1
|
Nan S, Che Y, Gong T, Zhang Z, Fu Y. Renal-Targeted Drug Delivery by Chitosan Oligosaccharide Micelles with HSA-Enriched Protein Corona for the Treatment of Ischemia/Reperfusion-Induced Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49913-49925. [PMID: 39240782 DOI: 10.1021/acsami.4c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Renal-specific nanoparticulate drug delivery systems have shown great potential in reducing systemic side effects and improving the safety and efficacy of treatments for renal diseases. Here, stearic acid-grafted chitosan oligosaccharide (COS-SA) was synthesized as a renal-targeted carrier due to the high affinity of the 2-glucosamine moiety on COS to the megalin receptor expressed on renal proximal tubular epithelial cells. Specifically, COS-SA/CLT micelles were prepared by encapsulating celastrol (CLT) with COS-SA, and different proportions of human serum albumin (HSA) were then adsorbed onto its surface to explore the interaction between the protein corona and cationic polymeric micelles. Our results showed that a multilayered protein corona, consisting of an inner "hard" corona and an outer "soft" corona, was formed on the surface of COS-SA/CLT@HSA8, which was beneficial in preventing its recognition and phagocytosis by macrophages. The formation of HSA protein corona on COS-SA/CLT micelles also increased its accumulation in the renal tubules. Furthermore, the electropositivity of COS-SA/CLT micelles affected the conformation of adsorbed proteins to various degrees. During the adsorption process, the protein corona on the surface of COS-SA/CLT@HSA1 was partially denatured. Overall, COS-SA/CLT and COS-SA/CLT@HSA micelles demonstrated sufficient safety with renal targeting potential, providing a viable strategy for the management of ischemia/reperfusion-induced acute kidney injury.
Collapse
Affiliation(s)
- Simin Nan
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yujie Che
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Matouk AI, Awad EM, Mousa AAK, Abdelhafez SMN, Fahmy UA, El-Moselhy MA, Abdel-Naim AB, Anter A. Dihydromyricetin protects against gentamicin-induced nephrotoxicity via upregulation of renal SIRT3 and PAX2. Life Sci 2024; 336:122318. [PMID: 38035992 DOI: 10.1016/j.lfs.2023.122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
AIM Gentamicin-induced nephrotoxicity limits its widespread use as an effective antibacterial agent. Oxidative stress, inflammatory cytokines and apoptotic cell death are major participants in gentamicin-induced nephrotoxicity. We therefore, investigated whether dihydromyricetin (DHM), the antioxidant and anti-inflammatory flavonoid, could protect against the nephrotoxic effects of gentamicin. METHODS Male Wistar rats administrated gentamicin (100 mg/kg/day, i.p.) for 8 days. DHM (400 mg/kg, p.o.) was concurrently given with gentamicin for 8 days. Control group received the vehicle of DHM and gentamicin. Histopathological examinations, biochemical measurements and immunohistochemical analyses were done at the end of the study. KEY FINDINGS Treatment with DHM improved the gentamicin induced deterioration of renal functions; serum levels of urea, creatinine and cystatin-C as well as urinary levels of Kim-1 and NGAL, the sensitive indicators for early renal damage, were declined. Additionally, DHM abrogated gentamicin-induced changes in kidney morphology. These nephroprotective effects were possibly mediated via decreasing renal gentamicin buildup, activating the antioxidant enzymes GSH, SOD and CAT and decreasing lipid peroxidation and nitric oxide levels. Further, DHM suppressed renal inflammation and apoptotic cell death by decreasing the expression of nuclear factor-kappa B (NF-κB), TNF-alpha and caspase-3. These effects were correlated to the upregulation of renal SIRT3 expression. Also, DHM activated the regeneration and replacement of injured tubular cells with new ones via enhancing PAX2 expression. SIGNIFICANCE DHM is a promising therapeutic target that could prevent acute renal injury induced by gentamicin and help renal tubular cells to recover through its antioxidant, anti-inflammatory and antiapoptotic properties.
Collapse
Affiliation(s)
- Asmaa I Matouk
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Eman M Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amr A K Mousa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Sara M N Abdelhafez
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Usama A Fahmy
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A El-Moselhy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt; Clinical Pharmacy and Pharmacology Department, Ibn Sina National College for Medical Studies, Jeddah 21589, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aliaa Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
3
|
Mally A, Jarzina S. Mapping Adverse Outcome Pathways for Kidney Injury as a Basis for the Development of Mechanism-Based Animal-Sparing Approaches to Assessment of Nephrotoxicity. FRONTIERS IN TOXICOLOGY 2022; 4:863643. [PMID: 35785263 PMCID: PMC9242087 DOI: 10.3389/ftox.2022.863643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
In line with recent OECD activities on the use of AOPs in developing Integrated Approaches to Testing and Assessment (IATAs), it is expected that systematic mapping of AOPs leading to systemic toxicity may provide a mechanistic framework for the development and implementation of mechanism-based in vitro endpoints. These may form part of an integrated testing strategy to reduce the need for repeated dose toxicity studies. Focusing on kidney and in particular the proximal tubule epithelium as a key target site of chemical-induced injury, the overall aim of this work is to contribute to building a network of AOPs leading to nephrotoxicity. Current mechanistic understanding of kidney injury initiated by 1) inhibition of mitochondrial DNA polymerase γ (mtDNA Polγ), 2) receptor mediated endocytosis and lysosomal overload, and 3) covalent protein binding, which all present fairly well established, common mechanisms by which certain chemicals or drugs may cause nephrotoxicity, is presented and systematically captured in a formal description of AOPs in line with the OECD AOP development programme and in accordance with the harmonized terminology provided by the Collaborative Adverse Outcome Pathway Wiki. The relative level of confidence in the established AOPs is assessed based on evolved Bradford-Hill weight of evidence considerations of biological plausibility, essentiality and empirical support (temporal and dose-response concordance).
Collapse
|
4
|
Mohamed HZE, Shenouda MBK. Amelioration of renal cortex histological alterations by aqueous garlic extract in gentamicin induced renal toxicity in albino rats: a histological and immunohistochemical study. ALEXANDRIA JOURNAL OF MEDICINE 2021. [DOI: 10.1080/20905068.2020.1871179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Hala ZE Mohamed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Merry BK Shenouda
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Jado JC, Humanes B, González-Nicolás MÁ, Camaño S, Lara JM, López B, Cercenado E, García-Bordas J, Tejedor A, Lázaro A. Nephroprotective Effect of Cilastatin against Gentamicin-Induced Renal Injury In Vitro and In Vivo without Altering Its Bactericidal Efficiency. Antioxidants (Basel) 2020; 9:antiox9090821. [PMID: 32899204 PMCID: PMC7555100 DOI: 10.3390/antiox9090821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Gentamicin is a used antibiotic that causes nephrotoxicity in 10-20% of treatment periods, which limits its use considerably. Our results have shown that cilastatin may be a promising therapeutic alternative in toxin-induced acute kidney injury (AKI). Here, we investigated its potential use as a nephroprotector against gentamicin-induced AKI in vitro and in vivo. Porcine renal cells and rats were treated with gentamicin and/or cilastatin. In vivo nephrotoxicity was analyzed by measuring biochemical markers and renal morphology. Different apoptotic, oxidative and inflammatory parameters were studied at cellular and systemic levels. Megalin, mainly responsible for the entry of gentamicin into the cells, was also analyzed. Results show that cilastatin protects cells from gentamicin-induced AKI. Cilastatin decreased creatinine, BUN, kidney injury molecule-1 (KIM-1) and severe morphological changes previously increased by gentamicin in rats. The interference of cilastatin with lipid rafts cycling leads to decreased expression of megalin, and therefore gentamicin uptake and myeloid bodies, resulting in a decrease of apoptotic, oxidative and inflammatory events. Moreover, cilastatin did not prevent bacterial death by gentamicin. Cilastatin reduced gentamicin-induced AKI by preventing key steps in the amplification of the damage, which is associated to the disruption of megalin-gentamicin endocytosis. Therefore, cilastatin might represent a novel therapeutic tool in the prevention and treatment of gentamicin-induced AKI in the clinical setting.
Collapse
Affiliation(s)
- Juan Carlos Jado
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
| | - Blanca Humanes
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
| | - María Ángeles González-Nicolás
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
- Department of Medicine, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Sonia Camaño
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
| | - José Manuel Lara
- Department of Pathology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.M.L.); (B.L.); (J.G.-B.)
| | - Beatriz López
- Department of Pathology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.M.L.); (B.L.); (J.G.-B.)
| | - Emilia Cercenado
- Department of Microbiology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain;
| | - Julio García-Bordas
- Department of Pathology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.M.L.); (B.L.); (J.G.-B.)
| | - Alberto Tejedor
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
- Department of Medicine, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Alberto Lázaro
- Renal Physiopathology Laboratory, Department of Nephrology, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.C.J.); (B.H.); (M.Á.G.-N.); (S.C.); (A.T.)
- Department of Physiology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-914265145
| |
Collapse
|
6
|
Karimi Z, Pakfetrat Z, Roozbeh J, Janfeshan S. Toll‐like receptor‐2 mediates systemic inflammation in gentamicin‐induced rat nephrotoxicity. Clin Exp Pharmacol Physiol 2020; 47:1584-1590. [DOI: 10.1111/1440-1681.13334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Zeinab Karimi
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Zahra Pakfetrat
- Department of Biology Arsanjan Branch Islamic Azad University Arsanjan Iran
| | - Jamshid Roozbeh
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Sahar Janfeshan
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
7
|
Skálová S. The Diagnostic Role of Urinary N-Acetyl-β-D-glucosaminidase (NAG) Activity in the Detection of Renal Tubular Impairment. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.35] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The kidney function can be assessed by a number of methods. The urinary excretion of enzymes, in particular N-acetyl-β-D-glucosaminidase (NAG), is considered a relatively simple, cheap, fast and non-invasive method in the detection and follow-up of renal tubular function under various conditions. The determination of urinary NAG provides a very sensitive and reliable indicator of renal damage, such as injury or dysfunction due to diabetes mellitus, nephrotic syndrome, inflammation, vesicoureteral reflux, urinary tract infection, hypercalciuria, urolithiasis, nephrocalcinosis, perinatal asphyxia, hypoxia, hypertension, heavy metals poisoning, treatment with aminoglycosides, valproate, or other nephrotoxic drugs. This paper gives an overview of the current use of urinary NAG in the detection of renal injury.
Collapse
|
8
|
Abd-Elhamid TH, Elgamal DA, Ali SS, Ali FEM, Hassanein EHM, El-Shoura EAM, Hemeida RAM. Reno-protective effects of ursodeoxycholic acid against gentamicin-induced nephrotoxicity through modulation of NF-κB, eNOS and caspase-3 expressions. Cell Tissue Res 2018; 374:367-387. [PMID: 30078101 DOI: 10.1007/s00441-018-2886-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Gentamicin (GNT) is a potent aminoglycoside antibiotic widely used to treat life-threatening bacterial infections. We aim to investigate the potential protective effect of ursodeoxycholic acid (UDCA) against GNT-induced nephrotoxicity. In this study, 24 male Wistar rats were used and randomly divided into four groups of six animals each. Control group received 0.5% carboxymethyl cellulose orally for 15 days, GNT group received GNT 100 mg/kg/day i.p. for 8 days, UDCA group received UDCA orally for 15 consecutive days at a dose of 60 mg/kg/day suspended in 0.5% carboxymethyl cellulose and UDCA-pretreated group received UDCA orally for 7 days then co-administered with GNT i.p. for 8 days at the same fore-mentioned doses. Serum levels of kidney function parameters (urea, creatinine, uric acid and albumin) were measured. Renal tissues were used to evaluate oxidative stress markers; malonaldehyde (MDA), reduced glutathione (GSH) and the anti-oxidant enzyme superoxide dismutase (SOD) activities and nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and kidney injury molecule-1 (KIM-1) mRNA levels. Immunohistochemical expression of endothelial nitric oxide synthase (eNOS) and caspase-3 and histological and ultrastructural examination were performed. Treatment with GNT increased the serum levels of renal function parameters and renal MDA, NF-κB and KIM-1 mRNA levels, while it decreased GSH and SOD activities. Marked immunohistochemical expression of caspase-3 was observed after GNT administration while it decreased eNOS expression. Histological and ultrastructural alterations were also evident in renal corpuscles and tubules. In contrast, pretreatment with UDCA reversed changes caused by GNT administration. These results suggest that UDCA ameliorates GNT-induced kidney injury via inhibition of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Dalia A Elgamal
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Safaa S Ali
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ehab A M El-Shoura
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
9
|
Li ZD, Luo J, Jia LH, Wang XY, Xun ZK, Liu M. Cytochrome C suppresses renal accumulation and nephrotoxicity of polymyxin B. Hum Exp Toxicol 2018; 38:193-200. [PMID: 30016892 DOI: 10.1177/0960327118783543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The receptor megalin plays an important role in the accumulation of polymyxin B (PMB) in renal cells in vitro. This study aimed to examine the effects of cytochrome c (cyto c), a typical megalin ligand, on renal accumulation and nephrotoxicity of PMB in vivo. Thirty Sprague-Dawley rats were randomly divided into the vehicle control group, PMB group, PMB + cyto c 50, 100, or 200 mg/kg group, respectively, and were treated with intravenous cyto c 30 min before the administration of PMB 4.0 mg/kg once a day for consecutive 5 days. On the 4th day after administration, 24 h urine was collected to determine N-acetyl-β-D-glucosaminidase excretion. Six hours after the last injection on the 5th day, kidneys were harvested to assay PMB concentration and observe pathological alterations, and blood samples were collected to assay serum creatinine (SCr), blood urea nitrogen (BUN), and blood β2-microglobulin (β2-MG) levels. Cyto c 50, 100, and 200 mg/kg decreased the accumulation of PMB in the kidney by 18.5%, 39.1% ( p < 0.01), and 36.8% ( p < 0.01), respectively, and reduced 24 h N-acetyl-β-D- glucosaminidase excretion by 22.5% ( p < 0.05), 40.4% ( p < 0.01), and 40.4% ( p < 0.01), respectively. Kidney pathological damage induced by PMB was markedly reduced by cyto c 100 mg/kg and 200 mg/kg. However, there were no significant differences in SCr, BUN, and blood β2-MG levels among the groups. These results indicated that cyto c may inhibit the renal accumulation and nephrotoxicity of PMB in a rat model, further proving the role of megalin in the accumulation of PMB.
Collapse
Affiliation(s)
- Z-D Li
- 1 Department of Pharmacy, Electric Power Teaching Hospital, Capital Medical University, Beijing, China.,2 Department of Pharmacy, Clinical School of Air Force, Anhui Medical University, Hefei, China
| | - J Luo
- 2 Department of Pharmacy, Clinical School of Air Force, Anhui Medical University, Hefei, China
| | - L-H Jia
- 1 Department of Pharmacy, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - X-Y Wang
- 1 Department of Pharmacy, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - Z-K Xun
- 1 Department of Pharmacy, Electric Power Teaching Hospital, Capital Medical University, Beijing, China
| | - M Liu
- 3 Department of pharmacy, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Ahmadi Z, Verma G, Jha D, Gautam HK, Kumar P. Evaluation of antimicrobial activity and cytotoxicity of pegylated aminoglycosides. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517739318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zeba Ahmadi
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Geeta Verma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Diksha Jha
- Microbial Technology Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Hemant Kumar Gautam
- Microbial Technology Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| |
Collapse
|
11
|
McWilliam SJ, Antoine DJ, Smyth RL, Pirmohamed M. Aminoglycoside-induced nephrotoxicity in children. Pediatr Nephrol 2017; 32:2015-2025. [PMID: 27848094 PMCID: PMC5624973 DOI: 10.1007/s00467-016-3533-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023]
Abstract
Aminoglycoside antibiotics, in particular gentamicin and tobramycin, are still commonly used in paediatric clinical practice. These drugs cause nephrotoxicity, which particularly affects the proximal tubule epithelial cells due to selective endocytosis and accumulation of aminoglycosides via the multi-ligand receptor megalin. Recent epidemiological studies, using more widely accepted definitions of acute kidney injury (AKI), have suggested that AKI may occur in between 20 and 33 % of children exposed to aminoglycosides. A consensus set of phenotypic criteria for aminoglycoside-induced nephrotoxicity have recently been published. These are specifically designed to provide robust phenotyping for pharmacogenomic studies, but they can pave the way for standardisation for all clinical studies. Novel renal biomarkers, in particular kidney injury molecule-1, identify aminoglycoside-induced proximal tubular injury earlier than traditional markers and have shown promise in observational studies. Further studies need to demonstrate a clear association with clinically relevant outcomes to inform translation into clinical practice. Extended interval dosing of aminoglycosides results in a reduction in nephrotoxicity, but its use needs to become more widespread. Inhibition of megalin-mediated endocytosis by statins represents a novel approach to the prevention of aminoglycoside-induced nephrotoxicity which is currently being evaluated in a clinical trial. Recommendations for future directions are provided.
Collapse
Affiliation(s)
- Stephen J McWilliam
- Department of Women's and Children's Health, University of Liverpool, Liverpool, UK.
| | - Daniel J Antoine
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Rosalind L Smyth
- Institute of Child Health, University College London, London, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Selim A, khalaf MM, Gad AM, Abd El-Raouf OM. Evaluation of the possible nephroprotective effects of vitamin E and rosuvastatin in amikacin-induced renal injury in rats. J Biochem Mol Toxicol 2017; 31. [PMID: 28683192 DOI: 10.1002/jbt.21957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/02/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Ahmed Selim
- Department of Pharmacology; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| | - Marwa M. khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy; Beni-Suef University; Beni-Suef Egypt
| | - Amany M. Gad
- Department of Pharmacology; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| | - Ola M. Abd El-Raouf
- Department of Pharmacology; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| |
Collapse
|
13
|
Endocytic receptor LRP2/megalin—of holoprosencephaly and renal Fanconi syndrome. Pflugers Arch 2017; 469:907-916. [DOI: 10.1007/s00424-017-1992-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022]
|
14
|
Gajjar KK, Aiwale AS, P. Anovadiya A, Mevada AV, Baxi SN, Tripathi CB. Evaluation of Nephroprotective Effects of Hydroalcoholic Extract of Cyperus scariosus Linn. in Gentamicin-induced Acute Kidney Injury in Wistar Albino Rats. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-34452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Dontabhaktuni A, Taft DR, Patel M. Gentamicin Renal Excretion in Rats: Probing Strategies to Mitigate Drug-Induced Nephrotoxicity. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/pp.2016.71007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Risk factors for acute kidney injury during aminoglycoside therapy in patients with cystic fibrosis. Pediatr Nephrol 2015; 30:1879-88. [PMID: 25912993 PMCID: PMC4576343 DOI: 10.1007/s00467-015-3097-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Aminoglycoside (AG) therapy is a common cause of acute kidney injury (AKI) in cystic fibrosis (CF) patients. The aim of this study was to identify factors associated with AKI during intravenous AG courses in this population. METHODS This was a matched case-control study utilizing two independent cohorts of hospitalized CF patients receiving ≥ 3 days of intravenous AG at Cincinnati Children's Hospital Medical Center and Children's of Alabama. All admissions with AKI (cases, N = 82) were matched to two randomly selected admissions without AKI (controls, N = 164) by center, gender, and age ±3 years of the case. AKI was defined as a 1.5-fold increase in the baseline serum creatinine (SCr) level or by an increase in SCr level of 0.3 mg/dL within 48 h. Admissions with AKI before day 4 or without at least weekly SCr monitoring were excluded from the analysis. Factors were compared between cases and controls using simple and multiple conditional logistic regression. RESULTS Multivariable analysis identified receipt of an AG within 90 days prior to admission, longer duration of AG therapy, low serum albumin, and receipt of trimethoprim/sulfamethoxazole as independent risk factors for developing AKI. Infection with Staphylococcus aureus diminished the odds of developing AKI. CONCLUSIONS This study identifies risk factors contributing to AG-associated AKI in CF patients. These findings can be used to anticipate high-risk scenarios and limit AKI in CF patients under clinical care.
Collapse
|
17
|
Akour AA, Kennedy MJ, Gerk PM. The Role of Megalin in the Transport of Gentamicin Across BeWo Cells, an In Vitro Model of the Human Placenta. AAPS JOURNAL 2015; 17:1193-9. [PMID: 25986422 DOI: 10.1208/s12248-015-9778-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/24/2015] [Indexed: 11/30/2022]
Abstract
Aminoglycosides (AG) are known to readily cross the placenta, although the mechanisms responsible for placental transport have not been characterized. Megalin is expressed in human placenta, and it is reasonable to speculate, given its role in renal AG uptake, that it is similarly involved in placental transport. However, the role of megalin in placental AG uptake has not been established. An in vitro model to study megalin-mediated placental transport has also not been previously described. The objectives of this study, therefore, were to evaluate the human choriocarcinoma (BeWo) cell line as a model to study megalin-mediated placental transport and to assess the uptake kinetics of gentamicin, an AG antibiotic, using this in vitro model. BeWo cells were grown on Transwell® plates, and megalin expression and functional activity were assessed. Uptake of (3)H-gentamicin was also evaluated in the presence and absence of megalin inhibitors. Expression of megalin protein and mRNA in BeWo cells were confirmed via immunoblot and qPCR analysis. Uptake of fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (BSA) (a megalin substrate) was time-, concentration-, and temperature-dependent consistent with a transporter-mediated process. FITC-BSA uptake was also significantly reduced in the presence of unlabeled gentamicin (a megalin substrate) and sodium maleate (to induce megalin shedding) suggesting that megalin is functionally active in BeWo cells. Gentamicin uptake exhibited time and temperature dependence, saturability and Michaelis-Menten kinetics, all of which suggest a transporter-mediated process. Gentamicin uptake was also significantly reduced in the presence of the megalin inhibitors RAP and EDTA suggesting that megalin is likely involved in gentamicin uptake.
Collapse
Affiliation(s)
- Amal A Akour
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | |
Collapse
|
18
|
Akour AA, Gerk P, Kennedy MJ. Megalin expression in human term and preterm placental villous tissues: effect of gestational age and sample processing and storage time. J Pharmacol Toxicol Methods 2014; 71:147-54. [PMID: 25304941 DOI: 10.1016/j.vascn.2014.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/03/2014] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The aims of this study were to characterize megalin expression in human term and preterm placental villous tissues and to assess the impact of gestational age and sample storage on receptor expression. METHODS Placental tissue samples were collected from pregnant women undergoing term and preterm Cesarean deliveries. Placental villous tissues were used to quantify megalin protein and mRNA expression by western blotting and quantitative polymerase chain reaction (q-PCR), respectively. Stability of megalin expression was also evaluated under various processing and storage conditions. RESULTS Megalin mRNA was detected in term and preterm placental villous tissues. Expression in early preterm samples was 6-fold higher than in late preterm and term samples. Refrigeration of processed term samples at 4°C for up to 18h had a slight impact on megalin mRNA expression with stored samples exhibiting mRNA levels approximately 1.5-fold lower than those frozen immediately after processing. A greater decrease in mRNA expression (up to 33-fold) was observed when processed samples were snap-frozen immediately and thawed at 4°C. Processing of samples prior to refrigeration also appeared to improve mRNA stability with significantly higher expression levels noted in processed vs. unprocessed samples at all points for up to 48h. DISCUSSION These data suggest that expression of megalin mRNA in term placental villous tissue is relatively stable for up to 18h when samples are processed immediately and refrigerated at 4°C prior to freezing. Processing prior to storage also appears to improve mRNA stability. This paper demonstrates the practical feasibility of analyzing stored tissue samples, thus, it will help with placental mRNA analysis. Additionally, megalin expression appears to vary inversely with gestational age with the greatest expression noted in the most premature samples. Age-dependent differences in placental megalin may therefore influence fetal exposure.
Collapse
Affiliation(s)
- Amal A Akour
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Phillip Gerk
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Mary Jayne Kennedy
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
19
|
Nagai J, Takano M. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways. Biochem Pharmacol 2014; 90:331-7. [PMID: 24881578 DOI: 10.1016/j.bcp.2014.05.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/25/2014] [Accepted: 05/20/2014] [Indexed: 11/18/2022]
Abstract
Aminoglycoside antibiotics such as gentamicin and amikacin are well recognized as a clinically important antibiotic class because of their reliable efficacy and low cost. However, the clinical use of aminoglycosides is limited by their nephrotoxicity and ototoxicity. Nephrotoxicity is induced mainly due to high accumulation of the antibiotics in renal proximal tubular cells. Therefore, a lot of studies on characterization of the renal transport system for aminoglycosides so far reported involved various in-vivo and in-vitro techniques. Early studies revealed that aminoglycosides are taken up through adsorptive endocytosis in renal epithelial cells. Subsequently, it was found that megalin, a multiligand endocytic receptor abundantly expressed on the apical side of renal proximal tubular cells, can bind aminoglycosides and that megalin-mediated endocytosis plays a crucial role in renal accumulation of aminoglycosides. Therefore, megalin has been suggested to be a promising molecular target for the prevention of aminoglycoside-induced nephrotoxicity. On the other hand, recently, some reports have indicated that aminoglycosides are transported via a pathway that does not require endocytosis, such as non-selective cation channel-mediated entry, in cultured renal tubular cells as well as cochlear outer hair cells. In this commentary article, we review the cellular transport of aminoglycosides in renal epithelial cells, focusing on endocytosis-dependent and -independent pathways.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
20
|
Mahadevappa R, Nielsen R, Christensen EI, Birn H. Megalin in acute kidney injury: foe and friend. Am J Physiol Renal Physiol 2013; 306:F147-54. [PMID: 24197071 DOI: 10.1152/ajprenal.00378.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The kidney proximal tubule is a key target in many forms of acute kidney injury (AKI). The multiligand receptor megalin is responsible for the normal proximal tubule uptake of filtered molecules, including nephrotoxins, cytokines, and markers of AKI. By mediating the uptake of nephrotoxins, megalin plays an essential role in the development of some types of AKI. However, megalin also mediates the tubular uptake of molecules implicated in the protection against AKI, and changes in megalin expression have been demonstrated in AKI in animal models. Thus, modulation of megalin expression in response to AKI may be an important part of the tubule cell adaption to cellular protection and regeneration and should be further investigated as a potential target of intervention. This review explores current evidence linking megalin expression and function to the development, diagnosis, and progression of AKI as well as renal protection against AKI.
Collapse
Affiliation(s)
- Ravikiran Mahadevappa
- Dept. of Biomedicine, Aarhus Univ., Wilhelm Meyers Allé 3, Bldg. 1234, Aarhus DK-8000, Denmark.
| | | | | | | |
Collapse
|
21
|
Megalin contributes to kidney accumulation and nephrotoxicity of colistin. Antimicrob Agents Chemother 2013; 57:6319-24. [PMID: 24100504 DOI: 10.1128/aac.00254-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interest has recently been shown again in colistin because of the increased prevalence of infections caused by multidrug-resistant Gram-negative bacteria. Although the potential for nephrotoxicity is a major dose-limiting factor in colistin use, little is known about the mechanisms that underlie colistin-induced nephrotoxicity. In this study, we focused on an endocytosis receptor, megalin, that is expressed in renal proximal tubules, with the aim of clarifying the role of megalin in the kidney accumulation and nephrotoxicity of colistin. We examined the binding of colistin to megalin by using a vesicle assay. The kidney accumulation, urinary excretion, and concentrations in plasma of colistin in megalin-shedding rats were also evaluated. Furthermore, we examined the effect of megalin ligands and a microtubule-depolymerizing agent on colistin-induced nephrotoxicity. We found that cytochrome c, a typical megalin ligand, inhibited the binding of colistin to megalin competitively. In megalin-shedding rats, renal proximal tubule colistin accumulation was decreased (13.5 ± 1.6 and 21.3 ± 2.6 μg in megalin-shedding and control rats, respectively). Coadministration of colistin and cytochrome c or albumin fragments resulted in a significant decrease in urinary N-acetyl-β-d-glucosaminidase (NAG) excretion, a marker of renal tubular damage (717.1 ± 183.9 mU/day for colistin alone, 500.8 ± 102.4 mU/day for cytochrome c with colistin, and 406.7 ± 156.7 mU/day for albumin fragments with colistin). Moreover, coadministration of colistin and colchicine, a microtubule-depolymerizing agent, resulted in a significant decrease in urinary NAG excretion. In conclusion, our results indicate that colistin acts as a megalin ligand and that megalin plays a key role in the accumulation in the kidney and nephrotoxicity of colistin. Megalin ligands may be new targets for the prevention of colistin-induced nephrotoxicity.
Collapse
|
22
|
Akour AA, Kennedy MJ, Gerk P. Receptor-Mediated Endocytosis across Human Placenta: Emphasis on Megalin. Mol Pharm 2013; 10:1269-78. [DOI: 10.1021/mp300609c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Amal A. Akour
- Departments
of Pharmacotherapy and Outcomes Science and Pharmaceutics, School
of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Mary Jayne Kennedy
- Departments
of Pharmacotherapy and Outcomes Science and Pharmaceutics, School
of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Phillip Gerk
- Departments
of Pharmacotherapy and Outcomes Science and Pharmaceutics, School
of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
23
|
Dagil R, O'Shea C, Nykjær A, Bonvin AMJJ, Kragelund BB. Gentamicin binds to the megalin receptor as a competitive inhibitor using the common ligand binding motif of complement type repeats: insight from the nmr structure of the 10th complement type repeat domain alone and in complex with gentamicin. J Biol Chem 2012; 288:4424-35. [PMID: 23275343 DOI: 10.1074/jbc.m112.434159] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gentamicin is an aminoglycoside widely used in treatments of, in particular, enterococcal, mycobacterial, and severe Gram-negative bacterial infections. Large doses of gentamicin cause nephrotoxicity and ototoxicity, entering the cell via the receptor megalin. Until now, no structural information has been available to describe the interaction with gentamicin in atomic detail, and neither have any three-dimensional structures of domains from the human megalin receptor been solved. To address this gap in our knowledge, we have solved the NMR structure of the 10th complement type repeat of human megalin and investigated its interaction with gentamicin. Using NMR titration data in HADDOCK, we have generated a three-dimensional model describing the complex between megalin and gentamicin. Gentamicin binds to megalin with low affinity and exploits the common ligand binding motif previously described (Jensen, G. A., Andersen, O. M., Bonvin, A. M., Bjerrum-Bohr, I., Etzerodt, M., Thogersen, H. C., O'Shea, C., Poulsen, F. M., and Kragelund, B. B. (2006) J. Mol. Biol. 362, 700-716) utilizing the indole side chain of Trp-1126 and the negatively charged residues Asp-1129, Asp-1131, and Asp-1133. Binding to megalin is highly similar to gentamicin binding to calreticulin. We discuss the impact of this novel insight for the future structure-based design of gentamicin antagonists.
Collapse
Affiliation(s)
- Robert Dagil
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
24
|
Nagai J, Komeda T, Yumoto R, Takano M. Effect of protamine on the accumulation of gentamicin in opossum kidney epithelial cells. J Pharm Pharmacol 2012; 65:441-6. [DOI: 10.1111/jphp.12005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/11/2012] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
The purpose of this study was to examine whether or not protamine, an arginine-rich basic protein mixture, inhibits the accumulation of gentamicin, a nephrotoxic drug, in cultured opossum kidney (OK) epithelial cells.
Methods
The effect of protamine from salmon on accumulation and binding of [3H]gentamicin was investigated in OK cells.
Key findings
Protamine inhibited the binding and accumulation of [3H]gentamicin in a concentration-dependent manner. The accumulation of [14C]inulin, a marker of fluid-phase endocytosis, was not affected by protamine at concentrations up to 1 mm. l-Arginine at concentrations up to 10 mm had no significant effect on the accumulation of [3H]gentamicin. On the other hand, preincubation with 100 μm protamine for 5 min decreased the accumulation of [3H]gentamicin to almost the same extent as coincubation with 100 μm protamine for 60 min.
Conclusions
Our results indicate that protamine decreases the accumulation of gentamicin in OK cells. These findings suggest that protamine or its derivatives might be useful in preventing the nephrotoxicity of aminoglycoside antibiotics including gentamicin.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuji Komeda
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
25
|
Christensen EI, Birn H, Storm T, Weyer K, Nielsen R. Endocytic Receptors in the Renal Proximal Tubule. Physiology (Bethesda) 2012; 27:223-36. [DOI: 10.1152/physiol.00022.2012] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein reabsorption is a predominant feature of the renal proximal tubule. Animal studies show that the ability to rescue plasma proteins relies on the endocytic receptors megalin and cubilin. Recently, studies of patients with syndromes caused by dysfunctional receptors have supported the importance of these for protein clearance of human ultrafiltrate. This review focuses on the molecular biology and physiology of the receptors and their involvement in renal pathological conditions.
Collapse
Affiliation(s)
- Erik I. Christensen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Henrik Birn
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Tina Storm
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Sawada T, Nagai J, Okada Y, Yumoto R, Takano M. Gadolinium modulates gentamicin uptake via an endocytosis-independent pathway in HK-2 human renal proximal tubular cell line. Eur J Pharmacol 2012; 684:146-53. [DOI: 10.1016/j.ejphar.2012.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 03/09/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
|
27
|
Khan W, Sharma SS, Kumar N. Bioanalytical method development, pharmacokinetics, and toxicity studies of paromomycin and paromomycin loaded in albumin microspheres. Drug Test Anal 2012; 5:453-60. [DOI: 10.1002/dta.339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 07/09/2011] [Accepted: 07/09/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Wahid Khan
- Department of Pharmaceutics; National Institute of Pharmaceutical Education & Research (NIPER); S.A.S.; Nagar; India
| | - Shyam S. Sharma
- Department of Pharmacology and Toxicology; NIPER; S.A.S.; Nagar; India
| | - Neeraj Kumar
- Department of Pharmaceutics; National Institute of Pharmaceutical Education & Research (NIPER); S.A.S.; Nagar; India
| |
Collapse
|
28
|
|
29
|
|
30
|
Efficacy, nephrotoxicity and ototoxicity of aminoglycosides, mathematically modelled for modelling-supported therapeutic drug monitoring. Eur J Pharm Sci 2012; 45:90-100. [DOI: 10.1016/j.ejps.2011.10.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 08/22/2011] [Accepted: 10/28/2011] [Indexed: 11/20/2022]
|
31
|
Oda K, Yumoto R, Nagai J, Katayama H, Takano M. Mechanism underlying insulin uptake in alveolar epithelial cell line RLE-6TN. Eur J Pharmacol 2011; 672:62-9. [PMID: 22004610 DOI: 10.1016/j.ejphar.2011.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 10/16/2022]
Abstract
For the development of efficient pulmonary delivery systems for protein and peptide drugs, it is important to understand their transport mechanisms in alveolar epithelial cells. In this study, the uptake mechanism for FITC-insulin in cultured alveolar epithelial cell line RLE-6TN was elucidated. FITC-insulin uptake by RLE-6TN cells was time-dependent, temperature-sensitive, and concentration-dependent. The uptake was inhibited by metabolic inhibitors, cytochalasin D, clathrin-mediated endocytosis inhibitors, and dynasore, an inhibitor of dynamin GTPase. On the other hand, no inhibitory effect was observed with caveolae-mediated endocytosis inhibitors and a macropinocytosis inhibitor. Intracellular FITC-insulin was found to be partly transported to the basal side of the epithelial cell monolayers. In addition, colocalization of FITC-insulin and LysoTracker Red was observed on confocal laser scanning microscopy, indicating that FITC-insulin was partly targeted to lysosomes. In accordance with these findings, SDS-PAGE/fluoroimage analysis showed that intact FITC-insulin in the cells was eliminated with time. The possible receptor involved in FITC-insulin uptake by RLE-6TN cells was examined by using siRNA. Transfection of the cells with megalin or insulin receptor siRNA successfully reduced the corresponding mRNA expression. FITC-insulin uptake decreased on the transfection with insulin receptor siRNA, but not that with megalin siRNA. These results suggest that insulin is taken up through endocytosis in RLE-6TN cells, and after the endocytosis, the intracellular insulin is partly degraded in lysosomes and partly transported to the basal side. Insulin receptor, but not megalin, may be involved at least partly in insulin endocytosis in RLE-6TN cells.
Collapse
Affiliation(s)
- Keisuke Oda
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | |
Collapse
|
32
|
Nagai J, Sato K, Yumoto R, Takano M. Megalin/cubilin-mediated uptake of FITC-labeled IgG by OK kidney epithelial cells. Drug Metab Pharmacokinet 2011; 26:474-85. [PMID: 21712611 DOI: 10.2133/dmpk.dmpk-11-rg-022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this paper, we characterize the uptake mechanism of fluorescein isothiocyanate-labeled human immunoglobulin G (FITC-hIgG) in opossum kidney (OK) epithelial cells, which have been shown to express megalin and cubilin. Confocal immunofluorescence microscopy showed the punctate expression of the neonatal Fc receptor FcRn in the cytoplasm, but not on the cell surface membrane. Temperature- and energy-dependent uptake of FITC-hIgG was observed at pH 7.4 but not at pH 6.0, indicating that the internalization of FITC-hIgG might not be due to FcRn, which has a binding affinity for IgG under acidic conditions. Under physiological pH conditions, human and bovine serum γ-globulin decreased FITC-hIgG uptake in a concentration-dependent manner. In addition, FITC-hIgG uptake was inhibited by various megalin and/or cubilin ligands including albumin, cytochrome c, transferrin and gentamicin. Endosomal acidification inhibitors (bafilomycin A(1) and chloroquine) significantly decreased the uptake of FITC-hIgG. Clathrin-dependent endocytosis inhibitors (phenylarsine oxide and chlorpromazine) decreased FITC-hIgG uptake. Potassium depletion and hypertonicity, conditions known to inhibit clathrin-dependent endocytosis, also decreased FITC-hIgG uptake. In contrast, caveolin-dependent endocytosis inhibitors (nystatin and methyl-β-cyclodextrin) did not decrease, but rather increased the uptake of FITC-hIgG. These observations suggest that the internalization of FITC-hIgG in OK cells might be, at least in part, due to megalin/cubilin-mediated, clathrin-dependent endocytosis.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | | | | | |
Collapse
|
33
|
Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez FJ. New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 2010; 79:33-45. [PMID: 20861826 DOI: 10.1038/ki.2010.337] [Citation(s) in RCA: 414] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nephrotoxicity is one of the most important side effects and therapeutical limitations of aminoglycoside antibiotics, especially gentamicin. Despite rigorous patient monitoring, nephrotoxicity appears in 10-25% of therapeutic courses. Traditionally, aminoglycoside nephrotoxicity has been considered to result mainly from tubular damage. Both lethal and sub-lethal alterations in tubular cells handicap reabsorption and, in severe cases, may lead to a significant tubular obstruction. However, a reduced glomerular filtration is necessary to explain the symptoms of the disease. Reduced filtration is not solely the result of tubular obstruction and tubular malfunction, resulting in tubuloglomerular feedback activation; renal vasoconstriction and mesangial contraction are also crucial to fully explain aminoglycoside nephrotoxicity. This review critically presents an integrative view on the interactions of tubular, glomerular, and vascular effects of gentamicin, in the context of the most recent information available. Moreover, it discusses therapeutic perspectives for prevention of aminoglycoside nephrotoxicity derived from the pathophysiological knowledge.
Collapse
Affiliation(s)
- Jose M Lopez-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | |
Collapse
|
34
|
Nagai J, Takano M. Molecular-targeted approaches to reduce renal accumulation of nephrotoxic drugs. Expert Opin Drug Metab Toxicol 2010; 6:1125-38. [DOI: 10.1517/17425255.2010.497140] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Georgiev GD, Georgiev GA, Lalchev Z. Interaction of gentamicin with phosphatidylserine/phosphatidylcholine mixtures in adsorption monolayers and thin liquid films: morphology and thermodynamic properties. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 39:1301-12. [DOI: 10.1007/s00249-010-0583-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/09/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
|
36
|
Yokooji T, Murakami T, Yumoto R, Nagai J, Takano M. Site-specific bidirectional efflux of 2,4-dinitrophenyl-S-glutathione, a substrate of multidrug resistance-associated proteins, in rat intestine and Caco-2 cells. J Pharm Pharmacol 2010; 59:513-20. [PMID: 17430634 DOI: 10.1211/jpp.59.4.0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
The site-specific function of multidrug-resistance-associated proteins (MRPs), especially MRP2 and MRP3, was examined in rat intestine and human colon adenocarcinoma (Caco-2) cells. The MRP function was evaluated pharmacokinetically by measuring the efflux transport of 2,4-dinitrophenyl-S-glutathione (DNP-SG), an MRP substrate, after application of 1-chloro-2,4-dinitrobenzene (CDNB), a precursor of DNP-SG. The expression of rat and human MRP2 and MRP3 was analysed by Western blotting. The rat jejunum exhibited a higher apical MRP2 and a lower basolateral MRP3 expression than ileum. In accordance with the expression level, DNP-SG efflux to the mucosal surface was significantly greater in jejunum, while serosal efflux was greater in ileum. Site-specific bidirectional efflux of DNP-SG was also observed in in-vivo studies, in which portal and femoral plasma levels and biliary excretion rate of DNP-SG were significantly higher when CDNB was administered to ileum. Caco-2 cells also showed a bidirectional efflux of DNP-SG. Probenecid, an MRP inhibitor, significantly suppressed the mucosal efflux in jejunum and serosal efflux in ileum. In contrast, probenecid significantly suppressed both apical and basolateral efflux of DNP-SG in Caco-2 cells, though the inhibition was of small magnitude. In conclusion, the efflux of DNP-SG from enterocytes mediated by MRPs exhibited a significant regional difference in rat intestine, indicating possible variability in intestinal bioavailabilities of MRP substrates, depending on their absorption sites along the intestine.
Collapse
Affiliation(s)
- Tomoharu Yokooji
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
37
|
Statins inhibit aminoglycoside accumulation and cytotoxicity to renal proximal tubule cells. Biochem Pharmacol 2010; 79:647-54. [DOI: 10.1016/j.bcp.2009.09.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 11/23/2022]
|
38
|
Fujii K, Nagai J, Sawada T, Yumoto R, Takano M. Effect of PEGylation of N-WASP181-200 on the Inhibitory Potency for Renal Aminoglycoside Accumulation. Bioconjug Chem 2009; 20:1553-8. [DOI: 10.1021/bc900094g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenji Fujii
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takeshi Sawada
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryoko Yumoto
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Mikihisa Takano
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
39
|
Zietse R, Zoutendijk R, Hoorn EJ. Fluid, electrolyte and acid–base disorders associated with antibiotic therapy. Nat Rev Nephrol 2009; 5:193-202. [DOI: 10.1038/nrneph.2009.17] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Guerin K, Gregory-Evans C, Hodges M, Moosajee M, Mackay D, Gregory-Evans K, Flannery JG. Systemic aminoglycoside treatment in rodent models of retinitis pigmentosa. Exp Eye Res 2008; 87:197-207. [DOI: 10.1016/j.exer.2008.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/22/2008] [Accepted: 05/25/2008] [Indexed: 11/27/2022]
|
41
|
Azimov R, Abuladze N, Sassani P, Newman D, Kao L, Liu W, Orozco N, Ruchala P, Pushkin A, Kurtz I. G418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis. Am J Physiol Renal Physiol 2008; 295:F633-41. [PMID: 18614622 DOI: 10.1152/ajprenal.00015.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal recessive proximal renal tubular acidosis is caused by mutations in the SLC4A4 gene encoding the electrogenic sodium bicarbonate cotransporter NBCe1-A. The mutations that have been characterized thus far result in premature truncation, mistargeting, or decreased function of the cotransporter. Despite bicarbonate treatment to correct the metabolic acidosis, extrarenal manifestations persist, including glaucoma, cataracts, corneal opacification, and mental retardation. Currently, there are no known therapeutic approaches that can specifically target mutant NBCe1-A proteins. In the present study, we tested the hypothesis that the NBCe1-A-Q29X mutation can be rescued in vitro by treatment with aminoglycoside antibiotics, which are known for their ability to suppress premature stop codons. As a model system, we cloned the NBCe1-A-Q29X mutant into a vector lacking an aminoglycoside resistance gene and transfected the mutant cotransporter in HEK293-H cells. Cells transfected with the NBCe1-A-Q29X mutant failed to express the cotransporter because of the premature stop codon. Treatment of the cells with G418 significantly increased the expression of the full-length cotransporter, as assessed by immunoblot analysis. Furthermore, immunocytochemical studies demonstrated that G418 treatment induced cotransporter expression on the plasma membrane whereas in the absence of G418, NBCe1-A-Q29X was not expressed. In HEK293-H cells transfected with the NBCe1-A-Q29X mutant not treated with G418, NBCe1-A-mediated flux was not detectable. In contrast, in cells transfected with the NBCe1-A-Q29X mutant, G418 treatment induced Na(+)- and HCO(3)(-)-dependent transport that did not differ from wild-type NBCe1-A function. G418 treatment in mock-transfected cells was without effect. In conclusion, G418 induces ribosomal read-through of the NBCe1-A-Q29X mutation in HEK293-H cells. These findings represent the first evidence that in the presence of the NBCe1-A-Q29X mutation that causes proximal renal tubular acidosis, full-length functional NBCe1-A protein can be produced. Our results provide the first demonstration of a mutation in NBCe1-A that has been treated in a targeted and specific manner.
Collapse
Affiliation(s)
- Rustam Azimov
- Division of Nephrology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hainrichson M, Nudelman I, Baasov T. Designer aminoglycosides: the race to develop improved antibiotics and compounds for the treatment of human genetic diseases. Org Biomol Chem 2007; 6:227-39. [PMID: 18174989 DOI: 10.1039/b712690p] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminoglycosides are highly potent, broad-spectrum antibiotics that exert their bactericidal therapeutic effect by selectively binding to the decoding aminoacyl site (A-site) of the bacterial 16 S rRNA, thereby interfering with translational fidelity during protein synthesis. The appearance of bacterial strains resistant to these drugs, as well as their relative toxicity, have inspired extensive searches towards the goal of obtaining novel molecular designs with improved antibacterial activity and reduced toxicity. In the last few years, a new, aminoglycoside dependent therapeutic approach for the treatment of certain human genetic diseases has been identified. These treatments rely on the ability of certain aminoglycosides to induce mammalian ribosomes to readthrough premature stop codon mutations. This new and challenging task has introduced fresh research avenues in the field of aminoglycoside research. Recent observations and current challenges in the design of aminoglycosides with improved antibacterial activity and the treatment of human genetic diseases are discussed.
Collapse
Affiliation(s)
- Mariana Hainrichson
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
43
|
Martínez-Salgado C, López-Hernández FJ, López-Novoa JM. Glomerular nephrotoxicity of aminoglycosides. Toxicol Appl Pharmacol 2007; 223:86-98. [PMID: 17602717 DOI: 10.1016/j.taap.2007.05.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/17/2007] [Accepted: 05/10/2007] [Indexed: 11/23/2022]
Abstract
Aminoglycoside antibiotics are the most commonly used antibiotics worldwide in the treatment of Gram-negative bacterial infections. However, aminoglycosides induce nephrotoxicity in 10-20% of therapeutic courses. Aminoglycoside-induced nephrotoxicity is characterized by slow rises in serum creatinine, tubular necrosis and marked decreases in glomerular filtration rate and in the ultrafiltration coefficient. Regulation of the ultrafiltration coefficient depends on the activity of intraglomerular mesangial cells. The mechanisms responsible for tubular nephrotoxicity of aminoglycosides have been intensively reviewed previously, but glomerular toxicity has received less attention. The purpose of this review is to critically assess the published literature regarding the toxic mechanisms of action of aminoglycosides on renal glomeruli and mesangial cells. The main goal of this review is to provide an actualized and mechanistic vision of pathways involved in glomerular toxic effects of aminoglycosides.
Collapse
Affiliation(s)
- Carlos Martínez-Salgado
- Unidad de Investigación, Hospital Universitario de Salamanca, Paseo San Vicente 58-182, 37007 Salamanca, Spain.
| | | | | |
Collapse
|
44
|
Nagai J, Saito M, Adachi Y, Yumoto R, Takano M. Inhibition of gentamicin binding to rat renal brush-border membrane by megalin ligands and basic peptides. J Control Release 2006; 112:43-50. [PMID: 16488503 DOI: 10.1016/j.jconrel.2006.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 11/09/2005] [Accepted: 01/13/2006] [Indexed: 10/25/2022]
Abstract
Our previous studies showed that coadministration of cytochrome c and a 20-residue basic peptide, N-WASP181-200 (NISHTKEKKKGKAKKKRLTK, pI=10.87) inhibits renal accumulation of gentamicin. In this study, we examined effects of ligands of megalin, an endocytic receptor involved in renal uptake of gentamicin, and basic peptides including N-WASP180-200 and its mutant peptides on gentamicin binding to isolated rat renal brush-border membrane (BBM). Gentamicin binding to BBM was inhibited by megalin ligands, basic peptide fragments of cytochrome c, and N-WASP181-200 in a concentration-dependent manner. Klotz plot analysis showed that N-WASP181-200 inhibited the binding of gentamicin in a competitive manner. By substituting glycines for lysines in N-WASP181-200 at positions 9 and 15, the inhibitory effect on gentamicin binding to BBM was reduced, which may be related to a decrease in the alpha-helix content in the peptide. Gentamicin binding to BBM treated with trypsin, in which megalin completely disappeared, was significantly but not completely decreased compared with the native BBM. In addition, treatment of BBM with trypsin led to a decrease in the inhibitory effect of N-WASP181-200 on gentamicin binding. These observations support that megalin ligands and basic peptides including N-WASP181-200 decrease renal accumulation of gentamicin by inhibiting its binding to BBM of proximal tubule cells, partly interacting with megalin. In addition, the alpha-helix conformation may play an important role in the inhibitory effect of N-WASP181-200 on the binding of gentamicin to BBM.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | |
Collapse
|
45
|
Nagai J. Molecular Mechanisms Underlying Renal Accumulation of Aminoglycoside Antibiotics and Mechanism-based Approach for Developing Nonnephrotoxic Aminoglycoside Therapy. YAKUGAKU ZASSHI 2006; 126:327-35. [PMID: 16679740 DOI: 10.1248/yakushi.126.327] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aminoglycoside antibiotics, such as gentamicin and amikacin, are a class of clinically important antibiotics used worldwide in the treatment of infections caused by Gram-positive and Gram-negative bacteria. However, nephrotoxicity and ototoxicity are serious problems in the use of aminoglycosides and are the major dose-limiting side effects. Most of the intravenously administered dose is excreted into the urine, whereas some of the aminoglycoside injected (about 10% of the dose) is selectively accumulated in the renal cortex, leading to renal injury. Aminoglycosides are taken up into the epithelial cells of the renal proximal tubules by an endocytic pathway. Acidic phospholipids, broadly distributed in the plasma membranes in various tissues, were considered to be the binding site of aminoglycosides. Recently, megalin, a giant endocytic receptor abundantly expressed in renal proximal tubules, has been reported to bind aminoglycosides. Therefore we first examined whether megalin plays an important role in the renal accumulation of aminoglycosides under in vivo and in vitro conditions. We then attempted to develop new strategies for preventing the nephrotoxicity of aminoglycosides based on the molecular mechanisms of aminoglycoside accumulation in the kidney. This review summarizes our recent findings ol the role of megalin in the renal accumulation of aminoglycosides and our approach to develop nonnephrotoxic aminoglycoside therapy.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, Japan.
| |
Collapse
|
46
|
Jana S, Deb JK. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol 2006; 70:140-50. [PMID: 16391922 DOI: 10.1007/s00253-005-0279-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 11/23/2005] [Accepted: 11/27/2005] [Indexed: 11/26/2022]
Abstract
Aminoglycosides are potent bactericidal antibiotics targeting the bacterial ribosome, where they bind to the A-site and disrupt protein synthesis. They are particularly active against aerobic, Gram-negative bacteria and act synergistically against certain Gram-positive organisms. Aminoglycosides are used in the treatment of severe infections of the abdomen and urinary tract, bacteremia, and endocarditis. They are also used for prophylaxis, especially against endocarditis. Bacterial resistance to aminoglycosides continues to escalate and is widely recognized as a serious health threat. This might be the reason for the interest in understanding the mechanisms of resistance. It is now clear that the resistance occurs by different mechanisms such as prevention of drug entry, active extrusion of drugs, alteration of the drug target (mutational modification of 16S rRNA and mutational modification of ribosomal proteins), and enzymatic inactivation through the expression of enzymes, which covalently modify these antibiotics. Enzymatic inactivation is normally due to acetyltransferases, nucleotidyltransferases, and phosphotransferases. In this review, we focus on the recent concept of molecular understanding of aminoglycoside action and resistance.
Collapse
Affiliation(s)
- S Jana
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi
| | | |
Collapse
|
47
|
Harirforoosh S, Jamali F. Effect of nonsteroidal anti-inflammatory drugs with varying extent of COX-2-COX-1 selectivity on urinary sodium and potassium excretion in the rat. Can J Physiol Pharmacol 2005; 83:85-90. [PMID: 15759054 DOI: 10.1139/y04-129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have different selectivity to inhibit cyclooxygenase-1 (COX-1) and COX-2. Treatment with NSAIDs has been associated with kidney side effects. We compared the effect of a selected group of NSAIDs with different COX-2--COX-1 selectivities on urinary sodium and potassium excretion in rats. Each treatment with rofecoxib, celecoxib, meloxicam, diclofenac, and flurbiprofen (30, 120, 9, 30, and 125 mg/kg, respectively) and placebo was administered orally once daily for 4 days. Urine was collected 0-8 h after each dose. Urinary sodium and potassium excretion and urine flow rate were compared with placebo. As compared with placebo, rofecoxib, celecoxib, diclofenac, and flurbiprofen significantly reduced excretion rate of sodium (rofecoxib, 0.28 +/- 0.02 vs. 0.41 +/- 0.03; celecoxib, 0.23 +/- 0.03 vs. 0.48 +/- 0.04; diclofenac, 0.09 +/- 0.02 vs. 0.46 +/- 0.03; and flurbiprofen, 0.11 +/- 0.02 vs. 0.47 +/- 0.02 micromol/(min x 100 g)) and potassium (rofecoxib, 0.55 +/- 0.04 vs. 0.68 +/- 0.04; celecoxib, 0.50 +/- 0.06 vs. 0.72 +/- 0.06; diclofenac, 0.26 +/- 0.05 vs. 0.67 +/- 0.04; and flurbiprofen, 0.35 +/- 0.05 vs. 0.62 +/- 0.03 micromol/ (min x 100 g)). Rofecoxib and flurbiprofen significantly reduced urine flow rate. Meloxicam had no significant effect on either sodium and potassium excretion or on the urine flow rate. At the examined dosage level, no relationship was found between reported COX-2--COX-1 selectivity and urinary electrolytes excretion.
Collapse
Affiliation(s)
- Sam Harirforoosh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
48
|
Nagai J, Takano M. Molecular Aspects of Renal Handling of Aminoglycosides and Strategies for Preventing the Nephrotoxicity. Drug Metab Pharmacokinet 2004; 19:159-70. [PMID: 15499183 DOI: 10.2133/dmpk.19.159] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aminoglycosides such as gentamicin and amikacin are the most commonly used antibiotics worldwide in the treatment of Gram-negative bacterial infections. However, serious complications like nephrotoxicity and ototoxicity are dose-limiting factors in the use of aminoglycosides. A relatively large amount of the intravenously administered dose is accumulated in the kidney (about 10% of dose), whereas little distribution of aminoglycosides to other tissues is observed. Aminoglycosides are taken up in the epithelial cells of the renal proximal tubules and stay there for a long time, resulting in nephrotoxicity. Acidic phospholipids are considered as a binding site for aminoglycosides in the brush-border membrane of the proximal tubular cells. More recently, it has been reported that megalin, a giant endocytic receptor abundantly expressed at the apical membrane of renal proximal tubules, plays an important role in binding and endocytosis of aminoglycosides in the proximal tubular cells. The elucidation of the aminoglycoside-binding receptor would help design a strategy to prevent against aminoglycoside-induced nephrotoxicity. In this review, we summarize recent advances in the understandings of the molecular mechanisms responsible for renal accumulation of aminoglycosides, especially megalin-mediated endocytosis. In addition, approaches toward prevention of aminoglycoside-induced nephrotoxicity are discussed, based on the molecular mechanisms of the renal accumulation of aminoglycosides.
Collapse
Affiliation(s)
- Junya Nagai
- Department of Pharmaceutics and Therapeutics, Graduate School of Biomedical Sciences, Hiroshima University, Japan
| | | |
Collapse
|