, 36, and 48 weeks after implant placements. Seven implants in the control group, nine implants in the experiment 1 group, and eight implants in the experiment 2 group were analyzed. There were no significant differences among the three groups in terms of insertion torque, ISQ values between surgery and 8 weeks of follow-up, marginal bone loss at 48 weeks of follow-up, and peri-implant soft tissue parameters (P > 0.05). Statistically significant differences in ISQ values were observed between the control and experiment 1 groups, and the control and experiment 2 groups at the 12 to 48 weeks' follow-ups. Within the limits of this prospective study, an early loading protocol can be applied as a predictable treatment modality in posterior mandibular single missing restorations, achieving proper primary stability.
Collapse
|
15
|
Influence of Two-Stage Anodization on Properties of the Oxide Coatings on the Ti–13Nb–13Zr Alloy. COATINGS 2020. [DOI: 10.3390/coatings10080707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The increasing demand for titanium and its alloys used for implants results in the need for innovative surface treatments that may both increase corrosion resistance and biocompatibility and demonstrate antibacterial protection at no cytotoxicity. The purpose of this research was to characterize the effect of two-stage anodization—performed for 30 min in phosphoric acid—in the presence of hydrofluoric acid in the second stage. Scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Raman spectroscopy, glow discharge optical emission spectroscopy, nanoindentation and nano-scratch tests, potentiodynamic corrosion studies, and water contact angle measurements were performed to characterize microstructure, mechanical, chemical and physical properties. The biologic examinations were carried out to determine the cytotoxicity and antibacterial effects of oxide coatings. The research results demonstrate that two-stage oxidation affects several features and, in particular, improves mechanical and chemical behavior. The processes influencing the formation and properties of the oxide coating are discussed.
Collapse
|
16
|
Bordea IR, Candrea S, Alexescu GT, Bran S, Băciuț M, Băciuț G, Lucaciu O, Dinu CM, Todea DA. Nano-hydroxyapatite use in dentistry: a systematic review. Drug Metab Rev 2020; 52:319-332. [PMID: 32393070 DOI: 10.1080/03602532.2020.1758713] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nano-hydroxyapatite (nano-HA) is a material with multiple uses due to its biocompatibility and its resemblance to the nonorganic bone structure. It is used in various dental domains such as implantology, surgery, periodontology, esthetics and prevention. The aim of this study is to provide a wide understanding of nano-HA and to promote treatments based on nanomaterials in dentistry. A search in two data bases, Scopus, and PubMED, was conducted over a 5 years period. We chose a 5 years period because this revealed the most recent published studies with the key words 'nano-HA' and 'dentistry'. A number of 32 studies were included in this systematic review. In implantology the main use of nano-HA was as a coating material for titanium implants and its effect was assessed in the matter of osteointegration and inflammatory response as well as antibacterial activity. In tissue engineering the use of nano-HA was directed to surgery and periodontology and this material was assessed mainly as a grafting material. In esthetics and prevention its use was mainly focused on dentinal hypersensitivity treatment, remineralizing potential and as bleaching co-agent. Nano-HA is a relatively novel material with outstanding physical, chemical, mechanical and biological properties that makes it suitable for multiple interventions. It outperformed most of the classic materials used in implantology and surgery but it should be further investigated for bone engineering and caries prevention therapy.
Collapse
Affiliation(s)
- Ioana Roxana Bordea
- Department of Oral Rehabilitation, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sebastian Candrea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Teodora Alexescu
- Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Farmacy, Cluj Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Băciuț
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Băciuț
- Department of Cranio-Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Rehabilitation, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Mihail Dinu
- Department of Cranio-Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Doina Adina Todea
- Department of Cranio-Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Pneumology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
17
|
Ansari L, Derakhshi M, Bagheri E, Shahtahmassebi N, Malaekeh-Nikouei B. Folate conjugation improved uptake and targeting of porous hydroxyapatite nanoparticles containing epirubicin to cancer cells. Pharm Dev Technol 2020; 25:601-609. [PMID: 32026739 DOI: 10.1080/10837450.2020.1725045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As hydroxyapatite (HAp) with the hexagonal crystal structure is biocompatible and bioactive. In the present study, HAp nanoparticles were synthesized and functionalized with polyethylene glycol and folic acid. The anticancer drug, epirubicin, was loaded to the folic acid-conjugated polyethylene glycol-coated HAp (FA-PEG-HAp) nanoparticles. The prepared nanoparticles were used for in vitro and in vivo experiments. Particle size analyzer showed that the hydrodynamic size of PEG-HAp and FA-PEG-HAp nanoparticles was 150.3 ± 1.5 nm and 217.2 ± 14.9 nm, respectively. The release behavior of epirubicin from nanoparticles showed an increase in the rate of release in acidic pH. The released drug in acidic pH was 2.5 fold more than pH 7.4. The results of in vitro study indicated an increase in cellular uptake of nanoparticles due to folate ligand. In vivo treatment with both PEG-HAp and FA-PEG-HAp nanoparticles had notably higher inhibition efficacy towards tumor growth than free epirubicin. In conclusion, folate conjugation provided higher uptake and better targeting of hydroxyapatite nanoparticles to cancer cells.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mansooreh Derakhshi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran.,Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elnaz Bagheri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasser Shahtahmassebi
- Department of Physics, Ferdowsi University of Mashhad, Mashhad, Iran.,Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Dorozhkin SV. Functionalized calcium orthophosphates (CaPO 4) and their biomedical applications. J Mater Chem B 2019; 7:7471-7489. [PMID: 31738354 DOI: 10.1039/c9tb01976f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to the chemical similarity to natural calcified tissues (bones and teeth) of mammals, calcium orthophosphates (abbreviated as CaPO4) appear to be good biomaterials for creation of artificial bone grafts. However, CaPO4 alone have some restrictions, which limit their biomedical applications. Various ways have been developed to improve the properties of CaPO4 and their functionalization is one of them. Namely, since surfaces always form the interfaces between implanted grafts and surrounding tissues, the state of CaPO4 surfaces plays a crucial role in the survival of bone grafts. Although the biomedically relevant CaPO4 possess the required biocompatible properties, some of their properties could be better. For example, functionalization of CaPO4 to enhance cell attachment and cell material interactions has been developed. In addition, to prepare stable formulations from nanodimensional CaPO4 particles and prevent them from agglomerating, the surfaces of CaPO4 particles are often functionalized by sorption of special chemicals. Furthermore, there are functionalizations in which CaPO4 are exposed to various types of physical treatments. This review summarizes the available knowledge on CaPO4 functionalizations and their biomedical applications.
Collapse
|
19
|
Properties of Nanohydroxyapatite Coatings Doped with Nanocopper, Obtained by Electrophoretic Deposition on Ti13Zr13Nb Alloy. MATERIALS 2019; 12:ma12223741. [PMID: 31766219 PMCID: PMC6888410 DOI: 10.3390/ma12223741] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Nowadays, hydroxyapatite coatings are the most common surface modification of long-term implants. These coatings are characterized by high thickness and poor adhesion to the metallic substrate. The present research is aimed at characterizing the properties of nanohydroxyapatite (nanoHAp) with the addition of copper nanoparticle (nanoCu) coatings deposited on the Ti13Zr13Nb alloy by an electrophoresis process. The deposition of coatings was carried out for various amounts of nanoCu powder and various average particle sizes. Microstructure, topography, phase, and chemical composition were examined with scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Corrosion properties were determined by potentiodynamic polarization technique in simulated body fluid. Nanomechanical properties were determined based on nanoindentation and scratch tests. The wettability of coatings was defined by the contact angle. It was proven that nanoHAp coatings containing nanocopper, compared to nanoHAp coatings without nanometals, demonstrated smaller number of cracks, lower thickness, and higher nanomechanical properties. The influence of the content and the average size of nanoCu on the quality of the coatings was observed. All coatings exhibited hydrophilic properties. The deposition of nanohydroxyapatite coatings doped with nanocopper may be a promising way to improve the antibacterial properties and mechanical stability of coatings.
Collapse
|
20
|
Surmenev RA, Surmeneva MA. A critical review of decades of research on calcium phosphate–based coatings: How far are we from their widespread clinical application? CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Ao H, Yang S, Nie B, Fan Q, Zhang Q, Zong J, Guo S, Zheng X, Tang T. Improved antibacterial properties of collagen I/hyaluronic acid/quaternized chitosan multilayer modified titanium coatings with both contact-killing and release-killing functions. J Mater Chem B 2019; 7:1951-1961. [PMID: 32255058 DOI: 10.1039/c8tb02425a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The HACC-based multilayer could inhibit the colonization of bacteria via contact-killing and release-killing.
Collapse
Affiliation(s)
- Haiyong Ao
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Bin’en Nie
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Qiming Fan
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Quanchao Zhang
- School of Materials Science and Engineering
- East China Jiao Tong University
- Nanchang
- China
| | - Jiajia Zong
- School of Materials Science and Engineering
- East China Jiao Tong University
- Nanchang
- China
| | - Shengrong Guo
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Science
- Shanghai
- China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| |
Collapse
|
22
|
Li Y, Li B, Song Y, Ma A, Li C, Zhang X, Li H, Zhang Q, Zhang K. Improved osteoblast adhesion and osseointegration on TiO 2 nanotubes surface with hydroxyapatite coating. Dent Mater J 2018; 38:278-286. [PMID: 30541994 DOI: 10.4012/dmj.2018-118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To improve initial osteoblast adhesion and subsequent osseointegration, TiO2 nanotubes layer was constructed on the titanium (Ti) surface by anodic oxidation (AO), with an additional hydroxyapatite (HA) coating to form the AO/HA surface. Tests on in vitro cellular activity displayed that the AO surface, especially the AO/HA surface, promoted initial adhesion, proliferation and differentiation of osteoblast cells. The modified AO and AO/HA surfaces further presented an up-regulated gene expression of osteogenic and adhesion markers collagen type 1 (COL), osteopontin (OPN), osteocalcin (OCN) and vinculin. In addition, in vivo experiments with a rat model demonstrated that the AO surface, particularly the AO/HA surface, achieved earlier osseointegration and a superior bone bonding ability compared with Ti. Our study shed light on a synergistic role played by nanotopography and HA in promoting osteoblast adhesion, proliferation, differentiation and osseointegration, thus suggesting a promising method for better modifying the implant surface.
Collapse
Affiliation(s)
- Ying Li
- Stomatological Hospital, Tianjin Medical University
| | - Baoe Li
- School of Materials Science and Engineering, Hebei University of Technology
| | - Yunjia Song
- Stomatological Hospital, Tianjin Medical University
| | - Aobo Ma
- Stomatological Hospital, Tianjin Medical University
| | - Changyi Li
- Stomatological Hospital, Tianjin Medical University
| | - Xu Zhang
- Stomatological Hospital, Tianjin Medical University
| | - Hongjie Li
- Stomatological Hospital, Tianjin Medical University
| | - Qian Zhang
- Stomatological Hospital, Tianjin Medical University
| | - Kai Zhang
- Stomatological Hospital, Tianjin Medical University
| |
Collapse
|
23
|
Winkler T, Sass FA, Duda GN, Schmidt-Bleek K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018; 7:232-243. [PMID: 29922441 PMCID: PMC5987690 DOI: 10.1302/2046-3758.73.bjr-2017-0270.r1] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.
Collapse
Affiliation(s)
- T Winkler
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - F A Sass
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - G N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - K Schmidt-Bleek
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
24
|
Shi X, Zhou K, Huang F, Zhang J, Wang C. Endocytic mechanisms and osteoinductive profile of hydroxyapatite nanoparticles in human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Int J Nanomedicine 2018; 13:1457-1470. [PMID: 29559775 PMCID: PMC5856024 DOI: 10.2147/ijn.s155814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background As a potentially bioactive material, the widespread application of nanosized hydroxyapatite (nano-HAP) in the field of bone regeneration has increased the risk of human exposure. However, our understanding of the interaction between nano-HAP and stem cells implicated in bone repair remains incomplete. Methods Here, we characterized the adhesion and cellular internalization of HAP nanoparticles (HANPs) with different sizes (20 nm np20 and 80 nm np80) and highlighted the involved pathway in their uptake using human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). In addition, the effects of HANPs on cell viability, apoptosis response, osteogenic differentiation, and underlying related mechanisms were explored. Results It was shown that both types of HANPs readily adhered to the cellular membrane and were transported into the cells compared to micro-sized HAP particles (m-HAP; 12 μm). Interestingly, the endocytic routes of np20 and np80 differed, although they exhibited similar kinetics of adhesion and uptake. Our study revealed involvement of clathrin- and caveolin-mediated endocytosis as well as macropinocytosis in the np20 uptake. However, for np80, clathrin-mediated endocytosis and some as-yet-unidentified important uptake routes play central roles in their internalization. HANPs displayed a higher preference to accumulate in the cytoplasm compared to m-HAP, and HANPs were not detected in the nucleolus. Exposure to np20 for 24 h caused a decrease in cell viability, while cells completely recovered with an exposure time of 72 h. Furthermore, HANPs did not influence apoptosis and necrosis of hWJ-MSCs. Strikingly, HANPs enhanced mRNA levels of osteoblast-related genes and stimulated calcium mineral deposition, and this directly correlated with the activation in c-Jun N-terminal kinases and p38 pathways. Conclusion Our data provide additional insight about the interactions of HANPs with MSCs and suggest their application potential in hard tissue regeneration.
Collapse
Affiliation(s)
- Xingxing Shi
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Kai Zhou
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Huang
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Juan Zhang
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chen Wang
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Ito T, Ohtsu N, Tomozawa M, Hirano M, Takita H, Iizuka T, Yokoyama A. Promotion of bone regeneration on titanium implants through a chemical treatment process using calcium phosphate slurry: Microscopic analysis, cellular response, and animal experiment. J Biomed Mater Res B Appl Biomater 2018; 106:2716-2724. [PMID: 29451708 DOI: 10.1002/jbm.b.34089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/28/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022]
Abstract
The present study provides scientific evidence that a new chemical treatment process using calcium phosphate slurry promotes bone regeneration on titanium (Ti) implants. The material's surface modified by the treatment was analyzed using microscopic observation and the bone regeneration efficacy was evaluated both in vitro and in vivo. Formation of a thin hydroxyapatite layer with a thickness of about 50 nm and an increase of surface roughness were confirmed by microscopic observations. Histological evaluation of rat femora implanted with the specimens showed that the areas of the specimens directly attached to bone tissue were significantly more extensive than those implanted with control Ti at 2 and 8 weeks. Likewise, on the treated Ti, ALP activity, osteopontin, osteocalcin, and calcium contents of rat bone marrow stromal cells were significantly higher than on the control Ti. Furthermore, reverse transcription polymerase chain reaction showed greater expression of messenger ribonucleic acid encoding Cbfa1 and collagen type1 on the treated Ti at 2 weeks. Based on these results, we concluded that the new process was effective to enhance the osteoconductivity of Ti. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2716-2724, 2018.
Collapse
Affiliation(s)
- Tatsuro Ito
- Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Naofumi Ohtsu
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Masanari Tomozawa
- Morphological Research Laboratory, Toray Research Center, Inc., Tokyo, Japan
| | - Mitsuhiro Hirano
- School of Earth, Energy and Environmental Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Hiroko Takita
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tadashi Iizuka
- Support Section for Education and Research, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuro Yokoyama
- Department of Oral Functional Prosthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Shi X, Zhou K, Huang F, Wang C. Interaction of hydroxyapatite nanoparticles with endothelial cells: internalization and inhibition of angiogenesis in vitro through the PI3K/Akt pathway. Int J Nanomedicine 2017; 12:5781-5795. [PMID: 28848353 PMCID: PMC5557617 DOI: 10.2147/ijn.s140179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nano-hydroxyapatite (nano-HAP) has been proposed as a better candidate for bone tissue engineering; however, the interactions of nano-HAP with endothelial cells are currently unclear. In this study, HAP nanoparticles (HANPs; 20 nm np20 and 80 nm np80) and micro-sized HAP particles (m-HAP; 12 μm) were employed to explore and characterize cellular internalization, subcellular distribution, effects of HANPs on endothelial cell function and underlying mechanisms using human umbilical vein endothelial cells (HUVECs) as an in vitro model. It was found that HANPs were able to accumulate in the cytoplasm, and both adhesion and uptake of the HANPs followed a function of time; compared to np80, more np20 had been uptaken at the end of the observation period. HANPs were mainly uptaken via clathrin- and caveolin-mediated endocytosis, while macropinocytosis was the main pathway for m-HAP uptake. Unexpectedly, exposure to HANPs suppressed the angiogenic ability of HUVECs in terms of cell viability, cell cycle, apoptosis response, migration and capillary-like tube formation. Strikingly, HANPs reduced the synthesis of nitric oxide (NO) in HUVECs, which was associated with the inhibition of phosphatidylinositol 3-kinase (PI3K) and phosphorylation of eNOS. These findings provide additional insights into specific biological responses as HANPs interface with endothelial cells.
Collapse
Affiliation(s)
- Xingxing Shi
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Kai Zhou
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fei Huang
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chen Wang
- Department of Prosthodontics, Jiangsu Key Laboratory of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
27
|
Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E334. [PMID: 28772697 PMCID: PMC5506916 DOI: 10.3390/ma10040334] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.
Collapse
Affiliation(s)
- Noam Eliaz
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| | - Noah Metoki
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| |
Collapse
|
28
|
Onuma K, Iijima M. Nanoparticles in β-tricalcium phosphate substrate enhance modulation of structure and composition of an octacalcium phosphate grown layer. CrystEngComm 2017. [DOI: 10.1039/c7ce01563a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nanoparticles in the β-TCP substrate enhance structural modulation of an OCP grown layer.
Collapse
Affiliation(s)
- Kazuo Onuma
- National Institute of Advanced Industrial Science and Technology
- Tsukuba
- Japan
| | - Mayumi Iijima
- National Institute of Advanced Industrial Science and Technology
- Tsukuba
- Japan
| |
Collapse
|