1
|
Bouchard D, Hunkeler D, Marchesi M, Aravena R, Buscheck T. Field demonstration for the solvent-based sampling method to perform compound-specific isotope analysis on gas-phase VOC. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 262:104310. [PMID: 38335897 DOI: 10.1016/j.jconhyd.2024.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
The solvent-based sampling method for collecting gas-phase volatile organic compounds (VOCs) and conducting compound-specific isotope analysis (CSIA) was deployed during a controlled field study. The solvent-based method used methanol as a sink to accumulate petroleum hydrocarbons during the sampling of soil air and effluent gas. For each gaseous sample collected, carbon isotope analysis (δ13C) was conducted for a selection of five VOCs (benzene, toluene, o-xylene, cyclopentane and octane) emitted by a synthetic hydrocarbon source emplaced in the subsurface. The δ13C values obtained for gaseous VOCs (collected from soil gas and effluent gas) were compared to measurements obtained for the same VOCs present in the source material (none aqueous phase liquid - NAPL) and dissolved in groundwater to evaluate the reliability of the solvent-based sampling method in providing accurate isotope measurements. Since the NAPL source was composed of only 12 VOCs, potential bias related to the analytical procedure (such as co-elution) were avoided, hence emphasizing on field-related bias. This field evaluation demonstrated the capacity of the solvent-based method to produce precise and accurate δ13C measurements. The isotopic discrepancies between the gaseous and the NAPL values were < 1 ‰ for 39 out of the 41 comparison points, thus deemed not statistically different based on a common isotopic uncertainty error of ±0.5 ‰. Moreover, the current field study is the first field study to report δ13C measurements for up to five gas-phase VOCs obtained from the same sample, which appears to be of interest for VOC fate or forensic studies. The possibility to use several VOC isotopic measurements enabled by the sampling method would contribute to strengthen the connection assessment between gaseous VOCs and the suspected emitting source. Accordingly, the field results presented herein support the application of this sampling methodology to conduct CSIA assessment in the frame of VOC vapor studies.
Collapse
Affiliation(s)
- Daniel Bouchard
- GHD, 4600 Boul Cote Vertu, Montreal, QC, Canada; Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Rue Emile Argand 11, Neuchâtel CH-2000, Switzerland.
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Rue Emile Argand 11, Neuchâtel CH-2000, Switzerland
| | - Massimo Marchesi
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. Da Vinci, 32, Milano 20133, Italy
| | - Ramon Aravena
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tim Buscheck
- Chevron Technical Center, 6001 Bollinger Canyon Road, San Ramon, CA 94583, USA
| |
Collapse
|
2
|
Bouchard D, Hӧhener P, Gori D, Hunkeler D, Buscheck T. Stable carbon and hydrogen isotope fractionation of volatile organic compounds caused by vapor-liquid equilibrium. CHEMOSPHERE 2022; 308:136209. [PMID: 36041532 DOI: 10.1016/j.chemosphere.2022.136209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Several types of laboratory experiments were conducted to evaluate isotope fractionation caused by phase transfer process for a selection of common environmental contaminants. Carbon and hydrogen isotope fractionation caused by vaporization of non-aqueous phase liquid (NAPL), by volatilization from water and by dissolution into an organic solvent (tetraethylene glycol dimethylether or TGDE) under equilibrium conditions was investigated with closed system experimental setups to isolate the air-liquid partitioning process. A selection of aromatic, aliphatic and chlorinated compounds along with one fuel oxygenate (methyl tert-butyl ether or MTBE) were evaluated to determine isotope enrichment factor related to respective phase transfer process. During NAPL vaporization, the residual mass of aromatic compounds, aliphatic compounds and MTBE became progressively depleted in heavy carbon and hydrogen isotopes. In contrast, during volatilization from water, the residual mass of aromatic compounds and MTBE dissolved in the water became progressively enriched in heavy hydrogen isotopes, whereas no significant change in carbon isotope was observed, except for MTBE showing a significant depletion. For the air-TGDE partitioning process, most of the aromatic compounds tested led to no significant carbon (except ethylbenzene) or hydrogen (except toluene and o-xylene) isotope fractionation. In contrast, significant carbon isotope fractionation was observed for aliphatic and chlorinated compounds and hydrogen isotope fractionation for aliphatic compounds, and are comparable to progressive NAPL vaporization in direction and magnitude. The isotope fractionation factors determined in this study are key for interpreting the change in isotope ratios when assessing the fate of gas-phase VOCs present in the soil air or when gas-phase VOCs are sampled using TGDE as the sink matrix. The results of this study contribute to expand the list of common environmental contaminants that can be assessed by the compound-specific isotope analysis (CSIA) method deployed in the frame of gas-phase studies.
Collapse
Affiliation(s)
- Daniel Bouchard
- GHD inc., 4600 Blvd Côte Vertu, Montreal, H4S 1C7, Canada; Centre for Hydrogeology and Geothermics (CHYN)University of Neuchâtel, Rue Emile Argand 11 CH-2000 Neuchâtel, Switzerland.
| | - Patrick Hӧhener
- Aix Marseille University - CNRS, UMR 7376, Laboratory of Environmental Chemistry, 3 Place Victor Hugo, F-13331 Marseille, France
| | - Didier Gori
- Aix Marseille University - CNRS, UMR 7376, Laboratory of Environmental Chemistry, 3 Place Victor Hugo, F-13331 Marseille, France
| | - Daniel Hunkeler
- Centre for Hydrogeology and Geothermics (CHYN)University of Neuchâtel, Rue Emile Argand 11 CH-2000 Neuchâtel, Switzerland
| | - Tim Buscheck
- Chevron Technical Center, 6001 Bollinger Canyon Road, San Ramon, CA, 94583, USA
| |
Collapse
|
3
|
Rostkowski M, Schürner HKV, Sowińska A, Vasquez L, Przydacz M, Elsner M, Dybala-Defratyka A. Isotope Effects on the Vaporization of Organic Compounds from an Aqueous Solution-Insight from Experiment and Computations. J Phys Chem B 2021; 125:13868-13885. [PMID: 34908428 PMCID: PMC8724799 DOI: 10.1021/acs.jpcb.1c05574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
An isotope fractionation
analysis of organic groundwater pollutants
can assess the remediation at contaminated sites yet needs to consider
physical processes as potentially confounding factors. This study
explores the predictability of water–air partitioning isotope
effects from experiments and computational predictions for benzene
and trimethylamine (both H-bond acceptors) as well as chloroform (H-bond
donor). A small, but significant, isotope fractionation of different
direction and magnitude was measured with ε = −0.12‰
± 0.07‰ (benzene), εC = 0.49‰
± 0.23‰ (triethylamine), and εH = 1.79‰
± 0.54‰ (chloroform) demonstrating that effects do not
correlate with expected hydrogen-bond functionalities. Computations
revealed that the overall isotope effect arises from contributions
of different nature and extent: a weakening of intramolecular vibrations
in the condensed phase plus additional vibrational modes from a complexation
with surrounding water molecules. Subtle changes in benzene contrast
with a stronger coupling between intra- and intermolecular modes in
the chloroform–water system and a very local vibrational response
with few atoms involved in a specific mode of triethylamine. An energy
decomposition analysis revealed that each system was affected differently
by electrostatics and dispersion, where dispersion was dominant for
benzene and electrostatics dominated for chloroform and triethylamine.
Interestingly, overall stabilization patterns in all studied systems
originated from contributions of dispersion rather than other energy
terms.
Collapse
Affiliation(s)
- Michał Rostkowski
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Heide K V Schürner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| | - Agata Sowińska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Luis Vasquez
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Martyna Przydacz
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Elisabeth-Winterhalter-Weg 6, 81377 Munich, Germany
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
4
|
Yu R, Murdoch LC, Falta RW, Andrachek RG, Pierce AA, Parker BL, Cherry JA, Freedman DL. Chlorinated Ethene Degradation Rate Coefficients Simulated with Intact Sandstone Core Microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15829-15839. [PMID: 33210923 DOI: 10.1021/acs.est.0c05083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abiotic transformation of trichloroethene (TCE) in fractured porous rock such as sandstone is challenging to characterize and quantify. The objective of this study was to estimate the pseudo first-order abiotic reaction rate coefficients in diffusion-dominated intact core microcosms. The microcosms imitated clean flow through a fracture next to a contaminated rock matrix by exchanging uncontaminated groundwater, unamended or lactate-amended, in a chamber above a TCE-infused sandstone core. Rate coefficients were assessed using a numerical model of the microcosms that were calibrated to monitoring data. Average initial rate coefficients for complete dechlorination of TCE to acetylene, ethene, and ethane were estimated as 0.019 y-1 in unamended microcosms and 0.024 y-1 in lactate-amended microcosms. Moderately higher values (0.026 y-1 for unamended and 0.035 y-1 for lactate-amended) were obtained based on 13C enrichment data. Abiotic transformation rate coefficients based on gas formation were decreased in unamended microcosms after ∼25 days, to an average of 0.0008 y-1. This was presumably due to depletion of reductive capacity (average values of 0.12 ± 0.10 μeeq/g iron and 18 ± 15 μeeq/g extractable iron). Model-derived rate coefficients and reductive capacities for the intact core microcosms aligned well with results from a previous microcosm study using crushed sandstone from the same site.
Collapse
Affiliation(s)
- Rong Yu
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Lawrence C Murdoch
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Ronald W Falta
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Richard G Andrachek
- Stantec, 1340 Treat Boulevard, Suite 300, Walnut Creek, California 94597, United States
| | - Amanda A Pierce
- G360 Institute for Groundwater Research, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Beth L Parker
- G360 Institute for Groundwater Research, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - John A Cherry
- G360 Institute for Groundwater Research, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - David L Freedman
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
5
|
Sookhak Lari K, Davis GB, Rayner JL, Bastow TP, Puzon GJ. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches. WATER RESEARCH 2019; 157:630-646. [PMID: 31004979 DOI: 10.1016/j.watres.2019.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Natural source zone depletion (NSZD) of light non-aqueous phase liquids (LNAPLs) includes partitioning, transport and degradation of LNAPL components. NSZD is being considered as a site closure option during later stages of active remediation of LNAPL contaminated sites, and where LNAPL mass removal is limiting. To ensure NSZD meets compliance criteria and to design enhanced NSZD actions if required, residual risks posed by LNAPL and its long term behaviour require estimation. Prediction of long-term NSZD trends requires linking physicochemical partitioning and transport processes with bioprocesses at multiple scales within a modelling framework. Here we expand and build on the knowledge base of a recent review of NSZD, to establish the key processes and understanding required to model NSZD long term. We describe key challenges to our understanding, inclusive of the dominance of methanogenic or aerobic biodegradation processes, the potentially changeability of rates due to the weathering profile of LNAPL product types and ages, and linkages to underlying bioprocesses. We critically discuss different scales in subsurface simulation and modelling of NSZD. Focusing on processes at Darcy scale, 36 models addressing processes of importance to NSZD are investigated. We investigate the capabilities of models to accommodate more than 20 subsurface transport and transformation phenomena and present comparisons in several tables. We discuss the applicability of each group of models for specific site conditions.
Collapse
Affiliation(s)
- Kaveh Sookhak Lari
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Greg B Davis
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia; School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - John L Rayner
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia
| | - Trevor P Bastow
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia
| | - Geoffrey J Puzon
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA, 6913, Australia
| |
Collapse
|
6
|
Khan AM, Wick LY, Thullner M. Applying the Rayleigh Approach for Stable Isotope-Based Analysis of VOC Biodegradation in Diffusion-Dominated Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7785-7795. [PMID: 29923400 DOI: 10.1021/acs.est.8b01757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Compound-specific stable isotope analysis (CSIA) has become an established tool for assessing biodegradation in the subsurface. Diffusion-dominated vapor phase transport thereby is often excluded from quantitative assessments due to the problem of diffusive mixing of concentrations with different isotopic signatures for CSIA interpretation. In soils and other unsaturated porous media volatile organic compounds (VOCs) however, are mainly transported via gas-phase diffusion and may thus prohibit a CSIA-based quantitative assessment of the fate of VOCs. The present study presents and verifies a concept for the assessment of biodegradation-induced stable isotope fractionation along a diffusive transport path of VOCs in unsaturated porous media. For this purpose data from batch and column toluene biodegradation experiments in unsaturated porous media were combined with numerical reactive transport simulations; both addressing changes of concentration and stable isotope fractionation of toluene. The numerical simulations are in good agreement with the experiment data, and our results show that the presented analytically derived assessment concept allows using the slope of the Rayleigh plot to obtain reasonable estimates of effective in situ fractionation factors in spite of diffusion-dominated transport. This enlarges the application range of CSIA and provides a mean for a better understanding of VOC fate in the unsaturated subsurface.
Collapse
Affiliation(s)
- Ali M Khan
- Department of Environmental Microbiology , UFZ - Helmholtz Centre for Environmental Research , Leipzig , Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology , UFZ - Helmholtz Centre for Environmental Research , Leipzig , Germany
| | - Martin Thullner
- Department of Environmental Microbiology , UFZ - Helmholtz Centre for Environmental Research , Leipzig , Germany
| |
Collapse
|
7
|
Bouchard D, Hunkeler D. Solvent-based dissolution method to sample gas-phase volatile organic compounds for compound-specific isotope analysis. J Chromatogr A 2014; 1325:16-22. [DOI: 10.1016/j.chroma.2013.11.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 10/25/2022]
|
8
|
Patterson BM, Aravena R, Davis GB, Furness AJ, Bastow TP, Bouchard D. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 153:69-77. [PMID: 23999077 DOI: 10.1016/j.jconhyd.2013.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/20/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
A field-based investigation was conducted at a contaminated site where the vadose zone was contaminated with a range of chlorinated hydrocarbons. The investigation consisted of groundwater and multilevel soil-gas monitoring of a range of contaminants and gases, along with isotope measurements and microbiology studies. The investigation provided multiple lines of evidence that demonstrated aerobic biodegradation of vinyl chloride (VC) was occurring in the vadose zone (i) above the on-site source zone, and (ii) above the downgradient off-site groundwater plume location. Data from both the on-site and off-site locations were consistent in showing substantially greater (an order of magnitude greater) rates of VC removal from the aerobic vadose zone compared to more recalcitrant contaminants trichloroethene (TCE) and tetrachloroethene (PCE). Soil gas VC isotope analysis showed substantial isotopic enrichment of VC (δ¹³C -5.2 to -10.9‰) compared to groundwater (δ¹³C -39.5‰) at the on-site location. Soil gas CO₂ isotope analysis at both locations showed that CO₂ was highly isotopically depleted (δ¹³C -28.8 to -33.3‰), compared to soil gas CO₂ data originating from natural sediment organic matter (δ¹³C= -14.7 to -21.3‰). The soil gas CO2 δ¹³C values were consistent with near-water table VC groundwater δ¹³C values (-36.8 to -39.5‰), suggesting CO₂ originating from aerobic biodegradation of VC. Bacteria that had functional genes (ethene monooxygenase (etnC) and epoxyalkane transferase (etnE)) involved in ethene metabolism and VC oxidation were more abundant at the source zone where oxygen co-existed with VC. The distribution of VC and oxygen vadose zone vapour plumes, together with long-term changes in soil gas CO₂ concentrations and temperature, provided information to elucidate the factors controlling aerobic biodegradation of VC in the vadose zone. Based on the overlapping VC and oxygen vadose zone vapour plumes, aerobic vapour biodegradation rates were independent of substrate (VC and/or oxygen) concentration. The high correlation (R=0.962 to 0.975) between CO₂ concentrations and temperature suggested that aerobic biodegradation of VC was controlled by bacterial activity that was regulated by the temperature within the vadose zone. When assessing a contaminated site for possible vapour intrusion into buildings, accounting for environmental conditions for aerobic biodegradation of VC in the vadose zone should improve the assessment of environmental risk of VC intrusion into buildings, enabling better identification and prioritisation of contaminated sites to be remediated.
Collapse
Affiliation(s)
- B M Patterson
- CSIRO Land and Water, Floreat, Australia; School of Chemistry and Biochemistry, University of Western Australia, Crawley, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Hatzinger PB, Böhlke JK, Sturchio NC. Application of stable isotope ratio analysis for biodegradation monitoring in groundwater. Curr Opin Biotechnol 2013; 24:542-9. [DOI: 10.1016/j.copbio.2012.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/12/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
10
|
Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers. Appl Microbiol Biotechnol 2012; 94:1401-21. [PMID: 22573267 DOI: 10.1007/s00253-012-4077-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
Microbial processes govern the fate of organic contaminants in aquifers to a major extent. Therefore, the evaluation of in situ biodegradation is essential for the implementation of Natural Attenuation (NA) concepts in groundwater management. Laboratory degradation experiments and biogeochemical approaches are often biased and provide only indirect evidence of in situ degradation potential. Compound-Specific Isotope Analysis (CSIA) is at present among the most promising tools for assessment of the in situ contaminant degradation within aquifers. One- and two-dimensional (2D) CSIA provides qualitative and quantitative information on in situ contaminant transformation; it is applicable for proving in situ degradation and characterizing degradation conditions and reaction mechanisms. However, field application of CSIA is challenging due to a number of influencing factors, namely those affecting the observed isotope fractionation during biodegradation (e.g., non-isotope-fractionating rate-limiting steps, limited bioavailability), potential isotope effects caused by processes other than biodegradation (e.g., sorption, volatilization, diffusion), as well as non-isotope-fractionating physical processes such as dispersion and dilution. This mini-review aims at guiding practical users towards the sound interpretation of CSIA field data for the characterization of in situ contaminant degradation. It focuses on the relevance of various constraints and influencing factors in CSIA field applications and provides advice on when and how to account for these constraints. We first evaluate factors that can influence isotope fractionation during biodegradation, as well as potential isotope-fractionating and non-isotope-fractionating physical processes governing observed isotope fractionation in the field. Finally, the potentials of the CSIA approach for site characterization and the proper ways to account for various constraints are illustrated by means of a comprehensive CSIA field study at the benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated site Zeitz.
Collapse
|
11
|
Höhener P, Silvestre V, Lefrançois A, Loquet D, Botosoa EP, Robins RJ, Remaud GS. Analytical model for site-specific isotope fractionation in 13C during sorption: determination by isotopic 13C NMR spectrometry with vanillin as model compound. CHEMOSPHERE 2012; 87:445-452. [PMID: 22230728 DOI: 10.1016/j.chemosphere.2011.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/28/2011] [Accepted: 12/10/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to conceive a reactive transport model capable of providing quantitative site-specific enrichment factors for fractionation in (13)C isotopic content during sorption. As test compound the model treats vanillin, for which the (13)C isotopic content at natural abundance at each of the 8 carbon positions can be measured by quantitative (13)C nuclear magnetic resonance spectrometry. This technique determines the isotope ratios with a resolution better than ±1‰ (0.1%) at each carbon position. Site-specific isotope fractionations were recorded in chromatography column experiments with silica RP-18 as stationary phase. The one dimensional reactive transport model accounted for the sorption/desorption behavior of 8 individual (13)C-isotopomers and one (12)C-isotopomer of vanillin and reproduced satisfactorily the bulk (average over the whole compound) fractionation observed during elution. After model calibration, the enrichment factors were fitted for each carbon site where a significant fractionation was recorded. To show the interest of such a transport model for environmental studies, the model, extended to three dimensions, was exploited to simulate reactive transport in an aquifer. These results show that significant (13)C isotope fractionation is expected for 4 out of 8 (13)C-isotopomers in vanillin, and illustrate that bulk isotope ratios measured by conventional compound specific isotope analysis and mass spectrometry would hardly document significant isotope fractionations in vanillin. It is concluded that modeling of site-specific isotope ratios in molecules is a priori feasible and may help to quantify unknown processes in the environment.
Collapse
Affiliation(s)
- Patrick Höhener
- Aix-Marseille Université - CNRS, Laboratoire Chimie Provence, UMR 6264, Case 29, 3, Place Victor Hugo, F-13331 Marseille Cedex 3, France.
| | | | | | | | | | | | | |
Collapse
|