1
|
Astner AF, Gillmore AB, Yu Y, Flury M, DeBruyn JM, Schaeffer SM, Hayes DG. Formation, behavior, properties and impact of micro- and nanoplastics on agricultural soil ecosystems (A Review). NANOIMPACT 2023; 31:100474. [PMID: 37419450 DOI: 10.1016/j.impact.2023.100474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.
Collapse
Affiliation(s)
- Anton F Astner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Yingxue Yu
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Markus Flury
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Douglas G Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America.
| |
Collapse
|
2
|
Lorenzi AS, Bonatelli ML, Chia MA, Peressim L, Quecine MC. Opposite Sides of Pantoea agglomerans and Its Associated Commercial Outlook. Microorganisms 2022; 10:microorganisms10102072. [PMID: 36296348 PMCID: PMC9610544 DOI: 10.3390/microorganisms10102072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 12/01/2022] Open
Abstract
Multifaceted microorganisms such as the bacterium Pantoea colonize a wide range of habitats and can exhibit both beneficial and harmful behaviors, which provide new insights into microbial ecology. In the agricultural context, several strains of Pantoea spp. can promote plant growth through direct or indirect mechanisms. Members of this genus contribute to plant growth mainly by increasing the supply of nitrogen, solubilizing ammonia and inorganic phosphate, and producing phytohormones (e.g., auxins). Several other studies have shown the potential of strains of Pantoea spp. to induce systemic resistance and protection against pests and pathogenic microorganisms in cultivated plants. Strains of the species Pantoea agglomerans deserve attention as a pest and phytopathogen control agent. Several of them also possess a biotechnological potential for therapeutic purposes (e.g., immunomodulators) and are implicated in human infections. Thus, the differentiation between the harmful and beneficial strains of P. agglomerans is mandatory to apply this bacterium safely as a biofertilizer or biocontroller. This review specifically evaluates the potential of the strain-associated features of P. agglomerans for bioprospecting and agricultural applications through its biological versatility as well as clarifying its potential animal and human health risks from a genomic point of view.
Collapse
Affiliation(s)
- Adriana Sturion Lorenzi
- Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Maria Letícia Bonatelli
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH—UFZ, 04318 Leipzig, Germany
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Leonardo Peressim
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, USP, Piracicaba 13418-900, SP, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, USP, Piracicaba 13418-900, SP, Brazil
- Correspondence:
| |
Collapse
|
3
|
Jin T, Tang J, Lyu H, Wang L, Gillmore AB, Schaeffer SM. Activities of Microplastics (MPs) in Agricultural Soil: A Review of MPs Pollution from the Perspective of Agricultural Ecosystems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4182-4201. [PMID: 35380817 DOI: 10.1021/acs.jafc.1c07849] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastics are emerging persistent pollutants which have attracted increasing attention worldwide. Although microplastics have been widely detected in aquatic environments, their presence in soil ecosystems remains largely unexplored. Plastic debris accumulates in farmland, causing serious environmental problems, which may directly affect food substances or indirectly affect the members in each trophic level of the food chain. This review summarizes the origins, migration, and fate of microplastics in agricultural soils and discusses the interaction between microplastics and the components in farmland from the perspectives of toxicology and accumulation and deduces impacts on ecosystems by linking the organismal response to an ecological role. The effects on farmland ecosystem function are also discussed, emphasizing the supply of agricultural products, food chain pathways, carbon deposition, and nitrogen cycling and soil and water conservation, as microplastic pollution will affect agricultural ecosystems for a long period, posing an ecological risk. Finally, several directions for future research are proposed, which is important for reducing the effect of microplastics in agricultural systems.
Collapse
Affiliation(s)
- Tianyue Jin
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Lan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee - Knoxville, 2506 East J. Chapman Drive, Knoxville, Tennessee 37996, United States
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee - Knoxville, 2506 East J. Chapman Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
4
|
Ya H, Jiang B, Xing Y, Zhang T, Lv M, Wang X. Recent advances on ecological effects of microplastics on soil environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149338. [PMID: 34375233 DOI: 10.1016/j.scitotenv.2021.149338] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 05/22/2023]
Abstract
The mass production and wide application of plastics and their derivatives have led to the release of a large number of discarded plastic products into the natural environment, where they continue to accumulate due to their low recycling rate and long durability. These large pieces of plastic will gradually break into microplastics (<5 mm), which are highly persistent organic pollutants and attract worldwide attention due to their small particle size and potential threats to the ecosystem. Compared with the aquatic system, terrestrial systems such as soils, as sinks for microplastics, are more susceptible to plastic pollution. In this article, we comprehensively summarized the occurrence and sources of microplastics in terrestrial soil, and reviewed the eco-toxicological effects of microplastics in soil ecosystems, in terms of physical and chemical properties of soil, soil nutrient cycling, soil flora and fauna. The influence of microplastics on soil microbial community, and particularly the microbial community on the surface of microplastics, were examined in detail. The compound effects of microplastics and other pollutants, e.g., heavy metals and antibiotics, were addressed. Future challenges of research on microplastics include development of new techniques and standardization for the extraction and qualitative and quantitative analysis of microplastics in soils, toxic effects of microplastics at microbial or even molecular levels, the contribution of microplastics to antibiotic resistance genes migration, and unraveling microorganisms for the degradation of microplastics. This work provides as a better understanding of the occurrence, distribution and potential ecological risks of microplastics in terrestrial soil ecosystems.
Collapse
Affiliation(s)
- Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
5
|
Ramazanpour Esfahani A, Batelaan O, Hutson JL, Fallowfield HJ. Transport and retention of graphene oxide nanoparticles in sandy and carbonaceous aquifer sediments: Effect of physicochemical factors and natural biofilm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111419. [PMID: 33126193 DOI: 10.1016/j.jenvman.2020.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
There is a paucity of information regarding the interaction between GONPs and natural aquifer sediments. Therefore, batch and column experiments were carried out to determine the transport, retention and attachment behavior of GONPs with the surfaces of native aquifer sediments. The experiments were performed with sediments comprising contrasting mineralogical features (sand grains, quartz and limestone sediments), at different temperatures, ionic strength and compositions. Uniquely, this research also investigated the effect of natural biofilm on the retention behavior of nanoparticles in porous media. The retention rate of GONPs at 22 °C was higher than at 4 °C. Moreover, there was greater retention of GONPs onto the surfaces of collectors at higher ionic strengths and cation valence. The retention profiles (RPs) of GONPs in pristine porous media at low ionic strength were linear, which contrasted with hyper-exponential shape of RPs at high ionic strength. The size-distribution analysis of retained GONPs showed decreasing particle diameter with increasing distance from the column inlet at high ionic strength and equal diameter at low ionic strengths. The GONP retention rate was higher for natural porous media than for sand, due to the presence of metal oxides heterogeneities. The presence of biofilm on porous media increased the retention rate of GONPs when compared to the porous media in the absence of biofilm.
Collapse
Affiliation(s)
- Amirhosein Ramazanpour Esfahani
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia.
| | - Okke Batelaan
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia
| | - John L Hutson
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Howard J Fallowfield
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia
| |
Collapse
|
6
|
Zhou Y, Wang J, Zou M, Jia Z, Zhou S, Li Y. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141368. [PMID: 32798871 DOI: 10.1016/j.scitotenv.2020.141368] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 05/21/2023]
Abstract
The global prevalence of microplastics (MPs) poses a potential threat and unpredictable risk to the function and health of environmental systems. However, the research progress of soil MPs is restricted by the inherent technical inconformity and difficulties in analyzing particles in complex matrices. Here, we reviewed a selection of papers and then extrapolated a tentative standardized method for such analyses. The multiple sources of soil MPs in soil need to be quantified. Global monitoring data of soil MPs is far from sufficient. The interaction between MPs and different properties and environmental factors controls the migration and retention of MPs in soil. The migration behavior and key mechanisms of MPs in real-world environments remain to be determined. The presence of MPs threatens soil microbial-plant-animal ecosystem function and health, and may enter the human body through the food chain, although the extent of these hazards is currently debated. In particular, attention should be paid to the potential transport and ecotoxicological mechanisms of contaminants derived and adsorptive from MPs and of harmful microorganisms (such as pathogens) attached as biofilms. Although there exist preliminary studies on soil MPs, it is urgent to consider the diversity of MPs as a suite of contaminants and to systematically understand the sources, flux and effects of these artificial pollutants in time and space from the perspective of plastic environmental cycle. More comprehensive quantification of their environmental fate is undertaken to identify risks to global human and ecological systems. From the perspective of controlling soil MP pollution, the responsibility assignment of government manage-producer-consumer system and the strategy of remediation should be implemented. This review is helpful for providing an important roadmap and inspiration for the research methods and framework of soil MPs and facilitates the development of waste management and remediation strategies for regional soil MP contamination.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Junxiao Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Mengmeng Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Zhenyi Jia
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing 210024, China.
| | - Yan Li
- College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
7
|
Deschênes L, Ells T. Bacteria-nanoparticle interactions in the context of nanofouling. Adv Colloid Interface Sci 2020; 277:102106. [PMID: 31981890 DOI: 10.1016/j.cis.2020.102106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/15/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The attachment of microbial communities to surfaces is a well-known problem recognized to be involved in a variety of critical issues in the sectors of food processing, chronic wounds, infection from implants, clogging of membranes and corrosion of equipment. Considering the importance of the detrimental impact of biofouling, it has received much attention in the scientific community and from concerned stakeholders. With the development of nanotechnology and the nowadays widespread use of engineered nanoparticles (ENPs), concerns have been raised regarding their fate in terrestrial and aquatic environments. Safety aspects and public health issues are critical in the management of handling nanomaterials and their nanowastes. The interactions of various types of nanoparticles (NPs) with planktonic bacteria have also received attention due to their antimicrobial properties. However, their behavior in regard to biofilms is not well understood although, in the environment, most of the bacteria prefer living in sessile communities. The question appears relevant considering the need to build knowledge on the fate of nanoparticles and the fact that no one can exclude the risk of accumulation of nanoparticles in biofilms and on surfaces leading to a form of nanofouling involving both engineered nanoparticles (ENPs) and nanoplastics. The present analysis of recent research accounts allows in identifying that (1) research activities related to water remediation systems have been mostly oriented on the impact of NPs on pre-existing biofilms, (2) experimental designs are restricted to few scenarios of exposure, usually limited to relative short-time periods although nanofouling could favour the development of multi-resistant bacterial species through sub-lethal exposures over prolong periods of time (3) nanofouling in other systems in which biofilms develop remains to be addressed, and (4) new research directions are required for investigating the mechanisms involved and the subsequent impact of nanofouling on bacterial consortium responses encountered in a variety of environments such as those prevailing in food production/processing settings. Finally, this review aims at providing recent information and insights on nanoparticle-bacterial interactions in the context of biofilms in order to supply an updated outlook of research perspectives that could help establish the framework for production, use and fate of nanomaterials as well as future research directions.
Collapse
Affiliation(s)
- Louise Deschênes
- Saint-Hyacinthe Research and Development Centre, 3600 Casavant Blvd West, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Timothy Ells
- Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada
| |
Collapse
|
8
|
Joo SH, Aggarwal S. Factors impacting the interactions of engineered nanoparticles with bacterial cells and biofilms: Mechanistic insights and state of knowledge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 225:62-74. [PMID: 30071367 DOI: 10.1016/j.jenvman.2018.07.084] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/19/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Since their advent a few decades ago, engineered nanoparticles (ENPs) have been extensively used in consumer products and industrial applications and their use is expected to continue at the rate of thousands of tons per year in the next decade. The widespread use of ENPs poses a potential risk of large scale environmental proliferation of ENPs which can impact and endanger environmental health and safety. Recent studies have shown that microbial biofilms can serve as an important biotic component for partitioning and perhaps storage of ENPs released into aqueous systems. Considering that biofilms can be one of the major sinks for ENPs in the environment, and that the field of biofilms itself is only three to four decades old, there is a recent and growing body of literature investigating the ENP-biofilm interactions. While looking at biofilms, it is imperative to consider the interactions of ENPs with the planktonic microbial cells inhabiting the bulk systems in the vicinity of surface-attached biofilms. In this review article, we attempt to establish the state of current knowledge regarding the interactions of ENPs with bacterial cells and biofilms, identifying key governing factors and interaction mechanisms, as well as prominent knowledge gaps. Since the context of ENP-biofilm interactions can be multifarious-ranging from ecological systems to water and wastewater treatment to dental/medically relevant biofilms- and includes devising novel strategies for biofilm control, we believe this review will serve an interdisciplinary audience. Finally, the article also touches upon the future directions that the research in the ENP-microbial cells/biofilm interactions could take. Continued research in this area is important to not only enhance our scientific knowledge and arsenal for biofilm control, but to also support environmental health while reaping the benefits of the 'nanomaterial revolution'.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630, USA.
| | - Srijan Aggarwal
- Department of Civil and Environmental Engineering, University of Alaska Fairbanks, 1760 Tanana Loop, Duckering Building, Fairbanks, AK 99775, USA
| |
Collapse
|
9
|
Crampon M, Hellal J, Mouvet C, Wille G, Michel C, Wiener A, Braun J, Ollivier P. Do natural biofilm impact nZVI mobility and interactions with porous media? A column study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:709-719. [PMID: 28822938 DOI: 10.1016/j.scitotenv.2017.08.106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Nanoparticles (NP) used as remediation agents for groundwater treatment may interact with biofilms naturally present, altering NP mobility and/or reactivity and thereby NP effectiveness. The influence of the presence of a multi species biofilm on the mobility of two types of zero-valent iron NP (nZVI; NANOFER 25S and optimized NANOFER STAR, NanoIron s.r.o. (Czech Republic)) was tested in laboratory experiments with columns mimicking aquifer conditions. Biofilms were grown in columns filled with sand in nitrate reducing conditions using groundwater from an industrial site as inoculum. After two months growth, they were composed of several bacterial species, dominated by Pseudomonas stutzeri. Biofilm strongly affected the physical characteristics of the sand, decreasing total porosity from ~30% to ~15%, and creating preferential pathways with high flow velocities. nZVI suspensions were injected into the columns at a seepage velocity of 10mday-1. Presence of biofilm did not impact the concentrations of Fe at the column outlet nor the amount of total Fe retained in the sand, as attested by the measurement of magnetic susceptibility. However, it had a significant impact on NP size sorting as well as on total Fe distribution along the column. This suggests nZVI-biofilm interactions that were confirmed by microscopic observations using SEM/STEM coupled with energy-dispersive X-ray spectroscopy. Our study shows that biofilm modifies the water flow velocity in the porous media, favoring the transport of large aggregates and decreased NP mobility due to physical and chemical interactions.
Collapse
Affiliation(s)
- Marc Crampon
- BRGM, D3E/BGE, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France.
| | - Jennifer Hellal
- BRGM, D3E/BGE, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Christophe Mouvet
- BRGM, D3E/BGE, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Guillaume Wille
- BRGM, LAB, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Caroline Michel
- BRGM, D3E/BGE, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Anke Wiener
- University of Stuttgart, IWS, VEGAS, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Juergen Braun
- University of Stuttgart, IWS, VEGAS, Pfaffenwaldring 61, 70569 Stuttgart, Germany
| | - Patrick Ollivier
- BRGM, D3E/BGE, Avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| |
Collapse
|
10
|
Joo SH, Zhao D. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:29-47. [PMID: 26961405 DOI: 10.1016/j.jhazmat.2016.02.068] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 05/25/2023]
Abstract
Metal oxide nanoparticles (MNPs) have been used for many purposes including water treatment, health, cosmetics, electronics, food packaging, and even food products. As their applications continue to expand, concerns have been mounting about the environmental fate and potential health risks of the nanoparticles in the environment. Based on the latest information, this review provides an overview of the factors that affect the fate, transformation and toxicity of MNPs. Emphasis is placed on the effects of various aquatic contaminants under various environmental conditions on the transformation of metal oxides and their transport kinetics - both in homogeneous and heterogeneous systems - and the effects of contaminants on the toxicity of MNPs. The presence of existing contaminants decreases bioavailability through hetero-aggregation, sorption, and/or complexation upon an interaction with MNPs. Contaminants also influence the fate and transport of MNPs and exhibit their synergistic toxic effects that contribute to the extent of the toxicity. This review will help regulators, engineers, and scientists in this field to understand the latest development on MNPs, their interactions with aquatic contaminants as well as the environmental dynamics of their fate and transformation. The knowledge gap and future research needs are also identified, and the challenges in assessing the environmental fate and transport of nanoparticles in heterogeneous systems are discussed.
Collapse
Affiliation(s)
- Sung Hee Joo
- Department of Civil, Architectural, and Environmental Engineering, University of Miami, 1251 Memorial Dr. McArthur Engineering Building, Coral Gables, FL 33146-0630, USA.
| | - Dongye Zhao
- Department of Civil and Environmental Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|