1
|
Yao Y, Fu Y, Zhang C, Zhang H, Qin C. The effectivity and applicability of a novel sugar-based anionic and nonionic Gemini surfactant synthetized for the perchloroethylene-contaminated groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135458. [PMID: 39173379 DOI: 10.1016/j.jhazmat.2024.135458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Surfactant-enhanced aquifer remediation (SEAR) has effectively removed dense nonaqueous phase liquids (DNAPLs) from the contaminated aquifers. However, restricted by structural defects, typical monomeric surfactants undergo precipitation, high adsorption loss, and poor solubilization in aquifers, resulting in low remediation efficiency. In this study, a novel sugar-based anionic and non-ionic Gemini surfactant (SANG) was designed and synthesized for SEAR. Glucose was introduced into SANG as a non-ionic group to overcome the interference of low temperature and ions in groundwater. Sodium sulfonate was introduced as an anionic group to overcome aquifer adsorption loss. Two long-straight carbon chains were introduced as hydrophobic groups to provide high surface activity and solubilizing capacity. Even with low temperature or high salt content, its solution did not precipitate in aquifer conditions. The adsorption loss was as low as 0.54 and 0.90 mg/g in medium and fine sand, respectively. Compared with typical surfactants used for SEAR, SANG had the highest solubilization and desorption abilities for perchloroethylene (PCE) without emulsification, a crucial negative that Tween80 and other non-ionic surfactants exhibit. After flushing the contaminated aquifer using SANG, > 99 % of PCE was removed. Thus, with low potential environmental risk, SANG is effectively applicable in subsurface remediation, making it a better surfactant choice for SEAR.
Collapse
Affiliation(s)
- Yu Yao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yufeng Fu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Chengwu Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Hui Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Ciampi P, Cassiani G, Deidda GP, Esposito C, Rizzetto P, Pizzi A, Papini MP. Understanding the dynamics of enhanced light non-aqueous phase liquids (LNAPL) remediation at a polluted site: Insights from hydrogeophysical findings and chemical evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172934. [PMID: 38703835 DOI: 10.1016/j.scitotenv.2024.172934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
This study intricately unfolds a pioneering methodology for remediating contaminants in a persistent light non-aqueous phase liquids (LNAPL)-contaminated site. The remediation strategy seamlessly integrates enhanced desorption and in-situ chemical oxidation (ISCO), orchestrating the injection of PetroCleanze® (a desorbent) and RegenOx® (an oxidizer) through meticulously designed wells. These injections, based on detailed geological and hydrogeological assessments, aim at mobilizing residual contaminants for subsequent extraction. Real-time subsurface dynamics are investigated through geophysical monitoring, employing electrical resistivity tomography (ERT) to trace reagent migration pathways via their effect on bulk electrical conductivity. The integration of groundwater sampling data aims at providing additional insights into the transformations of contaminants in the spatiotemporal context. Vivid two-dimensional time-lapse ERT sections showcase the evolution of resistivity anomalies, providing high-resolution evidence of the heterogeneity, dispersion pathways of desorbent and oxidant, and residual LNAPL mobilization. Hydrochemical analyses complement this, revealing effective mobilization processes with increasing aqueous concentrations of total petroleum hydrocarbons (TPH) over time. Speciation analysis unveils the intricate interplay of desorption and oxidation, portraying the dynamic fractionation of hydrocarbon components. The hydrogeophysical and data-driven framework not only delivers qualitative and quantitative insights into reagent and contaminant distribution but also enhances understanding of spatial and temporal physio-chemical changes during the remediation process. Time-lapse ERT visually narrates the reagent's journey through time, while chemical analyses depict the unfolding processes of desorption and oxidation across space and time. The coupling of hydrogeophysical and chemical findings pictures the transformations of pollutants following the sequence of product injection and the push and pull activities, capturing the removal of mobilized contaminants through hydraulic barrier wells. This enhanced understanding proves instrumental towards optimizing and tailoring remediation efforts, especially in heterogeneous environmental settings. This study establishes a new standard for a sophisticated and innovative contaminant remediation approach, advancing environmental practices through the harmonized analysis of geophysical and chemical data.
Collapse
Affiliation(s)
- Paolo Ciampi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgio Cassiani
- Department of Geosciences, University of Padua, Via Gradenigo 6, 35131 Padua, Italy.
| | - Gian Piero Deidda
- Department of Civil, Environmental Engineering and Architecture, University of Cagliari, via Marengo, 2, 09123 Cagliari, Italy.
| | - Carlo Esposito
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Paolo Rizzetto
- Logistic Headquarter of Italian Air Force, Viale dell'Università, 4, 00185 Rome, Italy.
| | - Andrea Pizzi
- Logistic Headquarter of Italian Air Force, Viale dell'Università, 4, 00185 Rome, Italy.
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; CERI Research Center, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
3
|
Qiao F, Wang J, Chen Z, Zheng S, Kwaw AK, Zhao Y, Huang J. Experimental research on the transport-transformation of organic contaminants under the influence of multi-field coupling at a site scale. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134222. [PMID: 38583199 DOI: 10.1016/j.jhazmat.2024.134222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Organic-contaminated shallow aquifers have become a global concern of groundwater contamination, yet little is known about the coupled effects of hydrodynamic-thermal-chemical-microbial (HTCM) multi-field on organic contaminant transport and transformation over a short time in aquifers. Therefore, this study proposed a quick and efficient field experimental method for the transport-transformation of contaminants under multi-field coupling to explore the relationship between organic contaminants (total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbons (PAHs), benzene-toluene-ethylbenzene-xylene (BTEX) and phthalates acid esters (PAEs)) and multi-field factors. The results showed that hydrodynamics (affecting pH, p < 0.001) and temperature (affecting dissolved oxygen, pH and HCO3-, p < 0.05) mainly affected the organic contaminants indirectly by influencing the hydrochemistry to regulate redox conditions in the aquifer. The main degradation reactions of the petroleum hydrocarbons (TPH, PAHs and BTEX) and PAEs in the aquifer were sulfate reduction and nitrate reduction, respectively. Furthermore, the organic contamination was directly influenced by microbial communities, whose spatial patterns were shaped by the combined effects of the spatial pattern of hydrochemistry (induced by the organic contamination pressure) and other multi-field factors. Overall, our findings imply that the spatiotemporal patterns of organic contaminants are synergistically regulated by HTCM, with distinct mechanisms for petroleum hydrocarbons and PAEs.
Collapse
Affiliation(s)
- Fei Qiao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China.
| | - Zhou Chen
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Shiyu Zheng
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China.
| | - Albert Kwame Kwaw
- Department of Geological Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yongsheng Zhao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Jintao Huang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| |
Collapse
|
4
|
Li W, Zhang W, Dong J, Liang X, Sun C. Groundwater chlorinated solvent plumes remediation from the past to the future: a scientometric and visualization analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17033-17051. [PMID: 38334923 DOI: 10.1007/s11356-024-32080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Contamination of groundwater with chlorinated hydrocarbons has serious adverse effects on human health. As research efforts in this area have expanded, a large body of literature has accumulated. However, traditional review writing suffers from limitations regarding efficiency, quantity, and timeliness, making it difficult to achieve a comprehensive and up-to-date understanding of developments in the field. There is a critical need for new tools to address emerging research challenges. This study evaluated 1619 publications related to this field using VOSviewer and CiteSpace visual tools. An extensive quantitative analysis and global overview of current research hotspots, as well as potential future research directions, were performed by reviewing publications from 2000 to 2022. Over the last 22 years, the USA has produced the most articles, making it the central country in the international collaboration network, with active cooperation with the other 7 most productive countries. Additionally, institutions have played a positive role in promoting the publication of science and technology research. In analyzing the distribution of institutions, it was found that the University of Waterloo conducted the majority of research in this field. This paper also identified the most productive journals, Environmental Science & Technology and Applied and Environmental Microbiology, which published 11,988 and 3253 scientific articles over the past 22 years, respectively. The main technologies are bioremediation and chemical reduction, which have garnered growing attention in academic publishing. Our findings offer a useful resource and a worldwide perspective for scientists engaged in this field, highlighting both the challenges and the possibilities associated with addressing groundwater chlorinated solvent plumes remediation.
Collapse
Affiliation(s)
- Wenyan Li
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| | - Weihong Zhang
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China.
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China.
| | - Jun Dong
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| | - Xue Liang
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| | - Chen Sun
- Jilin University Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, Changchun, 130021, People's Republic of China
- Jilin University National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Changchun, 130021, People's Republic of China
| |
Collapse
|
5
|
Wang Z, Yang Z, Chen YF. Pore-scale investigation of surfactant-enhanced DNAPL mobilization and solubilization. CHEMOSPHERE 2023; 341:140071. [PMID: 37673186 DOI: 10.1016/j.chemosphere.2023.140071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/20/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Surfactant-enhanced aquifer remediation has been proved successful to remove dense non-aqueous phase liquids (DNAPLs) from contaminated sites. However, the underlying mechanisms of the DNAPL mobilization and solubilization at the pore scale remains to be addressed for efficient application to the field remediation system. In this work, the emerging microfluidic and imaging technologies are applied to investigate the dynamics of DNAPL remediation. Visualized experiments of the evolution of DNAPL remediation are performed to study the role of surfactant type, concentration and injection rate. The DNAPL remediation is dominated by mobilization followed by solubilization for most surfactants. Mobilization occurs as soon as surfactants and DNAPL are in contact until forming a new stable phase structure, and the solubilization continues until the end of injection. We observe the breakup behavior of long droplets and ganglia during the mobilization, which is attributed to the surfactant-reduced interfacial tension and thus expedites DNAPL mobilization and redistribution. During the solubilization, the formation of micelles incorporating DNAPL fractions increases the DNAPL concentration gradient and thus enhances the mass transfer, but the rate-limited diffusion of micelles reduces the mass transfer rate coefficient. Increasing the surfactant content and decreasing the injection rate can promote mobilization and solubilization. The DNAPL mobilization ability of the surfactants SDS and SDBS is stronger than SAOS and Tween 80 regardless of the injection rates. Tween 80 may be considered an ideal surfactant of only solubilization but not mobilization is desired. This work elucidates the pore-scale mechanisms during surfactant-enhanced DNAPL remediation, which are beneficial for upscaling studies, predictive modeling, and operation optimization of DNAPL remediation in the field.
Collapse
Affiliation(s)
- Zejun Wang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan, 430072, China
| | - Zhibing Yang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan, 430072, China.
| | - Yi-Feng Chen
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
6
|
Mineo S. Groundwater and soil contamination by LNAPL: State of the art and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162394. [PMID: 36858232 DOI: 10.1016/j.scitotenv.2023.162394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Contamination by Light Non-Aqueous Phase Liquids (LNAPL) represents a challenge due to the difficulties encountered in its underground assessment and recovery. The major risks arising from subsoil LNAPL accumulation face human health and environment, gaining a social relevance also in the frame of a continuously changing climate. This paper reports on a literature review about the underground contamination by LNAPL, with the aims of providing a categorization of the aspects involved in this topic, analyzing the current state of the art, underlying potential lacks and future perspectives. The review was focused on papers published in the 2012-2022 time-interval, in journals indexed in Scopus and WoS databases, by querying "LNAPL" within article title, abstract and/or key words. 245 papers were collected and classified according to three "key approaches" -namely laboratory activity, field based-data studies and mathematical simulations- and subordinate "key themes", so to allow summarizing and commenting the main aspects based on the application setting, content and scope. Results show that there is a wide experience on plume dynamics and evolution, detection and monitoring through direct and indirect surveys, oil recovery and natural attenuation processes. Few cues of innovations were found regarding both the use of new materials and/or specific field configuration for remediation, and the application of new techniques for plume detection. Some limitations were found in the common oversimplification of the polluted media in laboratory or mathematical models, where the contamination is set within homogeneous porous environments, and in the low number of studies focused on rock masses, where the discontinuous hydraulic behavior complicates the address and modeling of the issue. This paper represents a reference for a quick update on the addressed topic, along with a starting point to develop new ideas and cues for the advance in one of the greatest environmental banes of the current century.
Collapse
Affiliation(s)
- S Mineo
- University of Catania, Department of Biological, Geological and Environmental Sciences, Corso Italia 57, Catania 95123, Italy.
| |
Collapse
|
7
|
Ramsburg CA, Baniahmad P, Muller KA, Robinson AD. Emulsion-based recovery of a multicomponent petroleum hydrocarbon NAPL using nonionic surfactant formulations. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 255:104144. [PMID: 36791614 DOI: 10.1016/j.jconhyd.2023.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Surfactants can aid subsurface remediation through three primary mechanisms - solubilization, mobilization and/or emulsification. Among these mechanisms, emulsification in porous media is generally not well studied or well understood; particularly in the context of treating sources containing multicomponent NAPL. The objective of this research was to elucidate the processes responsible for recovery of a multicomponent hydrocarbon NAPL when surfactant solutions are introduced within a porous medium to promote the formation of kinetically-stable oil-in-water emulsions. Emulsifier formulations considered here were selected to offer similar performance characteristics while relying on different families of non-ionic surfactants - nonylphenol ethoxylates or alcohol ethoxylates - for emulsification. The families of surfactants have particular environment relevance, as alcohol ethoxylates are often used where replacement of nonylphenol content is necessary. Results from batch and column studies suggest performance of the two formulations was similar. With both, a synergistic combination of emulsification and mobilization led to recovery of a synthetic gasoline NAPL. The relative contribution of solubilization to the recovery was found to be minor. Moreover, the physical processes associated with emulsification and mobilization acted to limit the amount of preferential recovery (or fractionation) of the multicomponent NAPL.
Collapse
Affiliation(s)
- C Andrew Ramsburg
- Department of Civil and Environmental Engineering, Tufts University, 200 College Avenue, Room 204 Anderson Hall, Medford, MA 02155, USA.
| | - Parnian Baniahmad
- Department of Civil and Environmental Engineering, Tufts University, 200 College Avenue, Room 204 Anderson Hall, Medford, MA 02155, USA
| | - Katherine A Muller
- Department of Civil and Environmental Engineering, Tufts University, 200 College Avenue, Room 204 Anderson Hall, Medford, MA 02155, USA
| | - Andrew D Robinson
- Department of Civil and Environmental Engineering, Tufts University, 200 College Avenue, Room 204 Anderson Hall, Medford, MA 02155, USA
| |
Collapse
|
8
|
He Z, Liang F, Meng J. Effects of injection directions and boundary exchange times on adaptive pumping in heterogeneous porous media: Pore-scale simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161427. [PMID: 36623650 DOI: 10.1016/j.scitotenv.2023.161427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Adaptive pumping, changing pumping rates or exchanging injection and extraction wells, is an enhancement of traditional Pump-and-Treat (P&T) technology. Since most previous studies on adaptive pumping are conducted through field-scale simulations, the mechanism behind it is not fully understood. An in-depth investigation of the pore-scale remediation mechanism of adaptive pumping is undoubtedly helpful in combining it with other decontamination methods to further enhance the remediation efficiency. In this study, coupling the Cahn-Hilliard phase field method and the Navier-Stokes equations, the dynamic displacement process in a heterogeneous porous medium is obtained. The effects of initial injection direction, boundary exchange times, and displacement regimes on the interface evolution and the remediation efficiency are systematically investigated. The results present that a significant increase in phase interface area is the most critical remediation mechanism for adaptive pumping. The effects of injection directions and boundary exchange times on remediation performance are mainly determined by the differences in pore connectivity and flow parameters. Higher pore connectivity under high and low viscosity ratios inhibits and promotes remediation performance, respectively. At high viscosity ratios, the residual oil morphology in the matrix after adaptive pumping is similar to that obtained by positive pumping with the opposite initial injection direction. The improvement in remediation performance of adaptive pumping is more significant under low viscosity ratio conditions. These results provide new pore-scale insights into the remediation mechanism of adaptive pumping, which contribute to the design and application of innovative remediation methods.
Collapse
Affiliation(s)
- Zhennan He
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fachun Liang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China; Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, Qingdao 266580, China.
| | - Jia Meng
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
9
|
Lin Q, Hong M. The effect of sand fractional wettability on SDBS-enhanced PCE immiscible mobilization in porous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20006-20019. [PMID: 36243790 DOI: 10.1007/s11356-022-23570-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fractional wettability is common in the dense non-aqueous phase liquids (DNAPL) contaminated sites. However, it is still unclear how fractional wettability affects surfactant-enhanced DNAPL immiscible mobilization in saturated porous media. The macro-contact angle of the fractional wettability media was measured. The results of column experiments showed that the entrapped tetrachloroethene (PCE) saturations after sodium dodecyl benzene sulfonate (SDBS) flooding were lower in the media where NAPL-wet sand was present compared with those in water-wet media. In the media which contained 25% octadecyltrichlorosilane (OTS)-treated sand, the entrapped PCE saturations decreased to the minimum, and the decrease was much larger in fine sand media. The SDBS-enhanced PCE recoveries were jointly affected by fractional wettability, particle size, and interfacial tension (IFT). When NAPL-wet sand was present and SDBS concentration was just 0.125 g⋅L-1, the SDBS-enhanced PCE recoveries increased significantly. As the SDBS concentration continues to increase to 0.5 g⋅L-1, they only increased slightly. In the fine sand media, the SDBS-enhanced PCE recoveries were higher, and they increased more obviously with the increase of NAPL-wet sand fractions. The influence weight of fractional wettability on SDBS-enhanced PCE recoveries was the largest (47.09%) under the experimental conditions. These findings indicate that it is important to consider fractional wettability characteristics when establishing a DNAPL immiscible mobilization strategy, because it is not sufficient to consider only IFT reduction, especially in media with finer pore structures.
Collapse
Affiliation(s)
- Qinghua Lin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Mei Hong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
10
|
Ali M, Song X, Wang Q, Zhang Z, Che J, Chen X, Tang Z, Liu X. Mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX mixed contaminants in soil by native microbial consortium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120831. [PMID: 36509345 DOI: 10.1016/j.envpol.2022.120831] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Despite the co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) in the field, to date, knowledge on the bioremediation of benzene and benzo[a]pyrene (BaP) mixed contaminants is limited. In this study, the mechanisms underlying the biodegradation of benzene and BaP under individual and co-contaminated conditions followed by the enhanced biodegradation using methanol, ethanol, and vegetable oil as biostimulants were investigated. The results demonstrated that the benzene biodegradation was highly reduced under the co-contaminated condition compared to the individual benzene contamination, whereas the BaP biodegradation was slightly enhanced with the co-contamination of benzene. Moreover, biostimulation significantly improved the biodegradation of both contaminants under co-contaminated conditions. A trend of significant reduction in the bioavailable BaP contents was observed in all biostimulant-enhanced groups, implying that the bioavailable BaP was the preferred biodegradable BaP fraction. Furthermore, the enzymatic activity analysis revealed a significant increase in lipase and dehydrogenase (DHA) activities, as well as a reduction in the catalase and polyphenol oxidase, suggesting that the increased hydrolysis of fats and proton transfer, as well as the reduced oxidative stress, contributed to the enhanced benzene and BaP biodegradation in the vegetable oil treatment. In addition, the microbial composition analysis results demonstrated that the enriched functional genera contributed to the increased biodegradation efficiency, and the functional genera in the microbial consortium responded differently to different biostimulants, and competitive growth was observed in the biostimulant-enhanced treatments. In addition, the enrichment of Pseudomonas and Rhodococcus species was noticed during the biostimulation of benzene and BaP co-contamination soil, and was positively correlated with the DHA enzyme activities, indicating that these species encode DHA genes which contributed to the higher biodegradation. In conclusion, multiple lines of evidence were provided to shed light on the mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX co-contamination with native microbial consortiums.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jilu Che
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xing Chen
- China Construction 8th Engineering Division Corp., LTD, Shanghai, 200122, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
11
|
Xu JC, Yang LH, Yuan JX, Li SQ, Peng KM, Lu LJ, Huang XF, Liu J. Coupling surfactants with ISCO for remediating of NAPLs: Recent progress and application challenges. CHEMOSPHERE 2022; 303:135004. [PMID: 35598784 DOI: 10.1016/j.chemosphere.2022.135004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Non-aqueous phase liquids (NAPLs) pose a serious risk to the soil-groundwater environment. Coupling surfactants with in situ chemical oxidation (ISCO) technology is a promising strategy, which is attributed to the enhanced desorption and solubilization efficiency of NAPL contaminants. However, the complex interactions among surfactants, oxidation systems, and NAPL contaminants have not been fully revealed. This review provides a comprehensive overview on the development of surfactant-coupled ISCO technology focusing on the effects of surfactants on oxidation systems and NAPLs degradation behavior. Specifically, we discussed the compatibility between surfactants and oxidation systems, including the non-productive consumption of oxidants by surfactants, the role of surfactants in catalytic oxidation systems, and the loss of surfactants solubilization capacity during oxidation process. The effect of surfactants on the degradation behavior of NAPL contaminants is then thoroughly summarized in terms of degradation kinetics, byproducts and degradation mechanisms. This review demonstrates that it is crucial to minimize the negative effects of surfactants on NAPL contaminants oxidation process by fully understanding the interaction between surfactants and oxidation systems, which would promote the successful implementation of surfactant-coupled ISCO technology in remediation of NAPLs-contaminated sites.
Collapse
Affiliation(s)
- Jing-Cheng Xu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Heng Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Jing-Xi Yuan
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Shuang-Qiang Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Kai-Ming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Jun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xiang-Feng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, 201210, China.
| |
Collapse
|
12
|
Abstract
AbstractThe presence of water-immiscible organic liquids—commonly called non-aqueous phase liquids or NAPLs—in soils and groundwater, is a worldwide environmental problem. Typical examples of NAPLs include: petroleum products, organic solvents and organic liquid waste from laboratories and industry. The molecular components of NAPLs present in soils, rocks and groundwater are readily transferred to the vapour and aqueous phases. The extent to which they do this is determined by their solubility (which is quite limited) and vapour pressure (which can be quite high). These molecular components, once dispersed in the vapour phase or dissolved in the aqueous phase, can provide a long-term source of harm to biotic receptors. The object of this lecture text is to examine how we can assess the degree of harm using quantitative risk assessment and how NAPL contaminated environments can be restored through the use of chemical, biological and physical remediation technologies.
Graphical abstract
Collapse
|
13
|
Aminnaji M, Yakşi K, Copty NK, Niasar VJ, Babaei M. Pore network and Darcy scale modelling of DNAPL remediation using ethanol flushing: Study of physical properties in DNAPL remediation. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 243:103886. [PMID: 34507216 DOI: 10.1016/j.jconhyd.2021.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/18/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Co-solvent flushing into contaminated soils is one of the most effective techniques for Dense Non-Aqueous Phase Liquid (DNAPL) remediation. In addition to the increase of DNAPL solubility, co-solvents (e.g. ethanol) can alter the viscosity and density of aqueous phase and diffusion coefficient of solute. Any changes in these parameters can change the flow behaviour and alter the upscaled DNAPL mass transfer coefficient which is a key parameter controlling soil and groundwater remediation at Darcy-scale. While numerous studies have investigated DNAPL remediation using co-solvents at the Darcy scale, pore-scale modelling of co-solvent enhanced DNAPL remediation has not been well investigated. In this work, a three-dimensional pore-network model was developed to simulate the 1,2-dichlorobenzene (DCB) remediation experiments using ethanol-water flushing solution. The model simulates the effect of changes in solubility, viscosity, density, and diffusion coefficient during co-solvent flushing of the DNAPL. The results of pore network modelling for ethanol-water flushing for the DCB remediation were also validated using the experimental data. In addition to pore-scale modelling, a continuum scale modelling (Darcy-scale) was used for the DCB remediation using ethanol-water flushing. The results of both pore network and continuum scale modelling demonstrated that the ethanol content and flushing velocity influence the interphase mass transfer and DNAPL dissolution process. The results indicated while the mass transfer coefficient decreased in the presence of ethanol, the process of NAPL remediation was improved due to the substantial increase of solubility in the presence of co-solvent. The large scale modelling showed that NAPL bank can be formed in the front of ethanol-water mixture flushing.
Collapse
Affiliation(s)
- Morteza Aminnaji
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
| | - Korcan Yakşi
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Nadim K Copty
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Vahid J Niasar
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
| | - Masoud Babaei
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
14
|
Sharma P, Kostarelos K, Salman M. Optimization of closed-cycle oil recovery: a non-thermal process for bitumen and extra heavy oil recovery. RSC Adv 2021; 11:26554-26562. [PMID: 35480027 PMCID: PMC9037303 DOI: 10.1039/d1ra02855c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
Energy from unconventional resources includes bitumen and extra-heavy oil that represent two-thirds of the known resources in the world. Extra-heavy oil and bitumen are currently recovered using thermal processes having a large carbon footprint and significant environmental impacts on water resources. A novel process is proposed: closed-cycle oil recovery (C-COR). C-COR is a greener alternative to provide energy from these unconventional resources with minimal water consumption. C-COR relies on recovering oil solubilized within a single-phase microemulsion, eliminating the need for viscosity reduction to both mobilize heavy oil or to transport it. Proof-of-concept work was conducted using conventional phase behavior experiments with extracted oil and surfactant formulations to develop a surfactant formulation for oil recovery using C-COR. As a part of process development and scale-up, we conducted flow experiments presented in this paper. We learned that a high degree of surfactant adsorption, which negatively impacted the C-COR process, resulted at low pH levels. These findings required modifying traditional static batch tests (phase behavior studies) using actual oil sand instead of the extracted oil. These unorthodox tests revealed that surfactant adsorption caused low oil solubilization and that alkali can be used to reduce adsorption, improving oil solubilization. In addition, unique flow experiments were designed to optimize the delivery and recovery process and are presented in this paper. The unique batch tests and flow experiments were conducted using oil sands from Canada to optimize the process. The proposed optimized approach would employ intermittent flow (soaking) that would result in the fastest recovery of about one-third of the OOIP, followed by continuous injection to recover an additional 10% OOIP, ending with thermal enhancement to recover another 25% OOIP for a total of 61%. The conceptual application of a single-phase microemulsion in the closed-cycle oil recovery approach for bitumen and extra-heavy oil reserves.![]()
Collapse
Affiliation(s)
| | | | - Mohamad Salman
- University of Houston Houston TX USA .,Chevron Technology Center Houston TX USA
| |
Collapse
|
15
|
Ciampi P, Esposito C, Cassiani G, Deidda GP, Rizzetto P, Papini MP. A field-scale remediation of residual light non-aqueous phase liquid (LNAPL): chemical enhancers for pump and treat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35286-35296. [PMID: 34085199 PMCID: PMC8275505 DOI: 10.1007/s11356-021-14558-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The remediation of petroleum-contaminated soil and groundwater is a challenging task. The petroleum hydrocarbons have a long persistence in both the vadose zone and in the aquifer and potentially represent secondary and residual sources of contamination. This is particularly evident in the presence of residual free-phase. Pump-and-treat is the most common hydrocarbon decontamination strategy. Besides, it acts primarily on the water dissolved phase and reduces concentrations of contaminants to an asymptotic trend. This study presents a case of enhanced light non-aqueous phase liquid (LNAPL) remediation monitored using noninvasive techniques. A pilot-scale field experiment was conducted through the injection of reagents into the subsoil to stimulate the desorption and the oxidation of residual hydrocarbons. Geophysical and groundwater monitoring during pilot testing controlled the effectiveness of the intervention, both in terms of product diffusion capacity and in terms of effective reduction of pollutant concentrations. In particular, non-invasive monitoring of the reagent migration and its capability to reach the target areas is a major add-on to the remediation technique. Most of the organic contaminants were decomposed, mobilized, and subsequently removed using physical recovery techniques. A considerable mass of contaminant was recovered resulting in the reduction of concentrations in the intervention areas.
Collapse
Affiliation(s)
- Paolo Ciampi
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carlo Esposito
- Department of Earth Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giorgio Cassiani
- Department of Geosciences, University of Padua, Via Gradenigo 6, 35131 Padua, Italy
| | - Gian Piero Deidda
- Department of Civil and Environmental Engineering and Architecture, University of Cagliari, via Marengo, 2, 09123 Cagliari, Italy
| | - Paolo Rizzetto
- Italian Air Force, Logistic Headquarter Viale dell’Università, 4, 00185 Rome, Italy
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
Liu JW, Wei KH, Xu SW, Cui J, Ma J, Xiao XL, Xi BD, He XS. Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144142. [PMID: 33302075 DOI: 10.1016/j.scitotenv.2020.144142] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 05/16/2023]
Abstract
Oil leakage, which is inevitable in the process of extraction, processing, transportation and storage, seriously undermines the soil and groundwater environment. Surfactants can facilitate the migration and solution of oil contaminants from nonaqueous phase liquid (NAPL) or solid phase to water by reducing the (air/water) surface tension, (oil/water) interfacial tension and micellar solubilization. They can effectively enhance the hydrodynamic driven remediation technologies by improving the contact efficiency of contaminants and liquid remediation agents or microorganism, and have been widely used to enhance the remediation of oil-contaminated sites. This paper summarizes the characteristics of different types of surfactants such as nonionic, anionic, biological and mixed surfactants, their enhancements to the remediation of oil-contaminated soil and groundwater, and examines the factors influencing surfactant performance. The causes of tailing and rebound effects and the role of surfactants in suppressing them are also discussed. Laboratory researches and actual site remediation practices have shown that various types of surfactants offer diverse options. Biosurfactants and mixed surfactants are superior and worth attention among the surfactants. Using surfactant foams, adding shear-thinning polymers, and combining surfactants with in-situ chemical oxidation are effective ways to resolve tailing and rebound effects. The adsorption of surfactants on soils and aquifer sediments decreases remediation efficiency and may cause secondary pollution, Therefore the adsorption loss should be noticed and minimized.
Collapse
Affiliation(s)
- Jian-Wu Liu
- Shandong Provincial Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control, SINOPEC Petroleum Engineering Corporation, Dongying 257026, China
| | - Kun-Hao Wei
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shao-Wei Xu
- Shengli Oilfield Company, SINOPEC, Dongying 257026, China
| | - Jun Cui
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiao-Long Xiao
- Shandong Provincial Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control, SINOPEC Petroleum Engineering Corporation, Dongying 257026, China
| | - Bei-Dou Xi
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao-Song He
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
17
|
Methodology for Concurrent Multi-Parametric Physical Modeling of a Target Natural Unfractured Homogeneous Sandstone. Processes (Basel) 2020. [DOI: 10.3390/pr8111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In petroleum, geological and environmental science, flow through porous media is conventionally studied complementarily with numerical modeling/simulation and experimental corefloods. Despite advances in numerical modeling/simulation, experimental corefloods with actual samples are still desired for higher-specificity testing or more complex mechanistic studies. In these applications, the lack of advances in physical modeling is very apparent with the available options mostly unchanged for decades (e.g., sandpacks of unconsolidated packing materials, industry-accepted substitutes with fixed/mismatching petrophysical properties such as Berea sandstone). Renewable synthetic porous media with adjustable parameters are the most promising but have not advanced adequately. To address this, a methodology of advanced physical modeling of the fundamental parameters of dominant mineralogy, particle size distribution, packing, and cementation of a target natural porous media is introduced. Based upon the tight physical modeling of these four fundamental parameters, the other derived parameters of interests including wettability, porosity, pore throat size distribution, permeability, and capillary pressure can be concurrently modeled very close as well by further fine-tuning one of the fundamental parameters while holding the rest constant. Through this process, concurrent multi-parametric physical modeling of the primary petrophysical parameters including particle size distribution, wettability, porosity, pore throat size distribution, permeability, capillary pressure behavior in a target sandstone becomes possible.
Collapse
|