1
|
Pereira TA, Ramos DN, Sobral LM, Martins YA, Petrilli R, Fantini MDAC, Leopoldino AM, Lopez RFV. Liquid crystalline nanogel targets skin cancer via low-frequency ultrasound treatment. Int J Pharm 2023; 646:123431. [PMID: 37739094 DOI: 10.1016/j.ijpharm.2023.123431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The potential of low-frequency ultrasound (LFU) combined with nanotechnology-based formulations in improving skin tumors topical treatment was investigated. The impact of solid lipid nanoparticles (SLN) and hydrophilic nanogels as coupling media on LFU-induced skin localized transport regions (LTR) and the penetration of doxorubicin (DOX) in LFU-pretreated skin was evaluated. SLN were prepared by the microemulsion technique and liquid crystalline nanogels using Poloxamer. In vitro, the skin was pretreated with LFU until skin resistivity of ∼1 KΩ.cm2 using the various coupling media followed by evaluation of DOX penetration from DOX-nanogel and SLN-DOX in skin layers. Squamous cell carcinoma (SCC) induced in mice was LFU-treated using the nanogel with the LFU tip placed 5 mm or 10 mm from the tumor surface, followed by DOX-nanogel application. LFU with nanogel coupling achieved larger LTR areas than LFU with SLN coupling. In LFU-pretreated skin, DOX-nanogel significantly improved drug penetration to the viable epidermis, while SLN-DOX hindered drug transport through LTR. In vivo, LFU-nanogel pretreatment with the 10 mm tip distance induced significant tumor inhibition and reduced tumor cell numbers and necrosis. These findings suggest the importance of optimizing nanoparticle-based formulations and LFU parameters for the clinical application of LFU technology in skin tumor treatment.
Collapse
Affiliation(s)
- Tatiana Aparecida Pereira
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Danielle Nishida Ramos
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Lays Martin Sobral
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Yugo Araújo Martins
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil; Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção, Brazil.
| | | | - Andréia Machado Leopoldino
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| | - Renata Fonseca Vianna Lopez
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
2
|
Andrade JFM, Cunha-Filho M, Gelfuso GM, Gratieri T. Iontophoresis for the cutaneous delivery of nanoentraped drugs. Expert Opin Drug Deliv 2023:1-14. [PMID: 37119173 DOI: 10.1080/17425247.2023.2209719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
INTRODUCTION The skin is an attractive route for drug delivery. However, the stratum corneum is a critical limiting barrier for drug permeation. Nanoentrapment is a way to enhance cutaneous drug delivery, by diverse mechanisms, with a notable trend of nanoparticles accumulating into the hair follicles when topically applied. Iontophoresis is yet another way of increasing drug transport by applying a mild electrical field that preferentially passes through the hair follicles, for being the pathway of lower resistance. So, iontophoresis application to nanocarriers could further increase actives accumulation into the hair follicles, impacting cutaneous drug delivery. AREAS COVERED In this review, the authors aimed to discuss the main factors impacting iontophoretic skin transport when combining nanocarriers with iontophoresis. We further provide an overview of the conditions in which this combination has been studied, the characteristics of nanosystems employed, and hypothesize why the association has succeeded or failed to enhance drug permeation. EXPERT OPINION Nanocarriers and iontophoresis association can be promising to enhance cutaneous drug delivery. For better results, the electroosmotic contribution to the iontophoretic transport, mainly of negatively charged nanocarriers, charge density, formulation pH, and skin models should be considered. Moreover, the transfollicular pathway should be considered, especially when designing the nanocarriers.
Collapse
Affiliation(s)
- Jayanaraian F M Andrade
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Tais Gratieri
- School of Health Sciences, Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
3
|
Attia MA, Essa EA, Elebyary TT, Faheem AM, Elkordy AA. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals (Basel) 2021; 14:1173. [PMID: 34832955 PMCID: PMC8619292 DOI: 10.3390/ph14111173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination is the most effective means of preventing infectious diseases and saving lives. Modern biotechnology largely enabled vaccine development. In the meantime, recent advances in pharmaceutical technology have resulted in the emergence of nanoparticles that are extensively investigated as promising miniaturized drug delivery systems. Scientists are particularly interested in liposomes as an important carrier for vaccine development. Wide acceptability of liposomes lies in their flexibility and versatility. Due to their unique vesicular structure with alternating aqueous and lipid compartments, liposomes can enclose both hydrophilic and lipophilic compounds, including antigens. Liposome composition can be tailored to obtain the desired immune response and adjuvant characteristics. During the current pandemic of COVID-19, many liposome-based vaccines have been developed with great success. This review covers a liposome-based vaccine designed particularly to combat viral infection of the lower respiratory tract (LRT), i.e., infection of the lung, specifically in the lower airways. Viruses such as influenza, respiratory syncytial virus (RSV), severe acute respiratory syndrome (SARS-CoV-1 and SARS-CoV-2) are common causes of LRT infections, hence this review mainly focuses on this category of viruses.
Collapse
Affiliation(s)
- Mohamed Ahmed Attia
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Ebtessam Ahmed Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Toka Tarek Elebyary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Ahmed Mostafa Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| |
Collapse
|
4
|
Said M, Elsayed I, Aboelwafa AA, Elshafeey AH. A novel concept of overcoming the skin barrier using augmented liquid nanocrystals: Box-Behnken optimization, ex vivo and in vivo evaluation. Colloids Surf B Biointerfaces 2018; 170:258-265. [PMID: 29935419 DOI: 10.1016/j.colsurfb.2018.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/22/2018] [Accepted: 06/15/2018] [Indexed: 01/11/2023]
Abstract
Agomelatine suffers from extensive inactivation through 1st pass effect with a limited oral bioavailability (5%). The aim of this study was to formulate and optimize liquid nanocrystals (LNC) containing agomelatine to enhance the transdermal permeation of the drug. The independent factors of the employed Box-Behnken design were the Pluronic F127, deoxycholic acid sodium salt and propylene glycol percentages. On the other hand, particle size, polydispersity index, zeta potential, entrapment efficiency, cumulative amount permeated at certain time intervals and permeation enhancement ratio were considered as dependent responses. The optimized formulation was composed of 1.5% Pluronic F127 and 1.5% deoxycholic acid sodium salt and it was found to have significantly higher AUC0-24h, AUC0-∞ and elimination t1/2 than that of the employed reference indicating the enhancement of the drug permeation. The obtained findings indicated the ability of the optimized LNC formulation to improve the drug bioavailability after its transdermal application.
Collapse
Affiliation(s)
- Mayada Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates.
| | - Ahmed A Aboelwafa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed H Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Petrilli R, Eloy JO, Saggioro FP, Chesca DL, de Souza MC, Dias MVS, daSilva LLP, Lee RJ, Lopez RFV. Skin cancer treatment effectiveness is improved by iontophoresis of EGFR-targeted liposomes containing 5-FU compared with subcutaneous injection. J Control Release 2018; 283:151-162. [PMID: 29864476 DOI: 10.1016/j.jconrel.2018.05.038] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
Abstract
Squamous cell carcinoma (SCC) is a malignant tumor in which epidermal growth factor receptor (EGFR) overexpression is associated with poor prognosis and malignancy. For SCC treatment, cetuximab, an anti-EGFR antibody, is administered in combination with a chemotherapeutic drug for improved efficacy. In this work, an EGFR-targeted immunoliposome loaded with 5-fluorouracil (5- FU) was developed to allow co-administration of the antibody and the chemotherapeutic agent and selective delivery to SCC cells. Topically applied iontophoresis and subcutaneous injections of the 5-FU-loaded immunoliposomes were employed in an SCC xenograft animal model to evaluate the influence of the administration route on therapeutic efficacy. In vitro, cellular uptake of cetuximab-immunoliposomes by EGFR-positive SCC cells was 3.5-fold greater than the uptake of control liposomes. Skin penetration studies showed that iontophoresis of immunoliposomes doubled the 5-FU penetration into the viable epidermis compared with the same treatment with control liposomes. In vivo, subcutaneous injection of immunoliposomes reduced tumor volume by >60% compared with the negative control and approximately 50% compared with the 5-FU solution and control liposome treatments. Interestingly, topical administration via iontophoresis improved tumor reduction by almost 2-fold compared with subcutaneous administration of 5-FU solution and control liposomes but was equally effective for the immunoliposome treatment. However, histological analysis showed that iontophoresis of immunoliposomes was more effective than subcutaneous injection in reducing cell proliferation, resulting in cells with less aggressive characteristics. In conclusion, topical administration of immunoliposomes containing 5-FU using iontophoresis is a promising strategy for SCC treatment.
Collapse
Affiliation(s)
- Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil; College of Pharmacy, The Ohio State University, Columbus, 500 W 12th Ave, Columbus, OH 43210, USA
| | - Josimar O Eloy
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil; College of Pharmacy, The Ohio State University, Columbus, 500 W 12th Ave, Columbus, OH 43210, USA; School of Pharmacy, Dentistry and Nursing, Federal University of Ceará, 1210 Capitão Francisco Pedro St, 60430-372, Fortaleza, CE, Brazil
| | - Fabiano P Saggioro
- School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida Bandeirantes s/n, 14040-040 Ribeirao Preto, SP, Brazil
| | - Deise L Chesca
- School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Avenida Bandeirantes s/n, 14040-040 Ribeirao Preto, SP, Brazil
| | - Marina Claro de Souza
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil
| | - Marcos V S Dias
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Robert J Lee
- College of Pharmacy, The Ohio State University, Columbus, 500 W 12th Ave, Columbus, OH 43210, USA
| | - Renata F V Lopez
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP, Brazil.
| |
Collapse
|
6
|
Dragicevic N, Maibach H. Combined use of nanocarriers and physical methods for percutaneous penetration enhancement. Adv Drug Deliv Rev 2018; 127:58-84. [PMID: 29425769 DOI: 10.1016/j.addr.2018.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/12/2018] [Accepted: 02/04/2018] [Indexed: 11/25/2022]
Abstract
Dermal and transdermal drug delivery (due to its non-invasiveness, avoidance of the first-pass metabolism, controlling the rate of drug input over a prolonged time, etc.) have gained significant acceptance. Several methods are employed to overcome the permeability barrier of the skin, improving drug penetration into/through skin. Among chemical penetration enhancement methods, nanocarriers have been extensively studied. When applied alone, nanocarriers mostly deliver drugs to skin and can be used to treat skin diseases. To achieve effective transdermal drug delivery, nanocarriers should be applied with physical methods, as they act synergistically in enhancing drug penetration. This review describes combined use of frequently used nanocarriers (liposomes, novel elastic vesicles, lipid-based and polymer-based nanoparticles and dendrimers) with the most efficient physical methods (microneedles, iontophoresis, ultrasound and electroporation) and demonstrates superiority of the combined use of nanocarriers and physical methods in drug penetration enhancement compared to their single use.
Collapse
|
7
|
Eid RK, Essa EA, El Maghraby GM. Essential oils in niosomes for enhanced transdermal delivery of felodipine. Pharm Dev Technol 2018; 24:157-165. [DOI: 10.1080/10837450.2018.1441302] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rania K. Eid
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Ebtessam A. Essa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Gamal M. El Maghraby
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
8
|
Said M, Elsayed I, Aboelwafa AA, Elshafeey AH. Transdermal agomelatine microemulsion gel: pyramidal screening, statistical optimization and in vivo bioavailability. Drug Deliv 2017; 24:1159-1169. [PMID: 28831842 PMCID: PMC8241019 DOI: 10.1080/10717544.2017.1365392] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/30/2017] [Accepted: 08/06/2017] [Indexed: 02/08/2023] Open
Abstract
Agomelatine is a new antidepressant having very low oral drug bioavailability less than 5% due to being liable to extensive hepatic 1st pass effect. This study aimed to deliver agomelatine by transdermal route through formulation and optimization of microemulsion gel. Pyramidal screening was performed to select the most suitable ingredients combinations and then, the design expert software was utilized to optimize the microemulsion formulations. The independent variables of the employed mixture design were the percentages of capryol 90 as an oily phase (X1), Cremophor RH40 and Transcutol HP in a ratio of (1:2) as surfactant/cosurfactant mixture 'Smix' (X2) and water (X3). The dependent variables were globule size, optical clarity, cumulative amount permeated after 1 and 24 h, respectively (Q1 and Q24) and enhancement ratio (ER). The optimized formula was composed of 5% oil, 45% Smix and 50% water. The optimized microemulsion formula was converted into carbopol-based gel to improve its retention on the skin. It enhanced the drug permeation through rat skin with an enhancement ratio of 37.30 when compared to the drug hydrogel. The optimum ME gel formula was found to have significantly higher Cmax, AUC 0-24 h and AUC0-∞ than that of the reference agomelatine hydrogel and oral solution. This could reveal the prosperity of the optimized microemulsion gel formula to augment the transdermal bioavailability of agomelatine.
Collapse
Affiliation(s)
- Mayada Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed A. Aboelwafa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed H. Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Jijie R, Barras A, Boukherroub R, Szunerits S. Nanomaterials for transdermal drug delivery: beyond the state of the art of liposomal structures. J Mater Chem B 2017; 5:8653-8675. [PMID: 32264260 DOI: 10.1039/c7tb02529g] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide range of biomedical materials have been proposed to meet the different needs for controlled oral or intravenous drug delivery. The advantages of oral delivery such as self-administration of a pre-determined drug dose at defined time intervals makes it the most convenient means for the delivery of small molecular drugs. It fails however to delivery therapeutic macromolecules due to rapid degradation in the stomach and size-limited transport across the epithelium. The primary mode of administration of macromolecules is presently via injection. This administration mode is not without limitations, as the invasive nature of injections elicits pain and decreases patients' compliance. Alternative routes for drug delivery have been looked for, one being the skin. Delivery of drugs via the skin is based on the therapeutics penetrating the stratum corneum (SC) with the advantage of overcoming first-pass metabolism of drugs, to deliver drugs with a short-half-life time more easily and to eliminate frequent administrations to maintain constant drug delivery. The transdermal market still remains limited to a narrow range of drugs. The low permeability of the SC to water-soluble and macromolecular drugs poses significant challenges to transdermal administration via passive diffusion through the skin, as is the case for all topically administered drug formulations intended to bring the therapeutic into the general circulation. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to the integration of skin enhancers into pharmaceutical formulations, nanoparticles based on lipid carriers have been widely considered and reviewed. While being briefly reviewed here, the main focus of this article is on current advancements using polymeric and metallic nanoparticles. Next to these passive technologies, the handful of active technologies for local and systemic transdermal drug delivery will be discussed and put into perspective. While passive approaches dominate the literature and the transdermal market, active delivery based on microneedles or iontophoresis approaches have shown great promise for transdermal drug delivery and have entered the market, in the last decade. This review gives an overall idea of the current activities in this field.
Collapse
Affiliation(s)
- Roxana Jijie
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| | | | | | | |
Collapse
|
10
|
|
11
|
González-Rodríguez ML, Arroyo CM, Cózar-Bernal MJ, González-R PL, León JM, Calle M, Canca D, Rabasco AM. Deformability properties of timolol-loaded transfersomes based on the extrusion mechanism. Statistical optimization of the process. Drug Dev Ind Pharm 2016; 42:1683-94. [PMID: 26981839 DOI: 10.3109/03639045.2016.1165691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The purpose of this work was to analyze the deformability properties of different timolol maleate (TM)-loaded transfersomes by extrusion. This was performed because elastic liposomes may contribute to the elevation of amount and rate of drug permeation through the corneal membrane. This paper describes the optimization of a transfersome formulation by use of Taguchi orthogonal experimental design and two different statistical analysis approaches were utilized. The amount of cholesterol (F1), the amount of edge-activator (F2), the distribution of the drug into the vesicle (F3), the addition of stearylamine (F4) and the type of edge-activator (F5) were selected as causal factors. The deformability index, the phosphorous recovery, the vesicle size, the polydispersity index, the zeta potential and percentage of drug entrapped were fixed as the dependent variables and these responses were evaluated for each formulation. Two different statistical analysis approaches were applied. The better statistical approach was determined by comparing their prediction errors, where regression analysis provided better optimized responses than marginal means. From the study, an optimized formulation of TM-loaded transfersomes was prepared and obtained for the proposed ophthalmic delivery for the treatment of open angle glaucoma. It was found that the lipid to surfactant ratio and type of surfactant are the main key factors for determining the flexibility of the bilayer of transfersomes. From in vitro permeation studies, we can conclude that TM-loaded transfersomes may enhance the corneal transmittance and improve the bioavailability of conventional TM delivery.
Collapse
Affiliation(s)
- M L González-Rodríguez
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| | - C M Arroyo
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| | - M J Cózar-Bernal
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| | - P L González-R
- b Department of Industrial Management, School of Engineering , Universidad de Sevilla , Seville , Spain
| | - J M León
- b Department of Industrial Management, School of Engineering , Universidad de Sevilla , Seville , Spain
| | - M Calle
- b Department of Industrial Management, School of Engineering , Universidad de Sevilla , Seville , Spain
| | - D Canca
- b Department of Industrial Management, School of Engineering , Universidad de Sevilla , Seville , Spain
| | - A M Rabasco
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| |
Collapse
|
12
|
Bashyal S, Lee S. Delivery of biopharmaceuticals using combination of liposome and iontophoresis: a review. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2015. [DOI: 10.1007/s40005-015-0219-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Wong TW. Electrical, magnetic, photomechanical and cavitational waves to overcome skin barrier for transdermal drug delivery. J Control Release 2014; 193:257-69. [DOI: 10.1016/j.jconrel.2014.04.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 01/17/2023]
|
14
|
Alomrani AH, Shazly GA, Amara AA, Badran MM. Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: In vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloids Surf B Biointerfaces 2014; 121:74-81. [DOI: 10.1016/j.colsurfb.2014.05.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 04/07/2014] [Accepted: 05/11/2014] [Indexed: 10/25/2022]
|
15
|
Ahmed TA. Preparation of transfersomes encapsulating sildenafil aimed for transdermal drug delivery: Plackett-Burman design and characterization. J Liposome Res 2014; 25:1-10. [PMID: 25148294 DOI: 10.3109/08982104.2014.950276] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this work was to study the effect of different processing and formulation parameters on the preparation of sildenafil (SD) transfersomes utilizing the Plackett-Burman design. The drug to phospholipid molar ratio (X1), phospholipid to surfactant ratio (X2), hydrophilic-lipophilic balance of the surfactant (X3), hydration medium pH (X4), hydration time (X5) and the temperature of hydration (X6) were investigated to study their effect on the vesicle size (Y1) and entrapment efficiency (EE) of the drug (Y2). The preparation conditions were optimized to minimize the vesicle size and maximize the EE. The prepared transfersomes were also subjected to zeta potential measurements, morphological and physicochemical characterization. The combinations of factors that achieve the optimum desirability were identified. An optimized formulation was prepared and characterized once more for its vesicle size, EE, in vitro permeation and deformability index. The results revealed that both X3 and X6 had a pronounced effect on Y1, while X1 and X4 showed a significant effect on Y2. Morphological and physicochemical study confirmed the transfersomes spherical shape and compatibility of the formulation ingredients. The formulation with optimum desirability showed EE and vesicle size of 97.21% and 610 nm, respectively. In vitro permeation of the drug-loaded transfersome showed more than 5-fold higher permeation rate compared with drug suspension. Deformability index verified elasticity of the preparation. The significant variables could be optimized again to produce smaller vesicle size that could increase SD permeation from transdermal delivery systems loaded drug optimized transfersomes.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University , Nasr City, Cairo , Egypt
| |
Collapse
|
16
|
Williams A. Brian Barry: Innovative Contributions to Transdermal and Topical Drug Delivery. Skin Pharmacol Physiol 2013; 26:234-42. [DOI: 10.1159/000351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/05/2013] [Indexed: 11/19/2022]
Abstract
Brian Barry published over 300 research articles across topics ranging from colloid science, vasoconstriction and the importance of thermodynamics in dermal drug delivery to exploring the structure and organisation of the stratum corneum barrier lipids and numerous strategies for improving topical and transdermal drug delivery, including penetration enhancers, supersaturation, coacervation, eutectic formation and the use of varied liposomes. As research in the area blossomed in the early 1980s, Brian wrote <i>the</i> book that became essential reading for both new and established dermal delivery scientists, explaining the background mathematics and principles through to formulation design. Brian also worked with numerous scientists, as collaborators and students, who have themselves taken his rigorous approach to scientific investigation into their own research groups. This paper can only describe a small fraction of the many significant contributions that Brian made to the field during his 40-year academic career.
Collapse
|
17
|
Kumar A, Pathak K, Bali V. Ultra-adaptable nanovesicular systems: a carrier for systemic delivery of therapeutic agents. Drug Discov Today 2012; 17:1233-41. [PMID: 22766375 DOI: 10.1016/j.drudis.2012.06.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 11/29/2022]
Abstract
The skin acts as a barrier and prevents transcutaneous delivery of therapeutic agents. Transferosomes are novel vesicular systems that are several times more elastic than other vesicular systems. These are composed of phospholipids, edge activator and ethanol and are applied in a non-occlusive manner. Owing to their ultradeformability, they have the potential to deliver therapeutic agents across the intact skin in a non-invasive and non-allergenic manner. The present review attempts to provide an in-depth account of ultra-adaptable nanovesicular systems. The current investigation, besides compiling existing knowledge in a systematic manner, also includes information like regulatory aspects of excipients used in preparation, summary of clinical investigations performed, marketed preparations available, research reports and patent reports related to transfersomes.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | | | | |
Collapse
|
18
|
Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment. Saudi Pharm J 2011; 20:161-70. [PMID: 23960788 DOI: 10.1016/j.jsps.2011.10.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 10/22/2011] [Indexed: 11/20/2022] Open
Abstract
THE OBJECTIVE OF WORK WAS TO FORMULATE, EVALUATE AND COMPARE THE TRANSDERMAL POTENTIAL OF NOVEL VESICULAR NANOCARRIERS: ethosomes and ultradeformable liposomes, containing clotrimazole (CLT), an anti-fungal bioactive. The ethosomal formulation (ET4) and ultradeformable liposomal (UL) formulation (TT3) showed highest entrapment 68.73 ± 1.4% and 55.51 ± 1.7%, optimal nanometric size range 132 ± 9.5 nm and 121 ± 9.7 nm, and smallest polydispersity index 0.027 ± 0.011 and 0.067 ± 0.009, respectively. The formulation ET4 provided enhanced transdermal flux 56.25 ± 5.49 μg/cm(2)/h and decreased the lag time of 0.9 h in comparison to TT3 formulation (50.16 ± 3.84 μg/cm(2)/h; 1.0 h). Skin interaction and FT-IR studies revealed greater penetration enhancing effect of ET4 than TT3 formulation. ET4 formulation also had the highest zone of inhibition (34.6 ± 0.57 mm), in contrast to TT3 formulation (29.6 ± 0.57 mm) and marketed cream formulation (19.0 ± 1.00 mm) against candidal species. Results suggested ethosomes to be the most proficient carrier system for dermal and transdermal delivery of clotrimazole.
Collapse
|
19
|
Tsai YH, Fu LT, Huang CT, Chang JS, Huang YB, Wu PC. Formulation Optimization of Estradiol Microemulsion Using Response Surface Methodology. J Pharm Sci 2011; 100:4383-9. [DOI: 10.1002/jps.22600] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/01/2011] [Accepted: 04/18/2011] [Indexed: 11/07/2022]
|
20
|
Severino P, Moraes LF, Zanchetta B, Souto EB, Santana MHA. Elastic liposomes containing benzophenone-3 for sun protection factor enhancement. Pharm Dev Technol 2011; 17:661-5. [PMID: 21563987 DOI: 10.3109/10837450.2011.580762] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This work was focused on the loading of benzophenone-3 in elastic liposomes composed of egg phosphatidylcholine and cholesterol, prepared by the Bangham method. Samples were characterized in terms of particle size, polydispersity index (PI), zeta potential, encapsulation efficiency and in vitro photoprotection properties. The extrusion of liposomes loading benzophenone-3 produced reduced-size (100 nm) elastic liposomes with a PI of 0.2. The active was loaded with a concentration of 20.34% (m/m) revealing changes in the ultraviolet properties after loading. On the basis of these results, it can be anticipated that liposomes are able to improve sun protector factor in vitro compared the free active.
Collapse
Affiliation(s)
- Patrícia Severino
- Department of Biotechnological Processes, School of Chemical Engineering, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | |
Collapse
|
21
|
Rastogi R, Anand S, Koul V. Electroporation of polymeric nanoparticles: an alternative technique for transdermal delivery of insulin. Drug Dev Ind Pharm 2010; 36:1303-11. [DOI: 10.3109/03639041003786193] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Shimoyama Y, Fujii M, Kanda Y, Mizoguchi A, Oda H, Koizumi N, Watanabe Y. Effects of Application Method on Skin Penetration of Carboxyfluorescein Incorporated in Liposomes. Chem Pharm Bull (Tokyo) 2010; 58:429-31. [DOI: 10.1248/cpb.58.429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Escobar-Chávez JJ, Bonilla-Martínez D, Villegas-González MA, Revilla-Vázquez AL. Electroporation as an efficient physical enhancer for skin drug delivery. J Clin Pharmacol 2009; 49:1262-83. [PMID: 19717723 DOI: 10.1177/0091270009344984] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Application of high-voltage pulses to the skin increases its permeability (electroporation) and enables the delivery of various substances into and through the skin. The application of electroporation to the skin has been shown to increase transdermal drug delivery. Moreover, electroporation, used alone or in combination with other enhancement methods, expands the range of drugs (small to macromolecules, lipophilic or hydrophilic, charged or neutral molecules) that can be delivered transdermally. The efficacy of transport depends on the electrical parameters and the physicochemical properties of drugs. The in vivo application of high-voltage pulses is well tolerated, but muscle contractions are usually induced. The electrode and patch design is an important issue to reduce the discomfort of the electrical treatment in humans. This review presents the main findings in the field of electroporation-namely, transdermal drug delivery. Particular attention is paid to proposed enhancement mechanisms and trends in the field of topical and transdermal delivery.
Collapse
Affiliation(s)
- José Juan Escobar-Chávez
- División de Estudios de Posgrado Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, México.
| | | | | | | |
Collapse
|
24
|
Dahlan A, Alpar HO, Murdan S. An investigation into the combination of low frequency ultrasound and liposomes on skin permeability. Int J Pharm 2009; 379:139-42. [PMID: 19539736 DOI: 10.1016/j.ijpharm.2009.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/05/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
Antigen application onto skin that has been pre-treated with low frequency ultrasound leads to immunisation, and it was hypothesised that immunisation could be enhanced if antigens were entrapped within liposomes, the latter being known vaccine adjuvants. However, it has been suggested that liposomes can repair skin damage, which could limit antigen permeation and transcutaneous immunisation. The aim of the present work was therefore to investigate the influence of liposome application on subsequent: (i) in vitro antigen permeation through, and (ii) in vivo barrier properties of, ultrasound-treated skin. Sonication was conducted using either phosphate buffered saline (PBS) or an aqueous solution of sodium dodecyl sulphate (SDS) as the coupling medium, and rats were used as the animal models. Liposome application to sonicated skin reduced antigen penetration and transepidermal water loss (TEWL, used as an indication of skin integrity) when the skin had been sonicated using PBS coupling medium. The influence of liposome was evident within 5min of its application, and smaller liposomes were more effective at repairing skin disruption caused by sonication. Such skin repair did not, however, take place when the skin had been sonicated in the presence of SDS (which caused greater skin disruption), and changes in in vitro antigen permeation and in vivo TEWL were negligible. Skin repair by liposomes seems to depend on the extent of the disruption caused by ultrasound application.
Collapse
Affiliation(s)
- Afendi Dahlan
- Department of Pharmaceutics, The School of Pharmacy, University of London, Brunswick Square 29/39, London WC1N 1AX, UK
| | | | | |
Collapse
|
25
|
Liu W, Hu M, Liu W, Xue C, Xu H, Yang X. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. Int J Pharm 2008; 364:135-41. [DOI: 10.1016/j.ijpharm.2008.08.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/21/2008] [Accepted: 08/02/2008] [Indexed: 11/25/2022]
|
26
|
Dubey V, Mishra D, Nahar M, Jain NK. Vesicles as tools for the modulation of skin permeability. Expert Opin Drug Deliv 2007; 4:579-93. [DOI: 10.1517/17425247.4.6.579] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM. Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 2006; 332:1-16. [PMID: 17222523 DOI: 10.1016/j.ijpharm.2006.12.005] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 12/03/2006] [Accepted: 12/04/2006] [Indexed: 11/26/2022]
Abstract
Since liposomes were first shown to be of potential value for topical therapy by Mezei and Gulasekharam in 1980, studies continued towards further investigation and development of lipid vesicles as carriers for skin delivery of drugs. Despite this long history of intensive research, lipid vesicles are still considered as a controversial class of dermal and transdermal carriers. Accordingly, this article provides an overview of the development of lipid vesicles for skin delivery of drugs, with special emphasis on recent advances in this field, including the development of deformable liposomes and ethosomes.
Collapse
Affiliation(s)
- Mustafa M A Elsayed
- Department of Pharmaceutics, Faculty of Pharmacy, University of Alexandria, El-Khartoum Square, El-Azarita, Alexandria 21521, Egypt.
| | | | | | | |
Collapse
|
28
|
Burgess SE, Zhao Y, Sen A, Hui SW. Resealing of electroporation of porcine epidermis using phospholipids and poloxamers. Int J Pharm 2006; 336:269-75. [PMID: 17267148 PMCID: PMC2040332 DOI: 10.1016/j.ijpharm.2006.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/01/2006] [Accepted: 12/04/2006] [Indexed: 11/26/2022]
Abstract
The resealing of porcine epidermis after electroporation is investigated. Porcine epidermis was subjected to electroporation (30 pulses at 100 V, 1 ms and at 1 Hz) in a vertical diffusion apparatus, in the presence of 2 mg/ml dimyristoylphosphatidylserine, to produce a long lasting permeable state. Resealing treatments include incubation in 0.0625-0.25 mM poloxamer 188 (P188), or incorporation of phosphatidylcholines (PC) and/or cationic lipids with additional pulses. The recovery of electric resistance of the epidermis samples after electroporation with or without resealing treatments was monitored. The transports of carboxyfluorescein and glucose were measured during the recovery process. Both P188 and PC were effective in resealing in terms of electric conductance and transport, with P188 reacting more rapidly and completely. P188 mediated lipid exchange between stratum corneum lipid particles was measured by fluorescence resonance energy transfer (FRET). Lipid reorganization facilitated by P188 and PC is suggested to be a major resealing mechanism of electroporation damage.
Collapse
Affiliation(s)
- Sarah E Burgess
- Cancer Biology Department, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Transfersomes (Idea AG) are a form of elastic or deformable vesicle, which were first introduced in the early 1990s. Elasticity is generated by incorporation of an edge activator in the lipid bilayer structure. The original composition of these vesicles was soya phosphatidyl choline incorporating sodium cholate and a small concentration of ethanol. Transfersomes are applied in a non-occluded method to the skin and have been shown to permeate through the stratum corneum lipid lamellar regions as a result of the hydration or osmotic force in the skin. They have been used as drug carriers for a range of small molecules, peptides, proteins and vaccines, both in vitro and in vivo. It has been claimed by Idea AG that intact Transfersomes penetrate through the stratum corneum and the underlying viable skin into the blood circulation. However, this has not been substantiated by other research groups who have extensively probed the mechanism of penetration and interaction of elastic vesicles in the skin. Structural changes in the stratum corneum have been identified, and intact elastic vesicles visualised within the stratum corneum lipid lamellar regions, but no intact vesicles have been ascertained in the viable tissues. Using the principle of incorporating an edge-activator agent into a bilayer structure, a number of other elastic vesicle compositions have been evaluated. This review describes the research into the development and evaluation of Transfersomes and elastic vesicles as topical and transdermal delivery systems.
Collapse
Affiliation(s)
- Heather A E Benson
- Curtin University of Technology, School of Pharmacy, Perth, WA 6845, Australia.
| |
Collapse
|
30
|
Sintov AC, Brandys-Sitton R. Facilitated skin penetration of lidocaine: Combination of a short-term iontophoresis and microemulsion formulation. Int J Pharm 2006; 316:58-67. [PMID: 16564144 DOI: 10.1016/j.ijpharm.2006.02.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 01/29/2006] [Accepted: 02/17/2006] [Indexed: 11/23/2022]
Abstract
The objective of this study was to demonstrate the potential of the application of a short-term iontophoresis on the topical delivery of lidocaine hydrochloride from a microemulsion-based system. Five- and 10-min durations of anodal iontophoresis applied onto porcine skin were examined in combination with a microemulsion containing 2.5% lidocaine hydrochloride. A similar combination (10-min iontophoresis with microemulsion in the anodal electrode) was also examined in vivo in a rat model. It was shown in vitro that by combining microemulsion application with a 10-min iontophoresis of 1.13 mA/cm2 electric current density, a significantly increased flux was obtained compared with a combination of aqueous drug solution with the same iontophoresis protocol. In vivo studies revealed that 57.71 +/- 18.65 and 18.43 +/- 9.17 microg cm(-2) were reached in the epidermis and dermis, respectively, at t = 30 min of microemulsion application, when iontophoresis was applied for 10 min. In contrast, the application of aqueous solution-iontophoresis resulted in a relatively lower drug accumulation (21.44 +/- 10.42 and 5.30 +/- 2.25 microg cm(-2) in the epidermis and dermis, respectively, at t = 30) with more rapid clearance of the drug from the skin. Ten-minute application of a low-current electric field on a new topical microemulsion appears to make significant changes in skin permeability. The potential advantages of this procedure include significantly increased flux, accumulation of a large skin drug depot, short lag times, reduced irritation (compared to long-term iontophoresis), simplicity and ease of compliance.
Collapse
Affiliation(s)
- Amnon C Sintov
- Department of Pharmacology and School of Pharmacy, E. D. Bergmann Campus, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.
| | | |
Collapse
|
31
|
Wojewodzka J, Pazdzior G, Langner M. A method to evaluate the effect of liposome lipid composition on its interaction with the erythrocyte plasma membrane. Chem Phys Lipids 2005; 135:181-7. [PMID: 15921977 DOI: 10.1016/j.chemphyslip.2005.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 01/10/2005] [Accepted: 02/22/2005] [Indexed: 11/28/2022]
Abstract
Lipid aggregates are considered promising carriers for macromolecules and toxic drugs. In order to fulfill this function, aggregates should have properties that ensure the efficient delivery of their cargo to the desired location. One of these properties is their stability in blood when accumulating in the targeted tissue. This stability may be affected by a number of factors, including enzymatic activity, protein adsorption, and non-specific lipid exchange between the aggregate and morphological blood components. Since blood cells in the majority consist of erythrocytes, their interaction with aggregates should be carefully analyzed. In this paper, we present a method that allows the exchange of lipid between liposomes and the erythrocyte plasma membrane to be evaluated. The extent of this exchange was measured in terms of the toxicity of a cationic lipid (DOTAP) incorporated into the liposome lipid bilayer, evaluated by plasma membrane mechanical properties. After liposomes were formed from DOTAP/PC or DOTAP/PE mixtures, erythrocyte plasma membranes were destabilized in a manner dependent on DOTAP concentration. A constant quantity of DOTAP mixed with various proportions of SM caused no such effect, indicating very limited lipid exchange with the cell membrane for such liposome formulations.
Collapse
Affiliation(s)
- Joanna Wojewodzka
- Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | | | | |
Collapse
|