1
|
Ferreira G, Santander A, Cardozo R, Chavarría L, Domínguez L, Mujica N, Benítez M, Sastre S, Sobrevia L, Nicolson GL. Nutrigenomics of inward rectifier potassium channels. Biochim Biophys Acta Mol Basis Dis 2023:166803. [PMID: 37406972 DOI: 10.1016/j.bbadis.2023.166803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Inwardly rectifying potassium (Kir) channels play a key role in maintaining the resting membrane potential and supporting potassium homeostasis. There are many variants of Kir channels, which are usually tetramers in which the main subunit has two trans-membrane helices attached to two N- and C-terminal cytoplasmic tails with a pore-forming loop in between that contains the selectivity filter. These channels have domains that are strongly modulated by molecules present in nutrients found in different diets, such as phosphoinositols, polyamines and Mg2+. These molecules can impact these channels directly or indirectly, either allosterically by modulation of enzymes or via the regulation of channel expression. A particular type of these channels is coupled to cell metabolism and inhibited by ATP (KATP channels, essential for insulin release and for the pathogenesis of metabolic diseases like diabetes mellitus). Genomic changes in Kir channels have a significant impact on metabolism, such as conditioning the nutrients and electrolytes that an individual can take. Thus, the nutrigenomics of ion channels is an important emerging field in which we are attempting to understand how nutrients and diets can affect the activity and expression of ion channels and how genomic changes in such channels may be the basis for pathological conditions that limit nutrition and electrolyte intake. In this contribution we briefly review Kir channels, discuss their nutrigenomics, characterize how different components in the diet affect their function and expression, and suggest how their genomic changes lead to pathological phenotypes that affect diet and electrolyte intake.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Romina Cardozo
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Luisina Chavarría
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Lucía Domínguez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Nicolás Mujica
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Milagros Benítez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Sastre
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo CP 11800, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
2
|
Maruyama M, Nishida Y, Tanaka H, Minami T, Ogawara KI, Miyake M, Takamura Y, Kakuta H, Higaki K. Analysis of absorption-enhancing mechanisms for combinatorial use of spermine with sodium taurocholate in Caco-2 cells. Eur J Pharm Biopharm 2022; 180:332-343. [DOI: 10.1016/j.ejpb.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022]
|
3
|
Nemati M, Fathi-Azarbayjani A, Al-Salami H, Roshani Asl E, Rasmi Y. Bile acid-based advanced drug delivery systems, bilosomes and micelles as novel carriers for therapeutics. Cell Biochem Funct 2022; 40:623-635. [PMID: 35830577 DOI: 10.1002/cbf.3732] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus affects almost half a billion patients worldwide and results from either destruction of β-cells responsible for insulin secretion or increased tissue resistance to insulin stimulation and the reduction of glycemic control. Novel drug delivery systems can improve treatment efficacy in diabetic patients. The low aqueous solubility of most oral antidiabetic drugs decreases drug bioavailability; therefore, there is a demand for the use of novel methods to overcome this issue. The application of bile acids mixed micelles and bilosomes can provide an enhancement in drug efficacy. Bile acids are amphiphilic steroidal molecules that contain a saturated tetracyclic hydrocarbon cyclopentanoperhydrophenanthrene ring, and consist of three 6-membered rings and a 5-membered ring, a short aliphatic side chain, and a tough steroid nucleus. This review offers a comprehensive and informative data focusing on the great potential of bile acid, their salts, and their derivatives for the development of new antidiabetic drug delivery system.
Collapse
Affiliation(s)
- Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Anahita Fathi-Azarbayjani
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Elmira Roshani Asl
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Maharjan R, Subedi L, Pangeni R, Jha SK, Kang SH, Chang KY, Byun Y, Choi JU, Park JW. Metronomic delivery of orally available pemetrexed-incorporated colloidal dispersions for boosting tumor-specific immunity. Drug Deliv 2021; 28:2313-2328. [PMID: 34730056 PMCID: PMC8567874 DOI: 10.1080/10717544.2021.1995077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In this study, we developed oral pemetrexed (PMX) for metronomic dosing to enhance antitumor immunity. PMX was electrostatically complexed with positively charged lysine-linked deoxycholic acid (DL) as an intestinal permeation enhancer, forming PMX/DL, to enhance its intestinal permeability. PMX/DL was also incorporated into a colloidal dispersion (CD) comprised of the block copolymer of poly(ethylene oxide) and poly(propylene oxide), and caprylocaproyl macrogol-8 glycerides (PMX/DL-CD). CD-containing PMX/DL complex in a 1:1 molar ratio [PMX/DL(1:1)-CD] showed 4.66- and 7.19-fold greater permeability than free PMX through the Caco-2 cell monolayer and rat intestine, respectively. This resulted in a 282% improvement in oral bioavailability in rats. In addition, low-dose metronomic PMX led to more immunogenic cell death in CT26.CL25 cells compared to high PMX concentrations at the maximum tolerated dose. In CT26.CL25 tumor-bearing mice, oral metronomic PMX/DL-CD elicited greater antitumor immunity not only by enhancing the number of tumor-infiltrating lymphocytes but also by suppressing T cell functions. Oral PMX/DL-CD substantially increased programmed cell death protein ligand-1 (PD-L1) expression on tumor cells compared to the control and PMX-IV groups. This increased antitumor efficacy in combination with anti-programmed cell death protein-1 (aPD-1) antibody in terms of tumor rejection and immunological memory compared to the combination of PMX-IV and aPD-1. These results suggest that oral metronomic scheduling of PMX/DL-CD in combination with immunotherapy has synergistic antitumor effects.
Collapse
Affiliation(s)
- Ruby Maharjan
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan-gun, South Korea
| | - Rudra Pangeni
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan-gun, South Korea
| | | | | | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jeong Uk Choi
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan-gun, South Korea.,College of Pharmacy, Natural Medicine Research Institute, Mokpo National University, Muan-gun, South Korea
| |
Collapse
|
5
|
Miyake M, Minami T, Maruyama M, Mukai T, Higaki K. Spermine with Sodium Taurocholate Enhances Pulmonary Absorption of Macromolecules in Rats. J Pharm Sci 2021; 110:3464-3470. [PMID: 34118254 DOI: 10.1016/j.xphs.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/05/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022]
Abstract
The improvement effect of the combined use of spermine (SPM), a polyamine, with sodium taurocholate (STC) on the pulmonary drug absorption was investigated utilizing poorly absorbable drugs with various molecular sizes in rats. The pulmonary absorption of rebamipide, a low molecular but poorly absorbable drug after oral administration, was significantly improved by the combined use of SPM with STC (SPM-STC formulation), while poly- L-lysine did not show a significant change in rebamipide absorption from the lungs. Furthermore, the safety of the SPM-STC formulation for the lungs was assessed in rats by the histopathological study and any local toxicity was not observed while poly-L-lysine, a typical chemical causing the toxicity for the epithelial cells, provided several histopathological changes. In addition, the SPM-STC formulation significantly improved the pulmonary absorption of fluorescein isothiocyanate dextran 4 (FD-4, Mw ca 4000) and interferon-α (IFN-α, Mw ca 25,000) as well. Our present results clearly indicated that the SPM-STC formulation significantly improved the pulmonary absorption of poorly absorbable small and large molecular drugs without any harmful effects on the lungs. Therefore, the SPM-STC formulation would be a useful one for the pulmonary absorption of drugs, specifically macromolecular ones, which are very difficult to be absorbed after oral administration.
Collapse
Affiliation(s)
- Masateru Miyake
- BA Project, Formulation Research Institute, Otsuka Pharmaceutical Co. Ltd., 224-18 Ebisuno Hiraishi Kawauchi-cho, Tokushima 771-0182, Japan; Medical Safety Section, Pharmacovigilance Department, Otsuka Pharmaceutical Co. Ltd., 3-2-27, Otedori, Chuo-ku, Osaka 540-0021, Japan.
| | - Takanori Minami
- Histopathology Research Office, Department of Toxicology, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Masato Maruyama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, kita-ku, Okayama 700-8530, Japan
| | - Tadashi Mukai
- BA Project, Formulation Research Institute, Otsuka Pharmaceutical Co. Ltd., 224-18 Ebisuno Hiraishi Kawauchi-cho, Tokushima 771-0182, Japan
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
6
|
Gvoic M, Vukmirovic S, Al-Salami H, Mooranian A, Mikov M, Stankov K. Bile acids as novel enhancers of CNS targeting antitumor drugs: a comprehensive review. Pharm Dev Technol 2021; 26:617-633. [PMID: 33882793 DOI: 10.1080/10837450.2021.1916032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite a relatively low prevalence of primary brain tumors, they continuously attract scientific interest because of the complexity of their treatment due to their location behind the blood-brain barrier. The main challenge in treatment of brain tumors is not the efficacy of the drugs, per se, but the low efficiency of drug delivery to malignant cells. At the core of the problem is the complex structure of the blood-brain barrier. Nowadays, there is evidence supporting the claim that bile acids have the ability to cross the blood-brain barrier. That ability can be exploited by taking a part in novel drug carrier designs. Bile acids represent a drug carrier system as a part of a mixed micelle composition, bilosomes and conjugates with various drugs. This review discusses the current knowledge related to bile acid molecules as drug penetration modifying agents, with the focus on central nervous system antitumor drug delivery.
Collapse
Affiliation(s)
- Marija Gvoic
- Department of Pharmacology and Toxicology and Clinical Pharmacology, Medical faculty of Novi Sad, University of Novi sad, Novi Sad, Serbia
| | - Sasa Vukmirovic
- Department of Pharmacology and Toxicology and Clinical Pharmacology, Medical faculty of Novi Sad, University of Novi sad, Novi Sad, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Armin Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology and Toxicology and Clinical Pharmacology, Medical faculty of Novi Sad, University of Novi sad, Novi Sad, Serbia
| | - Karmen Stankov
- Department of Biochemistry, Medical faculty of Novi Sad, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
7
|
Kabedev A, Hossain S, Hubert M, Larsson P, Bergström CAS. Molecular Dynamics Simulations Reveal Membrane Interactions for Poorly Water-Soluble Drugs: Impact of Bile Solubilization and Drug Aggregation. J Pharm Sci 2020; 110:176-185. [PMID: 33152373 DOI: 10.1016/j.xphs.2020.10.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/19/2023]
Abstract
Molecular transport mechanisms of poorly soluble hydrophobic drug compounds to lipid membranes were investigated using molecular dynamics (MD) simulations. The model compound danazol was used to investigate the mechanism(s) by which bile micelles delivered it to the membrane. The interactions between lipid membrane and pure drug aggregates-in the form of amorphous aggregates and nanocrystals-were also studied. Our simulations indicate that bile micelles formed in the intestinal fluid may facilitate danazol incorporation into cellular membranes through two different mechanisms. The micelle may be acting as: i) a shuttle that presents the danazol directly to the membrane or ii) an elevator that moves the solubilized danazol with it as the colloidal structure itself becomes incorporated and solubilized within the membrane. The elevator hypothesis was supported by complementary lipid monolayer adsorption experiments. In these experiments, colloidal structures formed with simulated intestinal fluid were observed to rapidly incorporate into the monolayer. Simulations of membrane interaction with drug aggregates showed that both the amorphous aggregates and crystalline nanostructures incorporated into the membrane. However, the amorphous aggregates solubilized more quickly than the nanocrystals into the membrane, thereby improving the danazol absorption.
Collapse
Affiliation(s)
- Aleksei Kabedev
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Shakhawath Hossain
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Madlen Hubert
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden; The Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden; The Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| |
Collapse
|
8
|
Yamamoto A, Ukai H, Morishita M, Katsumi H. Approaches to improve intestinal and transmucosal absorption of peptide and protein drugs. Pharmacol Ther 2020; 211:107537. [DOI: 10.1016/j.pharmthera.2020.107537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
|
9
|
Wilson B, Geetha KM. Neurotherapeutic applications of nanomedicine for treating Alzheimer's disease. J Control Release 2020; 325:25-37. [PMID: 32473177 DOI: 10.1016/j.jconrel.2020.05.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive, irreversible, fatal brain disease which disturbs cognitive functions. It affects 35 million people worldwide and the number of people suffering may increase to 100 million by 2050 if no effective treatments are available. The present treatment improves cognitive functions and provide temporary symptomatic relief, but do not stop or delay the disease progression. Moreover, they are mainly available as conventional oral dosage forms and these conventional oral medications lack brain specificity and also produce side effects which leads to poor patient compliance. Brain drug targeting by nanomedicines is a promising approach to improve brain targeting specificity, brain bioavailability and patient compliance. The present review discuses about the currently available pharmacotherapy for AD and the neurotherapeutic applications as well as the advancements of nanomedicine for treating AD. It also highlights the recent advancements of various nanomedicines containing phytopharmaceuticals for treating AD. It is believed that nanomedicines containing approved drugs can be transformed into the clinics hence improve the life style of AD patients.
Collapse
Affiliation(s)
- Barnabas Wilson
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India.
| | - Kannoth Mukundan Geetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Kumaraswamy Layout, Bangalore, Karnataka 560078, India
| |
Collapse
|
10
|
Sigfridsson K, Arvidsson T, Xue A, Wagner DJ, Pop-Damkov P, Zhang G, Strimfors M. A candidate drug administered subcutaneously to rodents as drug particles showing hepatic recirculation which influenced the sustained release process. Int J Pharm 2020; 581:119252. [PMID: 32240808 DOI: 10.1016/j.ijpharm.2020.119252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to evaluate and interpret the pharmacokinetic profiles after subcutaneous (s.c.) administration of crystalline AZ'72 nano- and microsuspensions to rodents. Both formulations were injected at 1.5 and 150 mg/kg to rats. For the lower dose, the profiles were similar after s.c. injection but extended as compared to oral administration. The overall exposure was higher for nanoparticles compared with microparticles during the investigated period. For the higher dose, injection of both suspensions resulted in maintained plateaus caused by the drug depots but, unexpectedly, at similar exposure levels. After addition of a further stabilizer, pluronic F127, nanosuspensions showed improved exposure with dose and higher exposure compared to larger particles in mice. Obviously, a stabilizer mixture that suits one delivery route is not necessarily optimal for another one. The differences in peak concentration (Cmax) between nano- and microparticles were mainly ascribed to differences in dissolution rate. Plasma profiles in mice showed curves with secondary absorption peaks after intravenous and oral administration, suggesting hepatic recirculation following both administration routes. This process, together with the depot formulation, complicates the analysis of absorption from s.c. administration, i.e. multiple processes were driving the plasma profile of AZ'72.
Collapse
Affiliation(s)
- Kalle Sigfridsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Torbjörn Arvidsson
- Early Product Development, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Aixiang Xue
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Boston, USA
| | - David J Wagner
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Boston, USA
| | - Petar Pop-Damkov
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Boston, USA
| | - Guangnong Zhang
- DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Boston, USA
| | - Marie Strimfors
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
11
|
Pavlović N, Goločorbin-Kon S, Ðanić M, Stanimirov B, Al-Salami H, Stankov K, Mikov M. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front Pharmacol 2018; 9:1283. [PMID: 30467479 DOI: 10.3389/fphar.2018.01283/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 05/27/2023] Open
Abstract
Bile acids have received considerable interest in the drug delivery research due to their peculiar physicochemical properties and biocompatibility. The main advantage of bile acids as drug absorption enhancers is their ability to act as both drug solubilizing and permeation-modifying agents. Therefore, bile acids may improve bioavailability of drugs whose absorption-limiting factors include either poor aqueous solubility or low membrane permeability. Besides, bile acids may withstand the gastrointestinal impediments and aid in the transporter-mediated absorption of physically complexed or chemically conjugated drug molecules. These biomolecules may increase the drug bioavailability also at submicellar levels by increasing the solubility and dissolution rate of non-polar drugs or through the partition into the membrane and increase of membrane fluidity and permeability. Most bile acid-induced effects are mediated by the nuclear receptors that activate transcriptional networks, which then affect the expression of a number of target genes, including those for membrane transport proteins, affecting the bioavailability of a number of drugs. Besides micellar solubilization, there are many other types of interactions between bile acids and drug molecules, which can influence the drug transport across the biological membranes. Most common drug-bile salt interaction is ion-pairing and the formed complexes may have either higher or lower polarity compared to the drug molecule itself. Furthermore, the hydroxyl and carboxyl groups of bile acids can be utilized for the covalent conjugation of drugs, which changes their physicochemical and pharmacokinetic properties. Bile acids can be utilized in the formulation of conventional dosage forms, but also of novel micellar, vesicular and polymer-based therapeutic systems. The availability of bile acids, along with their simple derivatization procedures, turn them into attractive building blocks for the design of novel pharmaceutical formulations and systems for the delivery of drugs, biomolecules and vaccines. Although toxic properties of hydrophobic bile acids have been described, their side effects are mostly produced when present in supraphysiological concentrations. Besides, minor structural modifications of natural bile acids may lead to the creation of bile acid derivatives with the reduced toxicity and preserved absorption-enhancing activity.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
12
|
Pavlović N, Goločorbin-Kon S, Ðanić M, Stanimirov B, Al-Salami H, Stankov K, Mikov M. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front Pharmacol 2018; 9:1283. [PMID: 30467479 PMCID: PMC6237018 DOI: 10.3389/fphar.2018.01283] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Bile acids have received considerable interest in the drug delivery research due to their peculiar physicochemical properties and biocompatibility. The main advantage of bile acids as drug absorption enhancers is their ability to act as both drug solubilizing and permeation-modifying agents. Therefore, bile acids may improve bioavailability of drugs whose absorption-limiting factors include either poor aqueous solubility or low membrane permeability. Besides, bile acids may withstand the gastrointestinal impediments and aid in the transporter-mediated absorption of physically complexed or chemically conjugated drug molecules. These biomolecules may increase the drug bioavailability also at submicellar levels by increasing the solubility and dissolution rate of non-polar drugs or through the partition into the membrane and increase of membrane fluidity and permeability. Most bile acid-induced effects are mediated by the nuclear receptors that activate transcriptional networks, which then affect the expression of a number of target genes, including those for membrane transport proteins, affecting the bioavailability of a number of drugs. Besides micellar solubilization, there are many other types of interactions between bile acids and drug molecules, which can influence the drug transport across the biological membranes. Most common drug-bile salt interaction is ion-pairing and the formed complexes may have either higher or lower polarity compared to the drug molecule itself. Furthermore, the hydroxyl and carboxyl groups of bile acids can be utilized for the covalent conjugation of drugs, which changes their physicochemical and pharmacokinetic properties. Bile acids can be utilized in the formulation of conventional dosage forms, but also of novel micellar, vesicular and polymer-based therapeutic systems. The availability of bile acids, along with their simple derivatization procedures, turn them into attractive building blocks for the design of novel pharmaceutical formulations and systems for the delivery of drugs, biomolecules and vaccines. Although toxic properties of hydrophobic bile acids have been described, their side effects are mostly produced when present in supraphysiological concentrations. Besides, minor structural modifications of natural bile acids may lead to the creation of bile acid derivatives with the reduced toxicity and preserved absorption-enhancing activity.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
13
|
Lu J, Li N, Gao Y, Li N, Guo Y, Liu H, Chen X, Zhu C, Dong Z, Yamamoto A. The Effect of Absorption-Enhancement and the Mechanism of the PAMAM Dendrimer on Poorly Absorbable Drugs. Molecules 2018; 23:molecules23082001. [PMID: 30103462 PMCID: PMC6222674 DOI: 10.3390/molecules23082001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023] Open
Abstract
The polyamidoamine (PAMAM) dendrimer is a highly efficient absorption promoter. In the present study, we studied the absorption-enhancing effects and the mechanism of PAMAM dendrimers with generation 0 to generation 3 (G0–G3) and concentrations (0.1–1.0%) on the pulmonary absorption of macromolecules. The absorption-enhancing mechanisms were elucidated by microarray, western blotting analysis, and PCR. Fluorescein isothiocyanate-labeled dextrans (FDs) with various molecular weights were used as model drugs of poorly absorbable drugs. The absorption-enhancing effects of PAMAM dendrimers on the pulmonary absorption of FDs were in a generation- and concentration-dependent manner. The G3 PAMAM dendrimer with high effectiveness was considered to the best absorption enhancer for improving the pulmonary absorption of FDs. G3 PAMAM dendrimers at three different concentrations were non-toxic to Calu-3 cells. Based on the consideration between efficacy and cost, the 0.1% G3 PAMAM dendrimer was selected for subsequent studies. The results showed that treatment with a 0.1% G3 PAMAM dendrimer could increase the secretion of organic cation transporters (OCTs), OCT1, OCT2, and OCT3, which might be related to the absorption-enhancing mechanisms of the pulmonary absorption of FDs. These findings suggested that PAMAM dendrimers might be potentially safe absorption enhancers for improving absorption of FDs by increasing the secretion of OCT1, OCT2, and OCT3.
Collapse
Affiliation(s)
- Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Nannan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin 150076, China.
| | - Yaochun Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Nan Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Chunyan Zhu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China.
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
14
|
Improvement of intestinal transport, absorption and anti-diabetic efficacy of berberine by using Gelucire44/14: In vitro, in situ and in vivo studies. Int J Pharm 2018; 544:46-54. [DOI: 10.1016/j.ijpharm.2018.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
|
15
|
Lei K, He GF, Zhang CL, Liu YN, Li J, He GZ, Li XP, Ren XH, Liu D. Investigation of the synergistic effects of haloperidol combined with Calculus Bovis Sativus in treating MK-801-induced schizophrenia in rats. Exp Anim 2018; 67:163-173. [PMID: 29225304 PMCID: PMC5955748 DOI: 10.1538/expanim.17-0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022] Open
Abstract
Clinical studies that focused on treating schizophrenia showed that Calculus Bovis Sativus (CBS), a substitute of Calculus Bovis, when used in combination with haloperidol could significantly lower the dosage of haloperidol compared with treatment with haloperidol alone, whereas efficacy was maintained. The aim of this study was to investigate the synergetic anti-schizophrenia effects in rats using CBS in combination with haloperidol. An open field test was conducted to verify the pharmacodynamic effects of a combination treatment of CBS and haloperidol on MK-801-induced schizophrenic rats. Rat plasma concentrations of intragastric haloperidol and intravenous haloperidol were determined after oral administration of a single dose or 1-week of pretreatment with CBS (50 mg/kg). The pharmacodynamic data showed a significant decrease in locomotor activity and an increase in the percentage of the central distance when haloperidol was concomitantly administered with CBS compared with haloperidol administration alone. The AUC0-∞ and Cmax of haloperidol in the orally coadministered groups were significantly higher compared with the oral treatment with haloperidol alone. In conclusion, oral coadministration of CBS with haloperidol resulted in a synergistic effect in rats. The enhanced oral bioavailability of haloperidol when combined with CBS might be attributed to the interaction between them.
Collapse
Affiliation(s)
- Kai Lei
- Department of Pharmacy, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Guo-Fang He
- Department of Pharmacy, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Ya-Nan Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Juan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Guang-Zhao He
- Department of Pharmacy, Changzhou Tumor Hospital, 68 Honghe Road, Xinbei District, Changzhou 213032, P.R. China
| | - Xi-Ping Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Xiu-Hua Ren
- Department of Pharmacy, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, P.R. China
| |
Collapse
|
16
|
Sigfridsson K, Nilsson L, Ahlqvist M, Andersson T, Granath AK. Preformulation investigation and challenges; salt formation, salt disproportionation and hepatic recirculation. Eur J Pharm Sci 2017; 104:262-272. [PMID: 28366653 DOI: 10.1016/j.ejps.2017.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/08/2017] [Accepted: 03/29/2017] [Indexed: 11/15/2022]
Abstract
A compound, which is a selective peroxisome proliferator activated receptor (PPAR) agonist, was investigated. The aim of the presented studies was to evaluate the potential of the further development of the compound. Fundamental physicochemical properties and stability of the compound were characterized in solution by liquid chromatography and NMR and in solid-state by various techniques. The drug itself is a lipophilic acid with tendency to form aggregates in solution. The neutral form was only obtained in amorphous form with a glass-transition temperature of approximately 0°C. The intrinsic solubility at room temperature was determined to 0.03mg/mL. Chemical stability studies of the compound in aqueous solutions showed good stability for at least two weeks at room temperature, except at pH1, where a slight degradation was already observed after one day. The chemical stability in the amorphous solid-state was investigated during a period of three months. At 25°C/60% relative humidity (RH) and 40°C/75% RH no significant degradation was observed. At 80°C, however, some degradation was observed after four weeks and approximately 3% after three months. In an accelerated photostability study, degradation of approximately 4% was observed. Attempts to identify a crystalline form of the neutral compound were unsuccessful, however, salt formation with tert-butylamine, resulted in crystalline material. Results from stability tests of the presented crystalline salt form indicated improved chemical stability at conditions whereas the amorphous neutral form degraded. However, the salt form of the drug dissociated under certain conditions. The drug was administered both per oral and intravenously, as amorphous nanoparticles, to conscious dogs. Plasma profiles showed curves with secondary absorption peaks, indicating hepatic recirculation following both administration routes. A similar behavior was observed in rats after oral administration of a pH-adjusted solution. The observed double peaks in plasma exposure and the dissociation tendency of the salt form, were properties that contributed to make further development of the candidate drug challenging. Options for development of solid dosage forms of both amorphous and crystalline material of the compound are discussed.
Collapse
Affiliation(s)
| | - Lena Nilsson
- AstraZeneca R&D Gothenburg, S-431 83 Mölndal, Sweden
| | | | | | | |
Collapse
|
17
|
Murakami T. A Minireview: Usefulness of Transporter-Targeted Prodrugs in Enhancing Membrane Permeability. J Pharm Sci 2016; 105:2515-2526. [DOI: 10.1016/j.xphs.2016.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 11/26/2022]
|
18
|
Effect of environment pH on the photophysics of fisetin in solid lipid nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:305-10. [DOI: 10.1016/j.jphotobiol.2015.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022]
|
19
|
Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M. Application of bile acids in drug formulation and delivery. FRONTIERS IN LIFE SCIENCE 2014. [DOI: 10.1080/21553769.2013.879925] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Miyake M. Improvement and Prediction of Intestinal Drug Absorption. YAKUGAKU ZASSHI 2013; 133:995-1006. [DOI: 10.1248/yakushi.13-00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masateru Miyake
- Bioavailability Research Project, Formulation Research Institute, Otsuka Pharmaceutical Co., Ltd
| |
Collapse
|
21
|
Abstract
Macromolecular therapeutics, in particular, many biologics, is the most advancing category of drugs over conventional chemical drugs. The potency and specificity of the biologics for curing certain disease made them to be a leading compound in the pharmaceutical industry. However, due to their intrinsic nature, including high molecular weight, hydrophilicity and instability, they are difficult to be administered via non-invasive route. This is a major quest especially in biologics, as they are frequently used clinically for chronic disorders, which requires long-term administration. Therefore, many efforts have been made to develop formulation for non-invasive administration, in attempt to improve patient compliance and convenience. In this review, strategies for non-invasive delivery, in particular, oral, pulmonary and nasal delivery, that are recently adopted for delivery of biologics are discussed. Insulin, calcitonin and heparin were mainly focused for the discussion as they could represent protein, polypeptide and polysaccharide drugs, respectively. Many recent attempts for non-invasive delivery of biologics are compared to provide an insight of developing successful delivery system.
Collapse
Affiliation(s)
- Seung Woo Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
22
|
Park CW, Tung NT, Rhee YS, Kim JY, Oh TO, Ha JM, Chi SC, Park ES. Physicochemical, pharmacokinetic and pharmacodynamic evaluations of novel ternary solid dispersion of rebamipide with poloxamer 407. Drug Dev Ind Pharm 2012; 39:836-44. [DOI: 10.3109/03639045.2012.674138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Kumar A, Yellepeddi VK, Vangara KK, Strychar KB, Palakurthi S. Mechanism of gene transfection by polyamidoamine (PAMAM) dendrimers modified with ornithine residues. J Drug Target 2011; 19:770-80. [DOI: 10.3109/1061186x.2011.568061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Maestrelli F, Cirri M, Mennini N, Zerrouk N, Mura P. Improvement of oxaprozin solubility and permeability by the combined use of cyclodextrin, chitosan, and bile components. Eur J Pharm Biopharm 2011; 78:385-93. [PMID: 21439375 DOI: 10.1016/j.ejpb.2011.03.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/12/2011] [Accepted: 03/14/2011] [Indexed: 11/19/2022]
Abstract
The effect of the combined use of randomly methylated β-cyclodextrin (RAMEB), chitosan (CS), and bile components (dehydrocholic (DHCA) or ursodeoxycholic (UDCA) acids and their sodium salts) on solubility and permeability through Caco-2 cells of oxaprozin (a very poorly water-soluble non-steroidal anti-inflammatory drug) has been investigated. Addition of CS, bile acids, and their sodium salts increased the RAMEB solubilizing power of 4, 2, and 5 times, respectively. Drug-RAMEB-CS co-ground systems showed very higher dissolution rate than corresponding drug-RAMEB systems. Addition of bile components further improved drug dissolution rate. The CS presence enabled a significant increase in drug permeability through Caco-2 cells with respect to drug-RAMEB systems. Moreover, CS and NaDHC showed a synergistic enhancer effect, enabling a 1.4-fold permeability increase in comparison with systems without bile salt. However, unexpectedly, no significant differences were found between physical mixtures and co-ground products, indicating that drug permeation improvement was due to the intrinsic enhancer effect of the carriers and not to drug-carrier interactions brought about by co-grinding, as instead found in dissolution rate studies. The combined use of RAMEB, CS, and NaDHC could be exploited to develop effective oral dosage forms of oxaprozin, with increased drug solubility and permeability, and then improved bioavailability.
Collapse
Affiliation(s)
- F Maestrelli
- Department of Pharmaceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | | | | | | | | |
Collapse
|
25
|
Selvam S, Mishra AK. Multiple prototropism of fisetin in sodium cholate and related bile salt media. Photochem Photobiol Sci 2010; 10:66-75. [PMID: 20976368 DOI: 10.1039/c0pp00120a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fisetin, a bioflavonoid, has important biological relevance. It exhibits intramolecular excited state proton transfer (ESIPT), analogous to the structurally similar flavonoids. The presence of multiple prototropic forms of fisetin was observed at various concentrations of different bile salt molecules. The presence of ground state fisetin anion (FA)(GS) (λ(ex) 418 nm; λ(em) 490 nm) in alcohols and bile salt micellar media is a novel observation. The interaction of fisetin with sodium cholate (NaC) and some other bile salts has been studied in detail, using the intrinsic fluorescence of different prototropic forms of fisetin: neutral form (FN, λ(ex) 369 nm, λ(em) ~ 400 nm), ground state anion form ((FA)(GS), λ(ex) 418 nm, λ(em) 490 nm) and phototautomer (FT, λ(ex) 369 nm, λ(em) 540 nm). The hypsochromic shift of (FA*)(ES) emission and bathochromic shift of FT emission with increasing bile salt concentration suggests the progressive reduction of polarity of the bile salt media, which could be resulting from the neutralization of bile salt molecules as their concentration increases.
Collapse
Affiliation(s)
- Susithra Selvam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamilnadu, India
| | | |
Collapse
|
26
|
YAMAMOTO A. Improvement of Intestinal Absorption of Poorly Absorbable Drugs by Polyamidoamine (PAMAM) Dendrimers as Novel Absorption Enhancers. YAKUGAKU ZASSHI 2010; 130:1123-7. [DOI: 10.1248/yakushi.130.1123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Akira YAMAMOTO
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| |
Collapse
|
27
|
Makhlof A, Werle M, Tozuka Y, Takeuchi H. A mucoadhesive nanoparticulate system for the simultaneous delivery of macromolecules and permeation enhancers to the intestinal mucosa. J Control Release 2010; 149:81-8. [PMID: 20138935 DOI: 10.1016/j.jconrel.2010.02.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 01/15/2010] [Accepted: 02/01/2010] [Indexed: 11/25/2022]
Abstract
The feasibility of combining safe permeation enhancers in a mucoadhesive particulate system for the oral delivery of peptide drugs was investigated in this study. Polyelectrolyte complex nanoparticles (NPs) were prepared by ionic interaction of spermine (SPM) with polyacrylic acid (PAA) polymer. Cytotoxicity studies in Caco-2 monolayers revealed the safety of the delivery system in the concentration range used for permeation enhancement. The cellular transport of fluorescein isothiocyanate dextran (FD4) showed higher permeation enhancing profiles of SPM-PAA NPs, as compared to SPM solution or PAA NPs prepared by ionic gelation with MgCl(2) (Mg-PAA NPs). These permeation enhancing effects were associated with a reversible decrease in TEER values, suggesting a paracellular permeation pathway by reversible opening of the tight junctions. Furthermore, confocal microscopy results revealed strong association of the NPs prepared using fluorescence labeled PAA to Caco-2 cells. The permeation enhancing properties of SPM-PAA NPs were further evaluated in vivo after oral administration to rats, using FD4 and calcitonin as models of poorly permeating drugs. Confocal microscopy images of rats' small intestine confirmed previous findings in Caco-2 cells and revealed a strong and prolonged penetration of FD4 from the mucosal to the basolateral side of the intestinal wall. In addition, the proposed NPs were efficient in improving the oral absorption of calcitonin, as evidenced by the significant and prolonged reduction of the blood calcemia in rats.
Collapse
Affiliation(s)
- Abdallah Makhlof
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585, Japan
| | | | | | | |
Collapse
|
28
|
KIMURA T. Analysis of Factors Governing Drug Absorption and Their Improvement. YAKUGAKU ZASSHI 2009; 129:911-23. [DOI: 10.1248/yakushi.129.911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Pisal DS, Yellepeddi VK, Kumar A, Palakurthi S. Transport of Surface Engineered Polyamidoamine (PAMAM) Dendrimers Across IPEC-J2 Cell Monolayers. Drug Deliv 2008; 15:515-22. [DOI: 10.1080/10717540802321826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
30
|
Mukaizawa F, Taniguchi K, Miyake M, Ogawara KI, Odomi M, Higaki K, Kimura T. Novel oral absorption system containing polyamines and bile salts enhances drug transport via both transcellular and paracellular pathways across Caco-2 cell monolayers. Int J Pharm 2008; 367:103-8. [PMID: 18929635 DOI: 10.1016/j.ijpharm.2008.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/10/2008] [Accepted: 09/18/2008] [Indexed: 11/19/2022]
Abstract
The combinatorial use of spermine (SPM), a typical polyamine, and sodium taurocholate (STC), a typical bile salt, was found to be a promising safe preparation for improving the oral absorption of poorly water-soluble and/or poorly absorbable drug in our previous studies utilizing rats and dogs. To clarify the mechanisms behind the synergistic enhancement effect of the polyamine and bile salt, the transport of rebamipide, which is classified into Biopharmaceutics Classification System Class IV, was investigated in Caco-2 cell monolayers. The synergistic enhancement of rebamipide transport by SPM and STC was certainly observed in Caco-2 cells as well, while the separate use of either SPM or STC did not significantly improve the transport of rebamipide. The combinatorial use of SPM and STC significantly decreased the transepithelial electrical resistance (TEER) in Caco-2 cell monolayers, suggesting that the opening of paracellular pathway. On the other hand, it was also confirmed that the decrease in TEER was transient and reversible after removal of SPM and STC and that cell viability was maintained. Voltage-clamp study clearly showed that their combinatorial use improved rebamipide transport via both paracellular and transcellular pathways, and that the contribution of transcellular route could be larger than paracellular route.
Collapse
Affiliation(s)
- Fuyuki Mukaizawa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Gao Y, He L, Katsumi H, Sakane T, Fujita T, Yamamoto A. Improvement of intestinal absorption of water-soluble macromolecules by various polyamines: Intestinal mucosal toxicity and absorption-enhancing mechanism of spermine. Int J Pharm 2008; 354:126-34. [DOI: 10.1016/j.ijpharm.2007.11.061] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 11/28/2007] [Accepted: 11/30/2007] [Indexed: 01/29/2023]
|
32
|
Gao Y, He L, Katsumi H, Sakane T, Fujita T, Yamamoto A. Improvement of intestinal absorption of insulin and water-soluble macromolecular compounds by chitosan oligomers in rats. Int J Pharm 2008; 359:70-8. [PMID: 18450395 DOI: 10.1016/j.ijpharm.2008.03.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/21/2008] [Accepted: 03/16/2008] [Indexed: 11/24/2022]
Abstract
The effects of five chitosan oligomers on the intestinal absorption of fluorescein isothiocyanate-labeled dextrans (FDs) and insulin were studied by an in situ loop method. The absorption of FD4 from the jejunum was effectively improved in the presence of 0.5% (w/v) chitosan hexamer and dimer. However, chitosan hexamer did not improve the colonic absorption of FD4, although we found a moderate increase in the colonic absorption of FD4 in the presence of chitosan pentamer and dimer. The absorption enhancing effect of chitosan hexamer decreased as the molecular weights of FDs increased. In addition, we found a remarkable increase in plasma insulin levels and a significant hypoglycemic effect after jejunal administration of insulin with chitosan hexamer. In the toxicity studies of chitosan hexamer, we found no significant increase in the release of total protein and activity of lactate dehydrogenase (LDH) from the intestinal epithelium in the presence of chitosan hexamer (0.5%, w/v), indicating that this compound was a safe absorption enhancer for improving the intestinal absorption of poorly absorbable drugs. Finally, the transepithelial electrical resistance (TEER) and the permeability of FD4 in rat jejunal membranes with or without chitosan hexamer (0.5%, w/v) were examined by an in vitro diffusion chamber method. We observed a moderate decrease in the TEER values of rat jejunal membranes and a corresponding increase in the permeability of FD4 in the presence of chitosan hexamer (0.5%, w/v). These findings suggested that chitosan hexamer might loosen the tight junction of the intestinal epithelium, thereby improving the intestinal permeability of hydrophilic macromolecular compounds via a paracellular pathway.
Collapse
Affiliation(s)
- Yang Gao
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | | | | | |
Collapse
|
33
|
He L, Gao Y, Lin Y, Katsumi H, Fujita T, Yamamoto A. Improvement of pulmonary absorption of insulin and other water-soluble compounds by polyamines in rats. J Control Release 2007; 122:94-101. [PMID: 17651854 DOI: 10.1016/j.jconrel.2007.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/06/2007] [Accepted: 06/19/2007] [Indexed: 11/17/2022]
Abstract
The absorption enhancing effects of polyamines, spermine (SPM), spermidine (SPD) and putrescine (PUT) on the pulmonary absorption of poorly absorbable drugs were studied in rats. Insulin, 5(6)-carboxyfluorescein (CF), and fluorescein isothiocyanate-labeled dextrans (FDs) were chosen as models of poorly absorbable drugs. The absorption of insulin from the lung was enhanced in the presence of SPM and SPD, while PUT had almost no absorption enhancing effect for improving the pulmonary absorption of insulin in rats. SPM also improved the pulmonary absorption of FDs with various molecular weights, although we found almost no significant difference in the pulmonary absorption of CF with or without SPM. As for the pulmonary membrane toxicity of SPM, there was no significant difference in the release of protein and lactate dehydrogenase (LDH) with or without SPM in bronchoalveolar lavage fluid (BALF), indicating that SPM did not cause any membrane damage to the lung tissues. Furthermore, SPM did not affect the stability of insulin in BALF, suggesting that SPM might increase the permeability of insulin across the alveolar epithelium. In conclusion, polyamines, especially SPM can effectively improve the pulmonary absorption of insulin and other macromolecules without any membrane damage to the lung tissues.
Collapse
Affiliation(s)
- Lin He
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Yellepeddi VK, Pisal DS, Kumar A, Kaushik RS, Hildreth MB, Guan X, Palakurthi S. Permeability of surface-modified polyamidoamine (PAMAM) dendrimers across Caco-2 cell monolayers. Int J Pharm 2007; 350:113-21. [PMID: 17913410 PMCID: PMC2266586 DOI: 10.1016/j.ijpharm.2007.08.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 08/17/2007] [Accepted: 08/21/2007] [Indexed: 11/25/2022]
Abstract
Aim of this study was to prepare polyamine-conjugated PAMAM dendrimers and study their permeability across Caco-2 cell monolayers. Polyamines, namely, arginine and ornithine were conjugated to the amine terminals of the G4 PAMAM dendrimers by Fmoc synthesis. The apical-to-basolateral (AB) and basolateral-to-apical (BA) apparent permeability coefficients (P(app)) for the PAMAM dendrimers increased by conjugating the dendrimers with both of the polyamines. The enhancement in permeability was dependent on the dendrimer concentration and duration of incubation. The correlation between monolayer permeability and the decrease in transepithelial electrical resistance (TEER) with both the PAMAM dendrimers and the polyamine-conjugated dendrimers suggests that paracellular transport is one of the mechanisms of transport across the epithelial cells. Cytotoxicity of the polyamine-conjugated dendrimers was evaluated in Caco-2 cells by MTT (methylthiazoletetrazolium) assay. Arginine-conjugated dendrimers were slightly more toxic than PAMAM dendrimer as well as ornithine-conjugated dendrimers. Though investigations on the possible involvement of other transport mechanisms are in progress, results of the present study suggest the potential of dendrimer-polyamine conjugates as drug carriers to increase the oral absorption of drugs.
Collapse
Affiliation(s)
- Venkata K. Yellepeddi
- Department of Pharmaceutical Sciences, 1 Administration Lane, South Dakota State University, Brookings, SD 57007
| | - Dipak S. Pisal
- Department of Pharmaceutical Sciences, 1 Administration Lane, South Dakota State University, Brookings, SD 57007
| | - Ajay Kumar
- Department of Pharmaceutical Sciences, 1 Administration Lane, South Dakota State University, Brookings, SD 57007
| | - Radhey S. Kaushik
- Department of Biology & Microbiology/Veterinary Sciences, 1 Administration Lane, South Dakota State University, Brookings, SD 57007
| | - Michael B. Hildreth
- Department of Biology & Microbiology, 1 Administration Lane, South Dakota State University, Brookings, SD 57007
| | - Xiangming Guan
- Department of Pharmaceutical Sciences, 1 Administration Lane, South Dakota State University, Brookings, SD 57007
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, 1 Administration Lane, South Dakota State University, Brookings, SD 57007
| |
Collapse
|
35
|
Sugita Y, Takao K, Toyama Y, Shirahata A. Enhancement of intestinal absorption of macromolecules by spermine in rats. Amino Acids 2007; 33:253-60. [PMID: 17653818 DOI: 10.1007/s00726-007-0532-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the enhancing effect of polyamines on intestinal absorption of fluorescein isothiocyanate-labeled dextran (MW 4400, FD-4) in the in situ loop study and in vivo oral absorption study. Absorption of FD-4 from the jejunum was significantly enhanced by 5 mM spermine without serious membrane damage in the jejunum. An in vivo oral absorption study was also performed, and plasma FD-4 levels increased significantly after co-administration of 30 mM spermine. In the in vitro transport studies with Caco-2 cells, prolonged incubation with spermine resulted in a gradual decrease in transepithelial electrical resistance. This finding suggests that the absorption-enhancing mechanism of spermine partly includes opening the tight junctions of the epithelium via the paracellular route. These results indicate that excess oral ingestion of polyamines may have widespread health effects via the modulation of the intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Y Sugita
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan.
| | | | | | | |
Collapse
|
36
|
Fujioka Y, Kadono K, Fujie Y, Metsugi Y, Ogawara KI, Higaki K, Kimura T. Prediction of oral absorption of griseofulvin, a BCS class II drug, based on GITA model: Utilization of a more suitable medium for in-vitro dissolution study. J Control Release 2007; 119:222-8. [PMID: 17442444 DOI: 10.1016/j.jconrel.2007.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 02/19/2007] [Accepted: 03/04/2007] [Indexed: 11/25/2022]
Abstract
The in-vivo absorbability of drugs categorized into the biopharmaceutics classification system (BCS) class II is very difficult to be predicted because of the large variability in the absorption and/or dissolution kinetics and the lack of an adequate in-vitro system for evaluating the dissolution behavior. We tried to predict the in-vivo absorption kinetics of griseofulvin, categorized into BCS class II, orally administrated as powders into rats, based on Gastrointestinal-Transit-Absorption model (GITA model), consisting of the absorption, dissolution and GI-transit processes. Using the dissolution rate constants (k(dis)) of griseofulvin obtained with JP 1st solution, JP 2nd solution, FaSSIF, FeSSIF and modified SIBLM as a medium, simulation lines were not able to describe the observed mean plasma profile at all. On the other hand, a calculated line provided by employing k(dis) obtained with MREVID 2 (medium reflecting in-vivo dissolution 2), a new medium, was in better agreement with the observed mean plasma profile than existing media, indicating that the utilization of adequate k(dis) value made it possible to predict the in-vivo absorption kinetics of drugs classified into BCS class II based on GITA model and that MREVID 2 could be a useful medium for describing the in-vivo dissolution kinetics.
Collapse
Affiliation(s)
- Yoshitsugu Fujioka
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Higaki K. [Safe improvement of drug absorption by combinatorial use of sodium laurate with amino acids: cytoprotection by amino acids and its mechanisms]. YAKUGAKU ZASSHI 2007; 127:589-99. [PMID: 17409688 DOI: 10.1248/yakushi.127.589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of combinatorial chemistry and high-throughput screening techniques has made it possible to generate many new drug candidates very rapidly, but it has also resulted in a number of poorly soluble and/or poorly absorbable candidates. A new trend in drug development based on pharmacogenomics or the development of molecular-targeted drugs is also spurring the tendency, and it does not necessarily lead to good output in terms of the development of new drugs. It is attractive to improve membrane permeability as well as solubility by using adjuvants, because this method could be applicable for various drugs. However, the practical use of absorption-enhancing adjuvants has been limited because of the potential local toxicity. Therefore suppressing the potential local toxicity would lead to the successful development of safe preparations with improved absorption using adjuvants. Our biochemical and histopathologic studies showed that several amino acids such as taurine and L-glutamine had cytoprotective activity, and it has been found that the combinatorial use of sodium laurate (C12) with these amino acids could maintain the absorption-enhancing ability of C12. A suppository preparation containing C12 and taurine remarkably improved the rectal absorption of rebamipide, classified as BCS class IV, and the preparation was safe to the rectal mucosa. For the mechanisms of cytoprotective action by these amino acids, it has been found that they suppress the intracellular calcium level, induce the expression of heat-shock protein 70, and inhibit the release of histamine and apoptosis.
Collapse
Affiliation(s)
- Kazutaka Higaki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| |
Collapse
|
38
|
Miyake M, Minami T, Toguchi H, Odomi M, Ogawara KI, Higaki K, Kimura T. Importance of bile acids for novel oral absorption system containing polyamines to improve intestinal absorption. J Control Release 2006; 115:130-3. [PMID: 16973235 DOI: 10.1016/j.jconrel.2006.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 07/11/2006] [Accepted: 07/15/2006] [Indexed: 11/26/2022]
Abstract
The synergetic improving effect of bile acids with spermine (SPM), a major polyamine, on the absorption of rebamipide, a poorly soluble and poorly absorbable drug (BCS Class IV), was evaluated in rats and beagle dogs. Although the absorption of rebamipide was improved by the addition of polyamines alone in normal rats, it was not improved in bile duct ligated (BDL) rats. The combinatorial use of sodium taurocholate (STC), a bile acid, with SPM improved the absorption of rebamipide even in BDL rats. In the beagle dogs, the oral administration of SPM alone did not enhance the absorption of rebamipide, but the combinatorial use of STC with SPM improved the absorption as well as in the BDL rats. These results indicate that bile acids are indispensable for the novel formulation containing SPM to improve the absorption of rebamipide after oral administration.
Collapse
Affiliation(s)
- Masateru Miyake
- Bioavailability Research Project, Formulation Research Institute, Otsuka Pharmaceutical Co., Ltd., 224-18 Ebino, Hiraishi, Kawauchi-cho, Tokushima 771-0182, Japan
| | | | | | | | | | | | | |
Collapse
|