1
|
Chakraborty S, Foppen JW, Schijven JF. Effect of concentration of silica encapsulated ds-DNA colloidal microparticles on their transport through saturated porous media. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Ling X, Yan Z, Liu Y, Lu G. Transport of nanoparticles in porous media and its effects on the co-existing pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117098. [PMID: 33857878 DOI: 10.1016/j.envpol.2021.117098] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/17/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Nanomaterials are widely used in daily life owing to their superior characteristics. The release and transport of nanoparticles (NPs) in the environment is inevitable during their entire life cycle, posing a risk to the aquatic environment. Thus, considerable attention has been focused on the fate and behavior of NPs in porous media, as well as the co-transport of NPs with other pollutants. In this review, current knowledge about the retention and transport behavior of NPs in porous media is summarized. NP transport in porous media is dominated by various internal and external factors, including the characteristics of NPs, porous media, and water flow. Generally, NPs with high density, small particle size, and surface coating are easily transported in porous media with the characteristics of large size, smooth surface, and low water saturation. Meanwhile, high pH and velocity, low temperature, and natural organic matter-containing fluids are also conducive to NP transport. Aggregation, adsorption, straining, and blocking are the primary mechanisms by which NPs affect the transport of co-existing pollutants in porous media. Current research on NP transport has been performed predominantly using modal porous media (e.g., sand and glass beads); however, there is a large gap between simulated and natural porous media. Further studies should focus on the transport, fate, and interaction of NPs and coexistent pollutants in natural porous media, as well as the coupling mechanisms under actual environmental conditions.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
3
|
He L, Rong H, Li M, Zhang M, Liu S, Yang M, Tong M. Bacteria have different effects on the transport behaviors of positively and negatively charged microplastics in porous media. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125550. [PMID: 33740724 DOI: 10.1016/j.jhazmat.2021.125550] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Bacteria, biological colloids with wide presence in natural environments, would interact with plastic particles (emerging colloids with great concern recently) and thus would influence the fate and distribution of plastics in environment. In present research, the impacts of bacteria (both Gram (-) E. coli and Gram (+) B. subtilis) on the transport/deposition of model microplastics (MPs) in porous media were examined in NaCl salt solutions (5 and 25 mM, pH = 6). Both negative carboxylate-modified MPs (CMPs) and positive amine-modified MPs (AMPs) were concerned. We found that under both solution conditions, the presence of both types of bacteria decreased CMPs transport and enhanced retention of CMPs in sand columns. In contrast, the presence of bacteria (regardless of cell type) yet increased AMPs transport and decreased their deposition in sand columns under both ionic strength conditions. The mechanisms leading to the altered transport of CMPs and AMPs by bacteria were different. The formation of larger sized CMPs-bacteria clusters and the extra deposition sites resulted from bacteria adsorbed on quartz sand contributed to the decreased CMPs transport and enhanced their deposition in sand columns. Whereas, the formation of AMPs-bacteria clusters with overall negatively surface charge improved AMPs transport in quartz sand.
Collapse
Affiliation(s)
- Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Sirui Liu
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, PR China
| | - Meng Yang
- Department of Ultrasound, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, PR China.
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
4
|
Xu N, Li Z, Huangfu X, Cheng X, Christodoulatos C, Qian J, Chen M, Chen J, Su C, Wang D. Facilitated transport of nTiO 2-kaolin aggregates by bacteria and phosphate in water-saturated quartz sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136589. [PMID: 31958725 PMCID: PMC7252603 DOI: 10.1016/j.scitotenv.2020.136589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 05/06/2023]
Abstract
The soil major component of clay plays an important role in governing the fate and transport of engineered nanomaterials (e.g., the most commonly used titanium dioxide nanoparticles; nTiO2) in the subsurface environments via forming nTiO2-clay aggregates. This research is designed to unravel the interplay of naturally-occurring bacteria (Escherichia coli) and phosphate on the transport and retention of nTiO2-kaolin aggregates in water-saturated porous media. Our results showed that nTiO2-nTiO2 homoaggregates and nTiO2-kaolin heteroaggregates dominated in the nTiO2-kaolin nanoaggregate suspension. Transport of nTiO2-kaolin aggregates was enhanced with the copresence of E. coli and phosphate, particularly at the low pH of 6.0. This effect is due to the greater adsorption of phosphate and thus the greater enhancement in repulsive interaction energies between aggregates and sand grains at pH 6.0 (vs. pH 9.0). The charged "soft layer" of E. coli cell surfaces changed the aggregation state and the heterogeneous distribution of nTiO2-kaolin aggregates, and subsequently stabilized the nTiO2-nTiO2 homoaggregates and nTiO2-kaolin heteroaggregates via TEM-EDX measurements and promoted the physical segregation between the aggregates (separation distance = 0.486 vs. 0.614 μm without vs. with the presence of E. coli) via 2D/3D AFM identifications, both of which caused greater mobility of nTiO2-kaolin aggregates with the presence of E. coli. Nonetheless, transport of nTiO2-kaolin aggregates was lower with the copresence of E. coli and phosphate vs. the singular presence of phosphate due to the competitive adsorption of less negatively charged E. coli (vs. phosphate) onto the aggregates. Taken altogether, our findings furnish new insights into better understanding the fate, transport, and potential risks of nTiO2 in real environmental settings (soil and sediment aquifer) where clay, bacteria, and phosphate ubiquitously cooccur.
Collapse
Affiliation(s)
- Nan Xu
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Zuling Li
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xinxing Huangfu
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xueying Cheng
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Christos Christodoulatos
- Center for Environmental System, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA
| | - Junchao Qian
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ming Chen
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jianping Chen
- Jiangsu Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunming Su
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, Ada, OK 74820, USA
| | - Dengjun Wang
- Oak Ridge Institute for Science and Education, United States Environmental Protection Agency, Ada, OK 74820, USA.
| |
Collapse
|
5
|
Parsai T, Kumar A. Understanding effect of solution chemistry on heteroaggregation of zinc oxide and copper oxide nanoparticles. CHEMOSPHERE 2019; 235:457-469. [PMID: 31272006 DOI: 10.1016/j.chemosphere.2019.06.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 05/24/2023]
Abstract
The reported presence of mixture of nanoparticles in environmental water warrants developing understanding on their aggregation and fate. This study tried to address this question and focused on understanding effects of pH (3,7 and 10), background electrolyte concentration (1 mM and 10 mM as NaCl) and nanoparticle (NP) concentration (1 and 10 mg/L) on stability of suspension containing mixture of two commonly-found metal oxide-based NP (i.e., ZnO and CuO NPs) in a 6-h study (output variables: aggregation rate constant, settling rate constant, difference in zeta potential, change of metal content in suspension and on aggregates). Two iso-electric point values were obtained: pH 3.08 and 8.33 for mixture suspension in DI (De-ionized) water and pH 5.69 and 8.65 for mixture suspension with 10 mM electrolyte concentration. Settling rate constant and aggregation rate constant values of suspension containing mixture of NPs varied between 0.02 and 0.23 NTU/(NTU-hour) and 0.0002 and 0.03 nm/s, respectively. At natural pH condition, settling rate constant and aggregation rate constant values were obtained to be 0.05 NTU/(NTU- hour) and 0.012 nm/s. The Derjaguin-Landau-Verway-Overbeek (DLVO) analyses indicated that aggregation of mixture of NPs might be happening due to combined effects of ionic layer compression, charge neutralization and van der Waals attraction. Dissolution of nanoparticles was found to be significantly affected by change in pH of suspension. Stability of mixture of nanoparticles was observed to decrease with increasing pH, ionic strength and nanoparticle concentration values. For ZnO and CuO nanoparticles, model equations were developed for predicting their (i) aggregation rate constant, (ii) settling rate constant, (iii) difference in zeta potential, (iv) percentage change of metal in suspension and (v) solid Zn fractions of mixture of nanoparticles as a function of pH, ionic strength and NP concentration. These information are useful in understanding fate of mixture of NPs in suspension as well as in settled solids in natural water bodies and in water treatment systems.
Collapse
Affiliation(s)
- Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| | - Arun Kumar
- Department of Civil Engineering, Indian Institute of Technology, New Delhi, India.
| |
Collapse
|
6
|
Dong Z, Zhang W, Qiu Y, Yang Z, Wang J, Zhang Y. Cotransport of nanoplastics (NPs) with fullerene (C 60) in saturated sand: Effect of NPs/C 60 ratio and seawater salinity. WATER RESEARCH 2019; 148:469-478. [PMID: 30408733 DOI: 10.1016/j.watres.2018.10.071] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/27/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Nanoplastics (NPs) have been identified as newly emerging particulate contaminants. In marine environments, the interaction between NPs and other engineered nanoparticles remains unknown. This study investigated the cotransport of NPs with fullerene (C60) in seawater-saturated columns packed with natural sand as affected by the mass concentration ratio of NPs/C60 and the hydrochemical characteristics. In seawater with 35 practical salinity units (PSU), NPs could remarkably enhance C60 dispersion with a NPs/C60 ratio of 1. NPs behaved as a vehicle to facilitate C60 transport by decreasing colloidal ζ-potential and forming stable primary heteroaggregates. As the NPs/C60 ratio decreased to 1/3, NPs mobility was progressively restrained because of the formation of large secondary aggregates. When the ratio continuously decreased to 1/10, the stability and transport of colloids were governed by C60 rather than NPs. Under this condition, the transport trend of binary suspensions was similar to that of single C60 suspension, which was characterized by a ripening phenomenon. Seawater salinity is another key factor affecting the stability and associated transport of NPs and C60. In seawater with 3.5 PSU, NPs and C60 (1:1) in binary suspension exhibited colloidal dispersion, which was driven by a high-energy barrier. Thus, the profiles of the cotransport and retention of NPs/C60 resembled those of single NPs suspension. This work demonstrated that the cotransport of NPs/C60 strongly depended on their mass concentration ratios and seawater salinity.
Collapse
Affiliation(s)
- Zhiqiang Dong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, International Joint Research Center for Sustainable Urban Water System, Shanghai, 200092, PR China
| | - Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, International Joint Research Center for Sustainable Urban Water System, Shanghai, 200092, PR China
| | - Yuping Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, International Joint Research Center for Sustainable Urban Water System, Shanghai, 200092, PR China.
| | - Zhenglong Yang
- School of Materials Science and Engineering, Jiading Campus, Tongji University, Shanghai, 201804, China
| | - Junliang Wang
- School of the Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yidi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
7
|
Rastghalam ZS, Cheng T, Freake B. Fine particle attachment to quartz sand in the presence of multiple interacting dissolved components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:499-508. [PMID: 30029125 DOI: 10.1016/j.scitotenv.2018.07.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In natural aquatic systems water chemistry is complicated and fine particles encounter multiple water components simultaneously, yet the combined effects of some multiple components on the fate and transport of these particles have not been elucidated. In this study nTiO2 and illite colloid attachment to quartz sand was investigated in 1 mM NaCl and 0.5 mM CaCl2 background solutions using a range of phosphate concentrations (0 to 10 mg/L) at pH 5 and 9. The results obtained from the batch experiments indicated that without using phosphate, nTiO2 aggregation and attachment was strongly influenced by pH and Ca2+, both of which modified nTiO2 surface charges. nTiO2 attachment was high in CaCl2 solution at pH 9 due to attractive forces between nTiO2 and sand, as well as ripening. Furthermore, phosphate adsorption to nTiO2 was higher in CaCl2 solution at pH 9 than that at pH 5 due to attractive forces between nTiO2 and phosphate anions, and also potential surface precipitation of Ca-P minerals at pH 9. Phosphate adsorption to illite was low owing to strong repulsive forces between illite and phosphate. The effect of phosphate on nTiO2 and illite attachment to sand was influenced by pH and cation valency. A decreasing trend in nTiO2 attachment with phosphate addition was observed in NaCl solution at pH 5 and 9, and in CaCl2 solution at pH 5; however, in CaCl2 solution at pH 9, the surface charge of nTiO2 reversed from negative to positive and a substantial amount of nTiO2 attached to sand. Moreover, illite attachment to sand was much lower than that of nTiO2 under all the conditions tested in this study. These findings are important for understanding of the fate and transport of nTiO2 and illite colloids in natural aquatic systems where various anions and cations co-exist.
Collapse
Affiliation(s)
- Zahra Sadat Rastghalam
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X5, Canada
| | - Tao Cheng
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X5, Canada.
| | - Bradley Freake
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X5, Canada
| |
Collapse
|
8
|
He L, Wu D, Rong H, Li M, Tong M, Kim H. Influence of Nano- and Microplastic Particles on the Transport and Deposition Behaviors of Bacteria in Quartz Sand. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11555-11563. [PMID: 30204419 DOI: 10.1021/acs.est.8b01673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plastic particles are widely present in the natural environment and are highly likely to interact with bacteria (the ubiquitous microbes in the natural environment), which might affect the transport and deposition of bacteria in porous media. In this study, the significance of plastic particles from nanoscale to micrometer-scale (0.02-2 μm) on the transport and deposition behaviors of bacteria ( Escherichia coli) in quartz sand was examined under environmentally relevant conditions in both NaCl and CaCl2 solutions at pH 6. The results showed that the presence of different-sized plastic particles did not affect bacterial transport behaviors at low ionic strength (10 mM NaCl and 1 mM CaCl2), whereas, at high ionic strength conditions (50 mM NaCl and 5 mM in CaCl2), plastic particles increased bacterial transport in quartz sand. At low ionic strength conditions, the mobility of both plastic particles and bacteria was high, which might drive the negligible effects of plastic particles on bacterial transport behaviors. The mechanisms driving the enhanced cell transport at high ionic strength were different for different-sized plastic particles. Specifically, for 0.02 μm nanoplastic particles, the adsorption of plastic particles onto cell surfaces and the repel effect induced by suspended plastic particles contributed to the increased cell transport. As for 0.2 μm microplastics (MPs), the suspended plastic particles induced repel effect contributed to the increased cell transport, whereas, for 2 μm MPs, the competition deposition sites by the plastic particles were the contributor to the increased cell transport.
Collapse
Affiliation(s)
- Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering , Peking University , Beijing , 100871 , P. R. China
| | - Dan Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering , Peking University , Beijing , 100871 , P. R. China
| | - Haifeng Rong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering , Peking University , Beijing , 100871 , P. R. China
| | - Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering , Peking University , Beijing , 100871 , P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; College of Environmental Sciences and Engineering , Peking University , Beijing , 100871 , P. R. China
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering , Chonbuk National University , Baekje-daero, Deokjin-gu, Jeonju-si , Jeollabuk-do 561-756 , Republic of Korea
| |
Collapse
|
9
|
Wu D, He L, Ge Z, Tong M, Kim H. Different electrically charged proteins result in diverse bacterial transport behaviors in porous media. WATER RESEARCH 2018; 143:425-435. [PMID: 29986251 DOI: 10.1016/j.watres.2018.06.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
The influence of proteins on bacterial transport and deposition behaviors in quartz sand was examined in both NaCl (10 and 25 mM) and CaCl2 solutions (1.2 and 5 mM). Bovine Serum Albumin (BSA) and bovine trypsin were used to represent negatively and positively charged proteins in natural aquatic systems, respectively. The presence of negatively charged BSA in suspensions increased the transport and decreased bacterial deposition in quartz sand, regardless of the ionic strength and ion types. Whereas, positively charged trypsin inhibited the transport and enhanced bacterial deposition under all experimental conditions. The potential mechanisms controlling the changes of bacterial transport behaviors varied for different charged proteins. The steric repulsion resulting from BSA adsorption onto both bacteria and quartz sand was found to play a dominant role in the transport and deposition of bacteria in porous media with BSA copresent in suspension. BSA adsorption onto bacterial surfaces and competition for deposition sites onto sand surfaces (adsorption of quartz sand surfaces) contributed to the increased cell transport with BSA in suspension. In contrast, the attractive patch-charged interaction induced by the adsorption of trypsin onto both bacteria and quartz sand had great contribution to the decreased bacterial transport in porous media with trypsin copresent in suspension. The increase in bacteria size, and the adsorption of trypsin onto cell surfaces (resulting in less negative cell surface charge) and quartz sand surfaces (providing extra deposition sites) were found to be the main contributors to the decreased transport and increased deposition of bacteria in quartz sand with trypsin in suspension.
Collapse
Affiliation(s)
- Dan Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhi Ge
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
10
|
Cheng X, Xu N, Huangfu X, Zhou X, Zhang M. Synergetic effect of hydrochar on the transport of anatase titanium dioxide nanoparticles in the presence of phosphate in saturated quartz sand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:28864-28874. [PMID: 30099712 DOI: 10.1007/s11356-018-2795-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The rapid development of nanomaterials has led to the unavoidable leakage and release of nanoparticles (NPs) into soil and the underlying groundwater. It is possible for chars and phosphate introduced into soil to improve crop soil properties by improving contact with NPs. In this study, the influences of hydrochar and/or phosphate on the anatase nTiO2 transport behaviors were investigated under different conditions. The breakthrough curves (BTCs) and retention profiles were obtained by the saturated sand column experiments. The additional analysis of zeta potentials, sedimentation kinetics, Raman mapping, and the two-site kinetic attachment model (TSKAM) was conducted to explore the possible underlying mechanisms. The simultaneous presence of phosphate and hydrochar acted in a synergetic fashion to enhance the transport of nTiO2 in a sand medium compared to the facilitated effect of single phosphate or hydrochar. The higher levels of hydrochar induce the more nTiO2 in the high IC solution passing through the saturated sand columns in the co-presence of phosphate. It was attributed to the competitive adsorption of hydrochar with nTiO2 to the sand site and the phosphate adsorption on nTiO2 occurred simultaneously through the sand columns. The fitting results of BTCs using TSKAM showed that the value of k2 for nTiO2 (the irreversible attachment coefficient at site 2) was smaller than that of k1d/k1 (the first-order reversible detachment and attachment coefficient at site 1, respectively), suggesting irreversible retention of anatase nTiO2 at site 1. The value of k1d/k1 could be better used to explain the retention of nTiO2 with combined phosphate and hydrochar. This study provides insight into the implications of phosphate and/or hydrochar for nTiO2 transport in crop soil environments. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Xueying Cheng
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Nan Xu
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xinxing Huangfu
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xing Zhou
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Mo Zhang
- Jiangsu Key Laboratory of Environmental Functional Materials, School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
11
|
Fisher-Power LM, Cheng T. Nanoscale Titanium Dioxide (nTiO 2) Transport in Natural Sediments: Importance of Soil Organic Matter and Fe/Al Oxyhydroxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2668-2676. [PMID: 29376331 DOI: 10.1021/acs.est.7b05062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Many engineered nanoparticle (ENP) transport experiments use quartz sand as the transport media; however, sediments are complex in nature, with heterogeneous compositions that may influence transport. Nanoscale titanium dioxide (nTiO2) transport in water-saturated columns of quartz sand and variations of a natural sediment was studied, with the objective of understanding the influence of soil organic matter (SOM) and Fe/Al-oxyhydroxides and identifying the underlying mechanisms. Results indicated nTiO2 transport was strongly influenced by pH and sediment composition. When influent pH was 5, nTiO2 transport was low because positively charged nTiO2 was attracted to negatively charged minerals and SOM. nTiO2 transport was slightly enhanced in sediments with sufficient SOM concentrations due to leached dissolved organic matter (DOM), which adsorbed onto the nTiO2 surface, reversing the zeta potential to negative. When influent pH was 9, nTiO2 transport was generally high because negatively charged medium repelled negatively charged nTiO2. However, in sediments with SOM or amorphous Fe/Al oxyhydroxides depleted, transport was low due to pH buffering by the sediments, causing attraction between nTiO2 and crystalline Fe oxyhydroxides. This was counteracted by DOM adsorbing to nTiO2, stabilizing it in suspension. Our research demonstrates the importance of SOM and Fe/Al oxyhydroxides in governing ENP transport in natural sediments.
Collapse
Affiliation(s)
- Leanne M Fisher-Power
- Department of Earth Sciences , Memorial University , St. John's , Newfoundland and Labrador A1B 3X5 , Canada
| | - Tao Cheng
- Department of Earth Sciences , Memorial University , St. John's , Newfoundland and Labrador A1B 3X5 , Canada
| |
Collapse
|
12
|
Syngouna VI, Chrysikopoulos CV, Kokkinos P, Tselepi MA, Vantarakis A. Cotransport of human adenoviruses with clay colloids and TiO 2 nanoparticles in saturated porous media: Effect of flow velocity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:160-167. [PMID: 28441594 DOI: 10.1016/j.scitotenv.2017.04.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
This study focuses on the effects of two clay colloids (kaolinite, KGa-1b and montmorillonite, STx-1b) and titanium dioxide (TiO2) nanoparticles (NPs) on human adenovirus transport and retention in water saturated porous media at three different pore water velocities (0.38, 0.74, and 1.21cm/min). Transport and cotransport experiments were performed in 30-cm long laboratory columns packed with clean glass beads with 2mm diameter. The experimental results suggested that the presence of KGa-1b, STx-1b and TiO2 NPs increased human adenovirus inactivation and attachment onto the solid matrix, due to the additional attachment sites available. Retention by the packed column was found to be highest (up to 99%) in the presence of TiO2 NPs at the highest pore water velocity, and lowest in the presence of KGa-1b. The experimental results suggested that adenoviruses would undergo substantial aggregation or heteroaggregation during cotransport. However, no distinct relationships between mass recoveries and water velocity could be established from the experimental cotransport data. Note that for the cotransport experiments, collision efficiency values were shown to be higher for the higher flow rate examined in this study.
Collapse
Affiliation(s)
- Vasiliki I Syngouna
- School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece.
| | | | - Petros Kokkinos
- Environmental Microbiology Unit, Department of Public Health, University of Patras, 26500 Patras, Greece
| | - Maria A Tselepi
- Environmental Microbiology Unit, Department of Public Health, University of Patras, 26500 Patras, Greece
| | - Apostolos Vantarakis
- Environmental Microbiology Unit, Department of Public Health, University of Patras, 26500 Patras, Greece
| |
Collapse
|
13
|
Peng S, Wu D, Ge Z, Tong M, Kim H. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:141-149. [PMID: 28365511 DOI: 10.1016/j.envpol.2017.03.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The effects of graphene oxide (GO) on the transport and deposition behaviors of colloids with different sizes in packed quartz sand were investigated in both NaCl (10 and 50 mM) and CaCl2 solutions (1 and 5 mM) at pH 6. Fluorescent carboxylate-modified polystyrene latex microspheres (CMLs) with size ranging from 0.2 to 2 μm were utilized as model colloids. Both breakthrough curves and retained profiles of colloids in the presence and absence of GO in suspensions under all examined solution conditions were analyzed. The breakthrough curves of all three different-sized CMLs with GO were higher yet the retained profiles were lower than those without GO at both examined ionic strengths in NaCl solutions. The observation showed that GO increased the transport and decreased the deposition of all three different-sized CMLs in NaCl solutions. However, in CaCl2 solutions, opposite observation was achieved at two different ionic strength conditions. Specifically, the presence of GO increased the transport and decreased the deposition of all three different-sized CMLs in 1 mM CaCl2 solutions, whereas, it decreased the transport and increased the deposition of all three different-sized CMLs in 5 mM CaCl2 solutions. Comparison the breakthrough curves and retained profiles of CMLs versus those of GO yielded that the overall transport and deposition behaviors of all three different-sized CMLs with GO copresent in suspensions agreed well with the transport and deposition behaviors of GO under all examined conditions. The transport and deposition behaviors of CMLs in packed porous media clearly were controlled by those of GO under the conditions investigated in present study due to the adsorption of CMLs onto GO surfaces. Our study showed that once released into natural environment, GO would adsorb (interact with) different types of colloids and thus have significant influence on the fate and transport of colloids in porous media.
Collapse
Affiliation(s)
- Shengnan Peng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Dan Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhi Ge
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea.
| |
Collapse
|