1
|
Volovat SR, Scripcariu DV, Vasilache IA, Stolniceanu CR, Volovat C, Augustin IG, Volovat CC, Ostafe MR, Andreea-Voichița SG, Bejusca-Vieriu T, Lungulescu CV, Sur D, Boboc D. Oncolytic Virotherapy: A New Paradigm in Cancer Immunotherapy. Int J Mol Sci 2024; 25:1180. [PMID: 38256250 PMCID: PMC10816814 DOI: 10.3390/ijms25021180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Oncolytic viruses (OVs) are emerging as potential treatment options for cancer. Natural and genetically engineered viruses exhibit various antitumor mechanisms. OVs act by direct cytolysis, the potentiation of the immune system through antigen release, and the activation of inflammatory responses or indirectly by interference with different types of elements in the tumor microenvironment, modification of energy metabolism in tumor cells, and antiangiogenic action. The action of OVs is pleiotropic, and they show varied interactions with the host and tumor cells. An important impediment in oncolytic virotherapy is the journey of the virus into the tumor cells and the possibility of its binding to different biological and nonbiological vectors. OVs have been demonstrated to eliminate cancer cells that are resistant to standard treatments in many clinical trials for various cancers (melanoma, lung, and hepatic); however, there are several elements of resistance to the action of viruses per se. Therefore, it is necessary to evaluate the combination of OVs with other standard treatment modalities, such as chemotherapy, immunotherapy, targeted therapies, and cellular therapies, to increase the response rate. This review provides a comprehensive update on OVs, their use in oncolytic virotherapy, and the future prospects of this therapy alongside the standard therapies currently used in cancer treatment.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| | - Dragos Viorel Scripcariu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Ingrid Andrada Vasilache
- Department of Obstetrics and Gynecology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics—Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania;
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| | | | | | - Madalina-Raluca Ostafe
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| | - Slevoacă-Grigore Andreea-Voichița
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| | - Toni Bejusca-Vieriu
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| | | | - Daniel Sur
- 11th Department of Medical Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Diana Boboc
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Str., 700115 Iasi, Romania; (S.R.V.); (M.-R.O.); (S.-G.A.-V.); (T.B.-V.)
| |
Collapse
|
2
|
Zhou YC, Zhang YN, Yang X, Wang SB, Hu PY. Delivery systems for enhancing oncolytic adenoviruses efficacy. Int J Pharm 2020; 591:119971. [PMID: 33059014 DOI: 10.1016/j.ijpharm.2020.119971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Oncolytic adenovirus (OAds) has long been considered a promising biotherapeutic agent against various types of cancer owing to selectively replicate in and lyse cancer cells, while remaining dormant in healthy cells. In the last years, multiple (pre)clinical studies using genetic engineering technologies enhanced OAds anti-tumor effects in a broad range of cancers. However, poor targeting delivery, tropism toward healthy tissues, low-level expression of Ad receptors on tumor cells, and pre-existing neutralizing antibodies are major hurdles for systemic administration of OAds. Different vehicles have been developed for addressing these obstacles, such as stem cells, nanoparticles (NPs) and shielding polymers, extracellular vesicles (EVs), hydrogels, and microparticles (MPs). These carriers can enhance the therapeutic efficacy of OVs through enhancing transfection, circulatory longevity, cellular interactions, specific targeting, and immune responses against cancer. In this paper, we reviewed adenovirus structure and biology, different types of OAds, and the efficacy of different carriers in systemic administration of OAds.
Collapse
Affiliation(s)
- Yu-Cheng Zhou
- Gastroenterological & Pancreatic Surgery Department, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China; Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - You-Ni Zhang
- Clinical Laboratory, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou 317200, Zhejiang Province, China
| | - Xue Yang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China.
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Taizhou 317200, Zhejiang Province, China.
| |
Collapse
|
3
|
Abstract
Polymeric matrices inherently protect viral vectors from pre-existing immune conditions, limit dissemination to off-target sites, and can sustain vector release. Advancing methodologies in development of particulate based vehicles have led to improved encapsulation of viral vectors. Polymeric delivery systems have contributed to increasing cellular transduction, responsive release mechanisms, cellular infiltration, and cellular signaling. Synthetic polymers are easily customizable, and are capable of balancing matrix retention with cellular infiltration. Natural polymers contain inherent biorecognizable motifs adding therapeutic efficacy to the incorporated viral vector. Recombinant polymers use highly conserved motifs to carefully engineer matrices, allowing for precise design including elements of vector retention and responsive release mechanisms. Composite polymer systems provide opportunities to create matrices with unique properties. Carefully designed matrices can control spatiotemporal release patterns that synergize with approaches in regenerative medicine and antitumor therapies.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
4
|
Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 2018; 15:18-29. [DOI: 10.1038/s41584-018-0125-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Jang JH, Schaffer DV, Shea LD. Engineering biomaterial systems to enhance viral vector gene delivery. Mol Ther 2011; 19:1407-15. [PMID: 21629221 DOI: 10.1038/mt.2011.111] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Integrating viral gene delivery with engineered biomaterials is a promising strategy to overcome a number of challenges associated with virus-mediated gene delivery, including inefficient delivery to specific cell types, limited tropism, spread of vectors to distant sites, and immune responses. Viral vectors can be combined with biomaterials either through encapsulation within the material or immobilization onto a material surface. Subsequent biomaterial-based delivery can increase the vector's residence time within the target site, thereby potentially providing localized delivery, enhancing transduction, and extending the duration of gene expression. Alternatively, physical or chemical modification of viral vectors with biomaterials can be employed to modulate the tropism of viruses or reduce inflammatory and immune responses, both of which may benefit transduction. This review describes strategies to promote viral gene delivery technologies using biomaterials, potentially providing opportunities for numerous applications of gene therapy to inherited or acquired disorders, infectious disease, and regenerative medicine.
Collapse
Affiliation(s)
- Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Korea.
| | | | | |
Collapse
|
6
|
Liao IC, Chen S, Liu JB, Leong KW. Sustained viral gene delivery through core-shell fibers. J Control Release 2009; 139:48-55. [PMID: 19539680 DOI: 10.1016/j.jconrel.2009.06.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 12/18/2022]
Abstract
Although viral gene transfer is efficient in achieving transgene expression for tissue engineering, drawbacks of virus dissemination, toxicity and transient gene expression due to immune response have hindered its widespread application. Many tissue engineering studies thus opt to genetically engineer cells in vitro prior to their introduction in vivo. However, it would be attractive to obviate the need for in vitro manipulation by transducing the infiltrating progenitor cells in situ. This study introduces the fabrication of a virus-encapsulated electrospun fibrous scaffold to achieve sustained and localized transduction. Adenovirus encoding the gene for green fluorescent protein was efficiently encapsulated into the core of poly(epsilon-caprolactone) fibers through co-axial electrospinning and was subsequently released via a porogen-mediated process. HEK 293 cells seeded on the scaffolds expressed high level of transgene expression over a month, while cells inoculated by scaffold supernatant showed only transient expression for a week. RAW 264.7 cells cultured on the virus-encapsulated fibers produced a lower level of IL-1 beta, TNF-alpha and IFN-alpha, suggesting that the activation of macrophage cells by the viral vector was reduced when encapsulated in the core-shell PCL fibers. In demonstrating sustained and localized cell transduction, this study presents an attractive alternative mode of applying viral gene transfer for regenerative medicine.
Collapse
Affiliation(s)
- I-Chien Liao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
7
|
Abstract
BACKGROUND The development of viral vectors capable of providing efficient gene transfer in diseased tissues without causing any pathogenic effects is pivotal for overcoming the many challenges facing gene therapy. OBJECTIVE Immune responses against viral vectors, inadequate gene expression and inefficient targeting to specific cells in vivo are some of the major problems limiting the clinical utility of viral gene therapy. METHODS This review will focus on recent progress in strategic polymer-based modifications to improve the performance and biocompatibility of a variety of viral vectors. We will discuss the preclinical development of four approaches involving injectable polymers, polyelectrolytes, polymer microspheres and polymer-virus conjugates. RESULTS/CONCLUSION Much progress has been made in creating 'hybrid' gene delivery vectors that combine the strengths of polymers and viruses. With further optimization, these hybrid vectors, which may be safer and more effective, are likely to succeed in clinical applications.
Collapse
Affiliation(s)
- Chun Wang
- University of Minnesota, Department of Biomedical Engineering, 7-105 Hasselmo Hall, 312 Church Street S.E., Minneapolis, MN 55455, USA.
| | | |
Collapse
|
8
|
Mok H, Park TG. Direct plasmid DNA encapsulation within PLGA nanospheres by single oil-in-water emulsion method. Eur J Pharm Biopharm 2008; 68:105-11. [PMID: 17870446 DOI: 10.1016/j.ejpb.2007.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 11/29/2022]
Abstract
Plasmid DNA was encapsulated within poly(d,l-lactic-co-glycolic acid) (PLGA) nanospheres by using polyethylene glycol (PEG) assisted solubilization technique of plasmid DNA in organic solvents. Plasmid DNA was solubilized in an organic solvent mixture composed of 80% methylene chloride and 20% DMSO by producing PEG/DNA nano-complexes having an average diameter less than 100 nm. DNA could be solubilized in the organic solvent mixture to a greater extent with increasing the weight ratio of PEG/DNA. PLGA nanospheres encapsulating DNA were successfully prepared by the single O/W emulsion method. They exhibited greater loading efficiency and better structural integrity, compared to those prepared by the W/O/W double emulsion method. Plasmid DNA could be successfully delivered to macrophage cells to express an exogenous gene. This new formulation enabled high loading of intact plasmid DNA within PLGA nanospheres useful for DNA vaccines.
Collapse
Affiliation(s)
- Hyejung Mok
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | |
Collapse
|
9
|
Microencapsulation of PEGylated Adenovirus within PLGA Microspheres for Enhanced Stability and Gene Transfection Efficiency. Pharm Res 2007; 24:2263-9. [DOI: 10.1007/s11095-007-9441-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
|
10
|
Shenoy DB, Amiji MM. An overview of condensing and noncondensing polymeric systems for gene delivery. ACTA ACUST UNITED AC 2007; 2007:pdb.top9. [PMID: 21357090 DOI: 10.1101/pdb.top9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONSelf-assembling synthetic vectors for DNA delivery are designed to fulfill several biological functions. They must be able to deliver their genetic payload specifically to the target tissue/cells in a site-specific manner, while protecting the genetic material from degradation by metabolic or immune pathways. Furthermore, they must exhibit minimal toxicity and be proven safe enough for therapeutic use. Ultimately, they must have the capability to express a therapeutic gene for a finite period of time in an appropriate, regulated fashion. The DNA encapsulated in these vectors may be in a condensed or noncondensed form, depending on the nature of the polymer and the technique used for formulating the vector system. The whole process presents many barriers at both tissue and cellular levels. Overcoming these hurdles is the principal objective for efficient polymer-based DNA therapeutics.
Collapse
|
11
|
Estevan M, Gamazo C, González-Gaitano G, Irache JM. Optimization of the entrapment of bacterial cell envelope extracts into microparticles for vaccine delivery. J Microencapsul 2007; 23:169-81. [PMID: 16754373 DOI: 10.1080/02652040500435253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The encapsulation of a Brucella ovis extract (HS) in microparticles has been proved effective against experimental infections in mice. This work describes different strategies to increase the HS loading and prepare large batches as necessary to test this vaccine in ovine. The mixture of HS with beta-cyclodextrin was optimized in order to increase the HS loading in microparticles. On the other hand, TROMS ('Total Recirculation One-Machine System') led microparticles with a more homogeneous size than the laboratory or standard procedure. Moreover, the initial burst release of HS from the standard microparticles was higher than for the TROMS ones. In fact, standard microparticles displayed a higher amount of adsorbed HS. On the contrary, both preparative methods were found effective to preserve the integrity and anti-genicity of the loaded HS. In summary, beta-CD can be used to increase the loading of large hydrophobic materials and TROMS is a valid large production of antigen-loaded microparticles.
Collapse
Affiliation(s)
- Maite Estevan
- Department of Microbiology, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
12
|
Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 1. Basic concepts. J Tissue Eng Regen Med 2007; 1:4-24. [DOI: 10.1002/term.2] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Lameiro MH, Malpique R, Silva AC, Alves PM, Melo E. Encapsulation of adenoviral vectors into chitosan–bile salt microparticles for mucosal vaccination. J Biotechnol 2006; 126:152-62. [PMID: 16757053 DOI: 10.1016/j.jbiotec.2006.04.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 04/04/2006] [Accepted: 04/06/2006] [Indexed: 12/28/2022]
Abstract
The objective of this study is the incorporation of adenoviral vectors into a microparticulate system adequate for mucosal delivery. Microencapsulation of the vectors was accomplished by ionotropic coacervation of chitosan, using bile salts as counter-anion. The process was optimized in order to promote high encapsulation efficiency, with a minimal loss of viral infectivity. The maintenance of sterility during all the encapsulation procedure was also taken into account. The principle relies on the simple addition of a solution containing adenoviral vectors to a solution of neutralized chitosan, under stirring. Some surfactants were added to the chitosan solution, to improve the efficiency of this process, such as Tween 80, and Pluronic F68 at 1% (w/v). Encapsulation efficiency higher than 84% was achieved with formulations containing sodium deoxycholate as counter-anion and Pluronic F68 as dispersant agent. The infectivity of the adenoviral vectors incorporated into microparticles was assessed by release assays in PBS and by direct inoculation in 293 and Caco-2 cells. The release in aqueous media was negligible but, when in contact with monolayers of the cells, an effective release of bioactive adenovirus was obtained. Our work shows that encapsulation in microparticles, not only appear to protect the adenovirus from the external medium, namely from low pH, but can also delay their release that is fully dependent on cell contact, an advantage for mucosal vaccination purposes. The formulations developed are able to maintain AdV infectivity and permit a delayed release of the bioactives that is promoted by digestion in situ of the microparticles by the cell monolayers. The onset of delivery is, that way, host-controlled. In view of these results, these formulations showed good properties for mucosal adenovirus delivery.
Collapse
|
14
|
Chorny M, Fishbein I, Alferiev IS, Nyanguile O, Gaster R, Levy RJ. Adenoviral gene vector tethering to nanoparticle surfaces results in receptor-independent cell entry and increased transgene expression. Mol Ther 2006; 14:382-91. [PMID: 16807119 DOI: 10.1016/j.ymthe.2006.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 03/20/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022] Open
Abstract
The present studies investigated the hypothesis that affinity immobilization of replication-defective adenoviruses (Ad) on the surfaces of biodegradable nanoparticles (NP) can improve transduction through uncoupling cellular uptake from the coxsackie-adenovirus receptor (CAR). Ad was tethered to the surfaces of polylactide-based NP that were surface-activated using a photoreactive polyallylamine-benzophenone-pyridyldithiocarboxylate polymer, which enabled (via thiol chemistry) the covalent attachment of Ad-binding proteins, either the recombinant D1 domain of CAR or an adenoviral knob-specific monoclonal antibody. Gene transfer by NP-Ad complexes was studied in relation to cellular uptake as a function of cell type and the character of NP-Ad binding. NP-Ad complexes, but not Ad applied with or without control nonimmune IgG-modified NP, significantly increased green fluorescent protein reporter expression in endothelioma and endothelial and arterial smooth muscle cells (SMC) in direct correlation to the extent of NP-Ad internalization. CAR-independent uptake of NP-Ad was confirmed by demonstrating inhibition of free Ad- but not NP-Ad complex-mediated transduction by knob protein. Complexes formulated with an Ad encoding inducible nitric oxide synthase inhibited growth of cultured SMC to a significantly greater extent than those with (GFP)Ad or (NULL)Ad or free vector. It is concluded that Ad-specific affinity tethering to biodegradable NP can significantly increase the level of gene expression via a CAR-independent uptake mechanism.
Collapse
Affiliation(s)
- Michael Chorny
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | |
Collapse
|