1
|
Dong J, Li L, Deng T, Song H, Zhang S, Zhong M. Interstitial lung disease associated with ALK inhibitors and risk factors: an updated comparative pharmacovigilance analysis. Front Pharmacol 2024; 15:1361443. [PMID: 39399468 PMCID: PMC11466793 DOI: 10.3389/fphar.2024.1361443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Background Inhibitors of the anaplastic lymphoma kinase (ALK) gene mutation are first-line treatments in patients with ALK-positive lung cancer. The FDA label warns of the risk of interstitial lung disease (ILD) in patients receiving ALK TKIs. However, ILD associated with ALK TKIs is not fully understood. The aim of this study was to characterize the features of ALK TKI-related ILD and to explore risk factors for ALK TKI-related ILD. Methods FDA's Adverse Event Reporting System (FAERS) reports from 2011 Q1 to 2023 Q2 were extracted and combined. Standardized MedDRA queries (SMQs) were used to search for AEs at the preferred term (PT) level. Four algorithms were employed to quantify the signals of ILD associated with ALK TKIs. The risk of ILD was further analyzed using logistic regression. Results A total of 20,064 reports of ALK TKIs and 640 (3.2%) reports of ILD AEs were extracted. Significant disproportionality was detected in all five ALK TKIs. Interstitial lung disease and pneumonitis were the most common lung toxicities induced by ALK TKIs. Results of further analyses revealed a different spectrum of lung toxicity among the various TKIs. The median time to onset of ILD related to ALK TKIs was 53 days (Q1:12, Q3:209), and more than 70% of AEs occurred within the first 2 months. Logistic regression analysis and risk prediction model both showed that different ALK TKIs and their combination with PPIs, amlodipine, and magnesium oxide were independent risk factors for ILD (p<0.05). Conclusion ALK TKIs have different safety profiles regarding lung toxicity, which normally occurs within the first 2 months. Administration in combination with PPIs, amlodipine, and magnesium oxide significantly increases the risk of ILD. These results provide risk prediction for ILD related to ALK TKIs and support pharmacovigilance to promote safe prescribing in oncology.
Collapse
Affiliation(s)
- Junli Dong
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Wuhan No.1 hospital, Wuhan, China
| | - Lulu Li
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Wuhan No.1 hospital, Wuhan, China
| | - Tiying Deng
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Wuhan No.1 hospital, Wuhan, China
| | - Haibin Song
- Department of Oncology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Wuhan No.1 hospital, Wuhan, China
| | - Shaohui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pharmacy, Wuhan No.1 hospital, Wuhan, China
| | - Minyu Zhong
- Department of Oncology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Wuhan No.1 hospital, Wuhan, China
| |
Collapse
|
2
|
Pardhi E, Yadav R, Chaurasiya A, Madan J, Guru SK, Singh SB, Mehra NK. Multifunctional targetable liposomal drug delivery system in the management of leukemia: Potential, opportunities, and emerging strategies. Life Sci 2023; 325:121771. [PMID: 37182551 DOI: 10.1016/j.lfs.2023.121771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
The concern impeding the success of chemotherapy in leukemia treatment is descending efficacy of drugs because of multiple drug resistance (MDR). The previous failure of traditional treatment methods is primarily responsible for the present era of innovative agents to treat leukemia effectively. The treatment option is a chemotherapeutic agent in most available treatment strategies, which unfortunately leads to high unavoidable toxicities. As a result of the recent surge in marketed products, theranostic nanoparticles, i.e., multifunctional targetable liposomes (MFTL), have been approved for improved and more successful leukemia treatment that blends therapeutic and diagnostic characteristics. Since they broadly offer the required characteristics to get past the traditional/previous limitations, such as the absence of site-specific anti-cancer therapeutic delivery and ongoing real-time surveillance of the leukemia target sites while administering therapeutic activities. To prepare MFTL, suitable targeting ligands or tumor-specific antibodies are required to attach to the surface of the liposomes. This review exhaustively covered and summarized the liposomal-based formulation in leukemia treatment, emphasizing leukemia types; regulatory considerations, patents, and clinical portfolios to overcome clinical translation hurdles have all been explored.
Collapse
Affiliation(s)
- Ekta Pardhi
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Rati Yadav
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Akash Chaurasiya
- Department of Pharmaceutics, BITS-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, District. RR, Hyderabad, India
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| |
Collapse
|
3
|
Li J, Tan T, Zhao L, Liu M, You Y, Zeng Y, Chen D, Xie T, Zhang L, Fu C, Zeng Z. Recent Advancements in Liposome-Targeting Strategies for the Treatment of Gliomas: A Systematic Review. ACS APPLIED BIO MATERIALS 2020; 3:5500-5528. [PMID: 35021787 DOI: 10.1021/acsabm.0c00705] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Malignant tumors represent some of the most intractable diseases that endanger human health. A glioma is a tumor of the central nervous system that is characterized by severe invasiveness, blurred boundaries between the tumor and surrounding normal tissue, difficult surgical removal, and high recurrence. Moreover, the blood-brain barrier (BBB) and multidrug resistance (MDR) are important factors that contribute to the lack of efficacy of chemotherapy in treating gliomas. A liposome is a biofilm-like drug delivery system with a unique phospholipid bilayer that exhibits high affinities with human tissues/organs (e.g., BBB). After more than five decades of development, classical and engineered liposomes consist of four distinct generations, each with different characteristics: (i) traditional liposomes, (ii) stealth liposomes, (iii) targeting liposomes, and (iv) biomimetic liposomes, which offer a promising approach to promote drugs across the BBB and to reverse MDR. Here, we review the history, preparatory methods, and physicochemical properties of liposomes. Furthermore, we discuss the mechanisms by which liposomes have assisted in the diagnosis and treatment of gliomas, including drug transport across the BBB, inhibition of efflux transporters, reversal of MDR, and induction of immune responses. Finally, we highlight ongoing and future clinical trials and applications toward further developing and testing the efficacies of liposomes in treating gliomas.
Collapse
Affiliation(s)
- Jie Li
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Tiantian Tan
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Liping Zhao
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Mengmeng Liu
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Yu You
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yiying Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Dajing Chen
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| | - Lele Zhang
- School of Medicine, Chengdu University, Chengdu 610106, Sichuan, China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhaowu Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou 311121, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou 311121, Zhejiang, China
| |
Collapse
|
4
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
5
|
Dutta S, Moses JA, Anandharamakrishnan C. Encapsulation of Nutraceutical Ingredients in Liposomes and Their Potential for Cancer Treatment. Nutr Cancer 2019; 70:1184-1198. [DOI: 10.1080/01635581.2018.1557212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sayantani Dutta
- Computational Modeling and Nano Scale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - Jeyan Arthur Moses
- Computational Modeling and Nano Scale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| | - C. Anandharamakrishnan
- Computational Modeling and Nano Scale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, India
| |
Collapse
|
6
|
Dual drug delivery system of PLGA nanoparticles to reverse drug resistance by altering BAX/Bcl-2. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Singh MS, Tammam SN, Shetab Boushehri MA, Lamprecht A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol Res 2017; 126:2-30. [PMID: 28760489 DOI: 10.1016/j.phrs.2017.07.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
Multidrug resistance (MDR) is associated with a wide range of pathological changes at different cellular and intracellular levels. Nanoparticles (NPs) have been extensively exploited as the carriers of MDR reversing payloads to resistant tumor cells. However, when properly formulated in terms of chemical composition and physicochemical properties, NPs can serve as beyond delivery systems and help overcome MDR even without carrying a load of chemosensitizers or MDR reversing molecular cargos. Whether serving as drug carriers or beyond, a wise design of the nanoparticulate systems to overcome the cellular and intracellular alterations underlying the resistance is imperative. Within the current review, we will initially discuss the cellular changes occurring in resistant cells and how such changes lead to chemotherapy failure and cancer cell survival. We will then focus on different mechanisms through which nanosystems with appropriate chemical composition and physicochemical properties can serve as MDR reversing units at different cellular and intracellular levels according to the changes that underlie the resistance. Finally, we will conclude by discussing logical grounds for a wise and rational design of MDR reversing nanoparticulate systems to improve the cancer therapeutic approaches.
Collapse
Affiliation(s)
- Manu S Singh
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany
| | - Salma N Tammam
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Department of Pharmaceutical Technology, German University of Cairo, Egypt
| | | | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France.
| |
Collapse
|
8
|
Mu LM, Ju RJ, Liu R, Bu YZ, Zhang JY, Li XQ, Zeng F, Lu WL. Dual-functional drug liposomes in treatment of resistant cancers. Adv Drug Deliv Rev 2017; 115:46-56. [PMID: 28433739 DOI: 10.1016/j.addr.2017.04.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/26/2022]
Abstract
Efficacy of regular chemotherapy is significantly hampered by multidrug resistance (MDR) and severe systemic toxicity. The reduced toxicity has been evidenced after administration of drug liposomes, consisting of the first generation of regular drug liposomes, the second generation of long-circulation drug liposomes, and the third generation of targeting drug liposomes. However, MDR of cancers remains as an unsolved issue. The objective of this article is to review the dual-functional drug liposomes, which demonstrate the potential in overcoming MDR. Herein, dual-functional drug liposomes are referring to the drug-containing phospholipid bilayer vesicles that possess a dual-function of providing the basic efficacy of drug and the extended effect of the drug carrier. They exhibit unique roles in treatment of resistant cancer via circumventing drug efflux caused by adenosine triphosphate binding cassette (ABC) transporters, eliminating cancer stem cells, destroying mitochondria, initiating apoptosis, regulating autophagy, destroying supply channels, utilizing microenvironment, and silencing genes of the resistant cancer. As the prospect of an estimation, dual-functional drug liposomes would exhibit more strength in their extended function, hence deserving further investigation for clinical validation.
Collapse
|
9
|
Liu L, Mu LM, Yan Y, Wu JS, Hu YJ, Bu YZ, Zhang JY, Liu R, Li XQ, Lu WL. The use of functional epirubicin liposomes to induce programmed death in refractory breast cancer. Int J Nanomedicine 2017; 12:4163-4176. [PMID: 28615943 PMCID: PMC5459983 DOI: 10.2147/ijn.s133194] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Currently, chemotherapy is less efficient in controlling the continued development of breast cancer because it cannot eliminate extrinsic and intrinsic refractory cancers. In this study, mitochondria were modified by functional epirubicin liposomes to eliminate refractory cancers through initiation of an apoptosis cascade. The efficacy and mechanism of epirubicin liposomes were investigated on human breast cancer cells in vitro and in vivo using flow cytometry, confocal microscopy, high-content screening system, in vivo imaging system, and tumor inhibition in mice. Mechanistic studies revealed that the liposomes could target the mitochondria, activate the apoptotic enzymes caspase 8, 9, and 3, upregulate the proapoptotic protein Bax while downregulating the antiapoptotic protein Mcl-1, and induce the generation of reactive oxygen species (ROS) through an apoptosis cascade. In xenografted mice bearing breast cancer, the epirubicin liposomes demonstrated prolonged blood circulation, significantly increased accumulation in tumor tissue, and robust anticancer efficacy. This study demonstrated that functional epirubicin liposomes could significantly induce programmed death of refractory breast cancer by activating caspases and ROS-related apoptotic signaling pathways, in addition to the direct killing effect of the anticancer drug itself. Thus, we present a simple nanomedicine strategy to treat refractory breast cancer.
Collapse
Affiliation(s)
- Lei Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Li-Min Mu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Yan Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Jia-Shuan Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ying-Jie Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Ying-Zi Bu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Jing-Ying Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Rui Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Xue-Qi Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Zeng F, Ju RJ, Liu L, Xie HJ, Mu LM, Zhao Y, Yan Y, Hu YJ, Wu JS, Lu WL. Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer. Oncotarget 2017; 6:36625-42. [PMID: 26429872 PMCID: PMC4742200 DOI: 10.18632/oncotarget.5382] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/16/2015] [Indexed: 01/03/2023] Open
Abstract
Standard chemotherapy cannot eradicate triple-negative breast cancer (TNBC) while the residual cancer cells readily form the vasculogenic mimicry (VM) channels, which lead to the relapse of cancer after treatment. In this study, the functional vincristine plus dasatinib liposomes, modified by a targeting molecule DSPE-PEG2000-c(RGDyK), were fabricated to address this issue. The investigations were performed on TNBC MDA-MB-231 cells and MDA-MB-231 xenografts in nude mice. The liposomes exhibited the superior performances in the following aspects: the enhancement of cellular uptake via targeted action; the induction of apoptosis via activation of caspase 8, 9, and 3, increased expression of Bax, decreased expression of Mcl-1, and generation of reactive oxygen species (ROS); and the deletion of VM channels via inhibitions on the VM channel indicators, which consisted of vascular endothelial-cadherin (VE-Cad), focal adhesion kinase (FAK), phosphatidylinositide 3-kinase (PI3K), and matrix metallopeptidases (MMP-2, and MMP-9). Furthermore, the liposomes displayed the prolonged circulation time in the blood, the increased accumulation in tumor tissue, and the improved therapeutic efficacy along with deletion of VM channels in the TNBC-bearing mice. In conclusion, the nanostructured functional drug-loaded liposomes may provide a promising strategy for the treatment of invasive TNBC along with deletion of VM channels.
Collapse
Affiliation(s)
- Fan Zeng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rui-Jun Ju
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lei Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hong-Jun Xie
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Li-Min Mu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yao Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying-Jie Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jia-Shuan Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Formulations of Amlodipine: A Review. JOURNAL OF PHARMACEUTICS 2016; 2016:8961621. [PMID: 27822402 PMCID: PMC5086392 DOI: 10.1155/2016/8961621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022]
Abstract
Amlodipine (AD) is a calcium channel blocker that is mainly used in the treatment of hypertension and angina. However, latest findings have revealed that its efficacy is not only limited to the treatment of cardiovascular diseases as it has shown to possess antioxidant activity and plays an important role in apoptosis. Therefore, it is also employed in the treatment of cerebrovascular stroke, neurodegenerative diseases, leukemia, breast cancer, and so forth either alone or in combination with other drugs. AD is a photosensitive drug and requires protection from light. A number of workers have tried to formulate various conventional and nonconventional dosage forms of AD. This review highlights all the formulations that have been developed to achieve maximum stability with the desired therapeutic action for the delivery of AD such as fast dissolving tablets, floating tablets, layered tablets, single-pill combinations, capsules, oral and transdermal films, suspensions, emulsions, mucoadhesive microspheres, gels, transdermal patches, and liposomal formulations.
Collapse
|
12
|
Gupta P, Chanda R, Rai N, Kataria VK, Kumar N. Antihypertensive, Amlodipine Besilate Inhibits Growth and Biofilm of Human Fungal Pathogen Candida. Assay Drug Dev Technol 2016; 14:291-297. [DOI: 10.1089/adt.2016.714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Payal Gupta
- Department of Biotechnology, Graphic Era University, Dehradun, India
| | - Reshmi Chanda
- Department of Microbiology, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era University, Dehradun, India
| | - Vijay K. Kataria
- Department of Microbiology, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, India
| | - Navin Kumar
- Department of Biotechnology, Graphic Era University, Dehradun, India
| |
Collapse
|
13
|
Tripathy N, Ahmad R, Ko HA, Khang G, Hahn YB. Enhanced anticancer potency using an acid-responsive ZnO-incorporated liposomal drug-delivery system. NANOSCALE 2015; 7:4088-4096. [PMID: 25660501 DOI: 10.1039/c4nr06979j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The development of stimuli-responsive nanocarriers is becoming important in chemotherapy. Liposomes, with an appropriate triggering mechanism, can efficiently deliver their encapsulated cargo in a controlled manner. We explored the use of acid-sensitive zinc oxide nanoparticles (ZNPs) as modulators of the responsive properties of liposomes. Nanocomplexes formed by the incorporation of ZNPs in liposomes (ZNP-liposomes) were designed to demonstrate the pH-responsive release of a drug (daunorubicin) without premature drug leakage and with the maintenance of the relevant therapeutic concentrations. The nanocomplexes were spherical in shape with a narrow size distribution and showed a high drug-encapsulating efficiency. Under acidic conditions, the ZNP-liposome nanocomplexes released the loaded drug more rapidly than bare liposomes. Using flow cytometry, confocal microscopy and an MTT assay, we demonstrated that these nanocomplexes were readily taken up by cancer cells, resulting in significantly enhanced cytotoxicity. On exposure to the acidic conditions inside cancer cells, the ZNPs rapidly decomposed, releasing the entrapped drug molecules from the ZNP-liposome nanocomplexes, producing widespread cytotoxic effects. The incorporated ZNPs were multimodal in that they not only resulted in a pH-responsive drug-delivery system, but they also had a synergistic chemo-photodynamic anticancer action. This design provides a significant step towards the development of multimodal liposome structures.
Collapse
Affiliation(s)
- Nirmalya Tripathy
- Department of BIN Fusion Technology and Polymer BIN Research Center, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju 561-756, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Liposomes, modified with PTDHIV-1 peptide, containing epirubicin and celecoxib, to target vasculogenic mimicry channels in invasive breast cancer. Biomaterials 2014; 35:7610-21. [DOI: 10.1016/j.biomaterials.2014.05.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/16/2014] [Indexed: 01/14/2023]
|
15
|
Research Spotlight: Targeting drug delivery systems for circumventing multidrug resistance of cancers. Ther Deliv 2013; 4:667-71. [DOI: 10.4155/tde.13.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multidrug resistance is a major obstacle to successful chemotherapy of cancer. To overcome multidrug resistance, our research is to develop new liposome and nanomicelle delivery systems. Investigations are focusing on certain aspects, including resistant cancer cell membranes, cancer stem cells, mitochondria, apoptosis genes, vasculogenic mimicry and heterogeneity of cancer cells. Evaluations have been performed on cancer cells, cancer spheroids and cancer animal models. These nanoscale formulations demonstrated an enhanced chemotherapy efficacy in resistant cancer and cancer stem cells in vitro and in vivo.
Collapse
|
16
|
Mononuclear transition and non-transition complexes of amlodipine besylate as antihypertensive agent: synthesis, spectral, thermal, and antimicrobial studies. RESEARCH ON CHEMICAL INTERMEDIATES 2013. [DOI: 10.1007/s11164-013-1283-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Sun J, Luo C, Wang Y, He Z. The holistic 3M modality of drug delivery nanosystems for cancer therapy. NANOSCALE 2013; 5:845-859. [PMID: 23292001 DOI: 10.1039/c2nr32867d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cancer has become the leading cause of human death worldwide. There are many challenges in the treatment of cancer and the rapidly developing area of nanotechnology has shown great potential to open a new era in cancer therapy. This article, rather than being exhaustive, focuses on the striking progress in the drug delivery nanosystems (DDNS) for cancer therapy and selects typical examples to point out the emerging mode of action of DDNS from our perspective. Among the outstanding advances in DDNS for cancer therapy is the development of "multicomponent delivery systems", "multifunctional nanocarriers" and "multistage delivery systems". However, these represent only one aspect of DDNS research. In addition, nature is the best teacher and natural evolution pressure has meant that virions conform to the "multitarget, multistage and multicomponent" (3M) mode of action. Amazingly, traditional Chinese medicine (TCM), used for over 4000 years in China, also displays the same mode of action. Integrating the previous notable progress in nanoparticle technology, learned from the building mode of natural virions and the action concept of TCM, we propose an integrity-based 3M mode DDNS for cancer therapy: multitarget, multistage and multicomponent, which are not fragmented parts but an interconnected integrity. Based on the physiological multitarget and the pharmacokinetic multistage, multicomponent DDNS are rationally designed, where different components with individual specific functions act in a synergistic manner against each target at each disposition stage to maximize the targeted delivery effectiveness. In this article, we introduce each component of 3M DDNS in detail and describe some typical cases to realize the tumor-homing purposes.
Collapse
Affiliation(s)
- Jin Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | |
Collapse
|
18
|
Abstract
Hantzsch reported the synthesis of functionalized 1,4-dihydropyridines via three-component condensation of an aromatic aldehyde, ketoester, and ammonium hydroxide. This multicomponent reaction is of much importance due to excellent pharmacological properties of dihydropyridines. In this account, we synthesized some halo- and nitrophenyl dihydropyridines and evaluated their antimicrobial activity. The minimum inhibitory concentration (MIC) was determined by microdilution technique in Mueller Hinton broth. The MICs were recorded after 24 hours of incubation at 37°C. These results showed that these compounds exhibited significant to moderate activities against both Gram-(+) and Gram-(−) organisms.
Collapse
|
19
|
Men Y, Wang XX, Li RJ, Zhang Y, Tian W, Yao HJ, Ju RJ, Ying X, Zhou J, Li N, Zhang L, Yu Y, Lu WL. The efficacy of mitochondrial targeting antiresistant epirubicin liposomes in treating resistant leukemia in animals. Int J Nanomedicine 2011; 6:3125-37. [PMID: 22163164 PMCID: PMC3235031 DOI: 10.2147/ijn.s24847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Multidrug resistance (MDR) of cancers can be circumvented by inducing programmed cell death, which is known as apoptosis. Mitochondria play a crucial role in apoptosis. Mitochondria-specific therapy would provide an efficient strategy for treating resistant cancers. Design and methods A strategy was proposed here to overcome MDR by designing cancer mitochondria-specific drug-loaded liposomes, namely, antiresistant epirubicin mitosomes, aimed at treating resistant leukemia by targeting mitochondria. Evaluations were performed on human chronic leukemia K562, MDR K562/ADR cells, and female BALB/c nude mice xenografted with MDR K562/ADR cells. The liposomes were characterized through assays of cytotoxicity, mitochondrial targeting, caspase-9 and caspase-3, antitumor activities, and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) analysis. Results The average size of antiresistant epirubicin mitosomes was in the range of 105–115 nm. Antiresistant epirubicin mitosomes were effective in inhibiting proliferation of MDR K562/ADR cells in vitro and selectively accumulated into the mitochondria. Caspase-9 and caspase-3 activity was increased after applying antiresistant epirubicin mitosomes. In xenografted resistant MDR K562/ADR tumor in nude mice, antiresistant tumor effect of antiresistant epirubicin mitosomes was evidently observed. Apoptotic inducing effects by antiresistant epirubicin mitosomes were noticeably evidenced via mitochondrial pathway. Conclusions Antiresistant epirubicin mitosomes had significant inhibitory effect against resistant leukemia in vitro and in vivo, hence providing a promising strategy for improving therapeutic efficacy in resistant human leukemia.
Collapse
Affiliation(s)
- Ying Men
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yu Y, Wang ZH, Zhang L, Yao HJ, Zhang Y, Li RJ, Ju RJ, Wang XX, Zhou J, Li N, Lu WL. Mitochondrial targeting topotecan-loaded liposomes for treating drug-resistant breast cancer and inhibiting invasive metastases of melanoma. Biomaterials 2011; 33:1808-20. [PMID: 22136714 DOI: 10.1016/j.biomaterials.2011.10.085] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022]
Abstract
Multidrug resistance and cancer metastases are two obstacles to a successful chemotherapy and metastases are closely associated with drug resistance. Mitochondrial targeting topotecan-loaded liposomes have been developed to overcome this resistance and resistance-related metastases. Investigations were performed on breast cancer MCF-7 and resistant MCF-7/adr cells, MCF-7 and resistant MCF-7/adr tumor spheroids, resistant MCF-7/adr cell xenografts in nude mice, and a naturally resistant B16 melanoma metastatic model in nude mice. The mitochondrial targeting topotecan-loaded liposomes were approximately 64 nm in size, and exhibited the strongest inhibitory effects on MCF-7 cells and resistant MCF-7/adr cells. Mitochondrial targeting effects were demonstrated by co-localization in mitochondria, enhanced drug content in mitochondria, dissipated mitochondrial membrane potential, opening of mitochondrial permeability transition pores, release of cytochrome C, and activation of caspase 9 and 3. The targeting liposomes had a stronger inhibitory effect on the resistant tumor spheroids in vitro, enhanced accumulation in resistant MCF-7/adr cell xenografts in mice, as well as being very effective on resistant MCF-7/adr cell xenografts in mice, and having a marked anti-metastastic effect on the naturally resistant B16 melanoma metastatic model in mice. In conclusion, mitochondrial targeting topotecan-loaded liposomes could be a promising strategy for treating resistant cancers and resistance-related metastases.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang L, Yao HJ, Yu Y, Zhang Y, Li RJ, Ju RJ, Wang XX, Sun MG, Shi JF, Lu WL. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials 2011; 33:565-82. [PMID: 21983136 DOI: 10.1016/j.biomaterials.2011.09.055] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/22/2011] [Indexed: 01/01/2023]
Abstract
Breast cancer stem cells play a crucial role in the relapse of breast cancers because they are resistant to a standard chemotherapy and the residual cancer stem cells are able to proliferate indefinitely. The objectives of present study were to construct a kind of mitochondrial targeting daunorubicin plus quinacrine liposomes for treating and for preventing the recurrence of breast cancer arising from the cancer stem cells. MCF-7 cancer stem cells were identified as CD44(+)/CD24(-) cells and cultured in free-serum medium. Evaluations were performed on MCF-7 cancer stem cells, MCF-7 cancer stem cell mammospheres, and the relapsed tumor by xenografting MCF-7 cancer stem cells into female NOD/SCID mice. The particle size of mitochondrial targeting daunorubicin plus quinacrine liposomes was approximately 98 nm. The mitochondrial targeting liposomes evidently increased the mitochondrial uptake of drugs, were selectively accumulated into mitochondria, activated the pro-apoptotic Bax protein, dissipated the mitochondrial membrane potential, opened the mitochondrial permeability transition pores, released cytochrome C by translocation, and initiated a cascade of caspase 9 and 3 reactions, thereby inducing apoptosis of MCF-7 cancer stem cells. The mitochondrial targeting liposomes showed the strongest efficacy in treating MCF-7 cancer cells in vitro, in treating MCF-7 cancer stem cells in vitro, and in treating the relapsed tumor in mice. Mitochondrial targeting daunorubicin plus quinacrine liposomes would provide a new strategy for treating and preventing the relapse of breast cancers arising from cancer stem cells.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang XX, Li YB, Yao HJ, Ju RJ, Zhang Y, Li RJ, Yu Y, Zhang L, Lu WL. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol-distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 2011; 32:5673-87. [DOI: 10.1016/j.biomaterials.2011.04.029] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/10/2011] [Indexed: 12/20/2022]
|
23
|
The antitumor efficacy of functional paclitaxel nanomicelles in treating resistant breast cancers by oral delivery. Biomaterials 2011; 32:3285-302. [PMID: 21306774 DOI: 10.1016/j.biomaterials.2011.01.038] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 01/13/2011] [Indexed: 01/04/2023]
Abstract
Paclitaxel has shown potent efficacy against a wide spectrum of cancers in clinical treatment. However, chemotherapy with paclitaxel has been limited due to serious allergic reactions in patients caused by cremophor EL, and multidrug resistance in many types of tumors, and the restricted permeability across the intestinal barrier. Functional paclitaxel nanomicelles were developed to overcome these obstacles. Evaluations were performed on the breast cancer MCF-7 and resistant MCF-7/Adr cells, MCF-7 and MCF-7/Adr tumor spheroids, Caco-2 cell manolayers, everted gut sacs and the xenografted resistant MCF-7/Adr cancers in nude mice. The functional paclitaxel nanomicelles were approximately of 15 nm in diameter, significantly increased the intracellular uptake of paclitaxel, and selectively accumulated into mitochondria and endoplasmic reticulum after treatment, showing strong inhibitory effect on MCF-7 and MCF-7/Adr cells. They were able to penetrate deeply into the central region of the MCF-7 and MCF-7/Adr spheroids, resulting in a significant reduction in the size of the spheroids. TEM observations showed that the intact functional paclitaxel nanomicelles were transported across the Caco-2 cell manolayer or the everted gut sac. A significant antitumor efficacy in the xenografted resistant MCF-7/Adr cancers in mice was evidenced by oral administration, which was comparable to intravenous administration. The functional paclitaxel nanomicelles would provide a strategy for oral administration of paclitaxel, increasing solubility of paclitaxel, and overcoming the multidrug resistant cancers.
Collapse
|
24
|
Zhang Y, Li RJ, Ying X, Tian W, Yao HJ, Men Y, Yu Y, Zhang L, Ju RJ, Wang XX, Zhou J, Chen JX, Li N, Lu WL. Targeting Therapy with Mitosomal Daunorubicin plus Amlodipine Has the Potential To Circumvent Intrinsic Resistant Breast Cancer. Mol Pharm 2010; 8:162-75. [DOI: 10.1021/mp100249x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ruo-Jing Li
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xue Ying
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Tian
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hong-Juan Yao
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Men
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Yu
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Liang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rui-Jun Ju
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Xing Wang
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jia Zhou
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing-Xian Chen
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Nan Li
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
25
|
Song XR, Zheng Y, Zheng Y, He G, Yang L, Luo YF, He ZY, Li SZ, Li JM, Yu S, Luo X, Hou SX, Wei YQ. Development of PLGA Nanoparticles Simultaneously Loaded with Vincristine and Verapamil for Treatment of Hepatocellular Carcinoma. J Pharm Sci 2010; 99:4874-9. [DOI: 10.1002/jps.22200] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Tian W, Ying X, Du J, Guo J, Men Y, Zhang Y, Li RJ, Yao HJ, Lou JN, Zhang LR, Lu WL. Enhanced efficacy of functionalized epirubicin liposomes in treating brain glioma-bearing rats. Eur J Pharm Sci 2010; 41:232-43. [DOI: 10.1016/j.ejps.2010.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/01/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
|
27
|
Cen J, Qi Y, Tao YF, Deng Y, Fang WR, Li YM, Zhang LY, Huang WL. HZ08, a great regulator to reverse multidrug resistance via cycle arrest and apoptosis sensitization in MCF-7/ADM. Eur J Pharmacol 2010; 647:21-30. [PMID: 20816813 DOI: 10.1016/j.ejphar.2010.08.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 07/14/2010] [Accepted: 08/21/2010] [Indexed: 11/25/2022]
Abstract
In early studies, it was demonstrated that R-HZ08, S-HZ08 and the racemate had strong reverse efficacy of multidrug resistance in vitro and in vivo (Yan et al., 2008b). The effect was supposed to have direct interaction with multidrug resistance-associated protein (MRP1) in MCF-7/ADM and P-glycoprotein in K562/A02. According to our latest study, we found HZ08 could enhance chemotherapy induced apoptosis by synergistic action on reactive oxygen species generation, GSH depletion, mitochondrial membrane potential depolarization, cytochrome c release and caspase activation. Moreover, the potential selective effect of HZ08 on resistant cells suggested that HZ08 have specific targets for resistance reversal via apoptosis regulation. Therefore, we traced individual influence of HZ08, not only on apoptosis pathway per se but also on apoptosis related intracellular regulation systems. Then we found HZ08 could increase cells in G(0)/G(1) phase and regulate apoptosis related proteins (Bcl-2, Bax) as well as upstream functional molecules (c-Myc and c-Fos), which are usually abnormal in malignancy and responsible for multidrug resistance in MCF-7/ADM. Thereby, chemotherapy induced apoptosis was promoted. R-HZ08 showed better effect than S-HZ08 or the racemate did in most of targets above. Furthermore, HZ08 did not change the concentration of intracellular Ca(2+) which means it would not have side effect as verapamil does. Considering multidrug resistance is multifactorial, HZ08, especially R-HZ08, which could sensitize apoptosis by multiple improvements of upstream malignant characters, will be a promising drug to enhance the effect of chemotherapy in the treatment of multidrug resistant tumor.
Collapse
Affiliation(s)
- Juan Cen
- Department of Physiology, China Pharmaceutical University, Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
AbstractIn this paper the procedure for the preparation of inclusion complexes of amlodipine besylate with β-cyclodextrin (β-CD) and 2-hydrohypropyl-β-cyclodextrin (HPβ-CD) and their structural characterization was described. Molecular inclusion complexes of amlodipine besylate are prepared by the coprecipitation method and characterised by the application of spectroscopic methods FTIR, 1H-NMR and XRD. The photosensitivity of amlodipine besylate in the inclusion complexes was also determined with respect to uncomplexed agent. DSC curves indicate the loss of the clear peak due to melting of amlodipine besylate at about 200°C, while on XR diffractograms certain reflections are lost belonging to amlodipine besylate in complexes. This indicates its inclusion in the vacancies of the host. The inclusion of amlodipine besylate with cyclodextrins increases the stability, i.e. decreases the photosensitivity of amlodipine besylate.
Collapse
|
29
|
Mendonça LS, Moreira JN, de Lima MCP, Simões S. Co-encapsulation of anti-BCR-ABL siRNA and imatinib mesylate in transferrin receptor-targeted sterically stabilized liposomes for chronic myeloid leukemia treatment. Biotechnol Bioeng 2010; 107:884-93. [DOI: 10.1002/bit.22858] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Mazumdar K, Asok Kumar K, Dutta NK. Potential role of the cardiovascular non-antibiotic (helper compound) amlodipine in the treatment of microbial infections: scope and hope for the future. Int J Antimicrob Agents 2010; 36:295-302. [PMID: 20591629 DOI: 10.1016/j.ijantimicag.2010.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 04/19/2010] [Accepted: 05/11/2010] [Indexed: 11/26/2022]
Abstract
The appearance of multiresistant bacterial strains coupled with the globally ongoing problem of infectious diseases point to the imperative need for novel and affordable antimicrobial drugs. The antibacterial potential of cardiovascular non-antibiotics such as amlodipine (AML), dobutamine, lacidipine, nifedipine and oxyfedrine has been reported previously. Of these drugs, AML proved to have the most significant antibacterial activity against Gram-positive and Gram-negative bacteria. Time-kill curve studies indicate that this Ca(2+) channel blocker exhibits bactericidal activity against Listeria monocytogenes and Staphylococcus aureus. AML could protect against murine listeriosis and salmonellosis at doses ranging within its maximum recommended human or non-toxic ex vivo dose. AML acts as a 'helper compound' in synergistic combination with streptomycin against several Gram-positive and Gram-negative bacterial strains in vitro as well as in the murine salmonellosis model in vivo. The present review focuses on the possible use of cardiovascular non-antibiotics such as AML as auxiliary compound targets for synergistic combinations in infections and hypertension conditions, rationalised on the basis of the activities of the compounds.
Collapse
Affiliation(s)
- K Mazumdar
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | | | | |
Collapse
|
31
|
Viale M, Cordazzo C, de Totero D, Budriesi R, Rosano C, Leoni A, Ioan P, Aiello C, Croce M, Andreani A, Rambaldi M, Russo P, Chiarini A, Spinelli D. Inhibition of MDR1 activity and induction of apoptosis by analogues of nifedipine and diltiazem: an in vitro analysis. Invest New Drugs 2009; 29:98-109. [DOI: 10.1007/s10637-009-9340-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 09/28/2009] [Indexed: 11/29/2022]
|
32
|
Ying X, Wen H, Lu WL, Du J, Guo J, Tian W, Men Y, Zhang Y, Li RJ, Yang TY, Shang DW, Lou JN, Zhang LR, Zhang Q. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 2009; 141:183-92. [PMID: 19799948 DOI: 10.1016/j.jconrel.2009.09.020] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 09/11/2009] [Accepted: 09/22/2009] [Indexed: 12/14/2022]
Abstract
Chemotherapy for brain glioma has been of limited value due to the inability of transport of drug across the blood-brain barrier (BBB) and poor penetration of drug into the tumor. For overcoming these hurdles, the dual-targeting daunorubicin liposomes were developed by conjugating with p-aminophenyl-alpha-D-manno-pyranoside (MAN) and transferrin (TF) for transporting drug across the BBB and then targeting brain glioma. The dual-targeting effects were evaluated on the BBB model in vitro, C6 glioma cells in vitro, avascular C6 glioma tumor spheroids in vitro, and C6 glioma-bearing rats in vivo, respectively. After applying dual-targeting daunorubicin liposomes, the transport ratio across the BBB model was significantly increased up to 24.9%. The most significant uptake by C6 glioma was evidenced by flow cytometry and confocal microscope. The C6 glioma spheroid volume ratio was significantly lowered to 54.7%. The inhibitory rate to C6 glioma cells after crossing the BBB was significantly enhanced up to 64.0%. The median survival time of tumor bearing rats after administering dual-targeting daunorubicin liposomes (22 days) was significantly longer than that after giving free daunorubicin (17 days, P=0.001) or other controls. In conclusion, the dual-targeting daunorubicin liposomes are able to improve the therapeutic efficacy of brain glioma in vitro and in animals.
Collapse
Affiliation(s)
- Xue Ying
- State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The reversal of drug-resistance in tumors using a drug-carrying nanoparticular system. Int J Mol Sci 2009; 10:3776-3792. [PMID: 19865518 PMCID: PMC2769153 DOI: 10.3390/ijms10093776] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 08/26/2009] [Indexed: 12/22/2022] Open
Abstract
Medical applications of nanoparticular systems have attracted considerable attention because of their potential use in therapeutic targeting of disease tissues and their lower level of toxicity against healthy tissue, relative to traditional pharmaceutical drugs. The use of nanoparticular systems has been shown to overcome the limitations of most anticancer drugs in clinical applications. In particular, the improved performance of smarted nanoparticular system for solving the drug resistance problems that typically interrupt tumor treatment has provided a promising strategy for successful tumor chemotherapy. This review highlights recent studies that have examined the therapeutic effect of nanoparticular systems on drug-resistant tumors and presents insight on how they work.
Collapse
|
34
|
Bar J, Herbst RS, Onn A. Targeted drug delivery strategies to treat lung metastasis. Expert Opin Drug Deliv 2009; 6:1003-16. [PMID: 19663628 DOI: 10.1517/17425240903167926] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 2009; 37:300-5. [DOI: 10.1016/j.ejps.2009.02.018] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 02/01/2009] [Accepted: 02/24/2009] [Indexed: 11/18/2022]
|
36
|
Du J, Lu WL, Ying X, Liu Y, Du P, Tian W, Men Y, Guo J, Zhang Y, Li RJ, Zhou J, Lou JN, Wang JC, Zhang X, Zhang Q. Dual-Targeting Topotecan Liposomes Modified with Tamoxifen and Wheat Germ Agglutinin Significantly Improve Drug Transport across the Blood−Brain Barrier and Survival of Brain Tumor-Bearing Animals. Mol Pharm 2009; 6:905-17. [PMID: 19344115 DOI: 10.1021/mp800218q] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ju Du
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Wan-Liang Lu
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Xue Ying
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Ping Du
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Wei Tian
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Ying Men
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Jia Guo
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Ruo-Jing Li
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Jia Zhou
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Jin-Ning Lou
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Jian-Cheng Wang
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Xuan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing, China, and Institute of Clinical Medical Sciences, China−Japan Friendship Hospital, The Ministry of Health, Beijing, China
| |
Collapse
|
37
|
Liang GW, Lu WL, Wu JW, Zhao JH, Hong HY, Long C, Li T, Zhang YT, Zhang H, Wang JC, Zhang X, Zhang Q. Enhanced therapeutic effects on the multi-drug resistant human leukemia cells in vitro and xenograft in mice using the stealthy liposomal vincristine plus quinacrine. Fundam Clin Pharmacol 2008; 22:429-37. [PMID: 18705753 DOI: 10.1111/j.1472-8206.2008.00613.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multi-drug resistance (MDR) could be caused by the over-expression of adenosine triphosphate binding cassette transporters such as p-glycoprotein, thereby resulting in the efflux of anti-cancer drugs from the cells. An anti-resistant stealthy liposomal vincristine plus quinacrine was defined in this study. Human chronic myelogenous leukemia K562 and MDR K562 cells were included for comparisons. Anti-tumor activity studies were performed on female BALB/c nude mice with MDR K562 cell xenografts. Results showed that quinacrine was effective in reversing the resistance in the MDR K562 cells, and enhanced the anti-tumor effect of vincristine in K562 cells. The caspase-9 and -3 activities in the MDR K562 and K562 cells were increased with the dose rise of quinacrine. In the MDR K562 cell xenografts in mice, the anti-resistant tumor effect of the stealthy liposomal vincristine plus quinacrine was evidently observed. The enhanced anti-tumor effects of vincristine by quinacrine in the resistant/non-resistant K562 cells could be because of the direct injury and the potentiating apoptotic effect of vincristine via activating the initiator caspase-9 and subsequently the effector caspase-3, and the long circulatory effect of stealthy liposomes. The stealthy liposomal encapsulation of vincristine plus quinacrine could be a potential therapeutic approach for resistant human leukemia.
Collapse
Affiliation(s)
- Gong-Wen Liang
- State Key Laboratory of Natural and Biomimetic Drugs and School of Pharmaceutical Sciences, Peking University, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
A potential target associated with both cancer and cancer stem cells: A combination therapy for eradication of breast cancer using vinorelbine stealthy liposomes plus parthenolide stealthy liposomes. J Control Release 2008; 129:18-25. [DOI: 10.1016/j.jconrel.2008.03.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/06/2008] [Accepted: 03/20/2008] [Indexed: 11/22/2022]
|
39
|
Liposomal delivery improves the growth-inhibitory and apoptotic activity of low doses of gemcitabine in multiple myeloma cancer cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2008; 4:155-66. [PMID: 18430611 DOI: 10.1016/j.nano.2008.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/13/2008] [Accepted: 02/18/2008] [Indexed: 11/23/2022]
Abstract
Gemcitabine-loaded pegylated unilamellar liposomes (200 nm) were proposed for the treatment of multiple myeloma cancer disease. Physicochemical and technological parameters of liposomes were evaluated by using laser light scattering and gel permeation chromatography. The growth-inhibitory activity of gemcitabine-loaded liposomes compared to the free drug was assayed in vitro on U266 (autocrine, interleukin-6-independent) and INA-6 (IL-6-dependent) multiple myeloma cell lines. Liposomes noticeably improved the growth-inhibitory activity of gemcitabine in terms of both dose-dependent and incubation-time effects. Liposomal delivery of gemcitabine consistently and significantly increased induction of apoptosis and caused a complete inhibition of proliferation. Liposomes were able to interact with multiple myeloma cells as demonstrated by confocal laser scanning microscopy and hence to improve the intracellular gemcitabine delivery. Gemcitabine-loaded liposomes were much more effective in vitro than the free drug. This formulation may offer even more in vivo advantages both in terms of drug pharmacokinetic and biodistribution.
Collapse
|
40
|
Oh KT, Lee ES, Kim D, Bae YH. L-histidine-based pH-sensitive anticancer drug carrier micelle: reconstitution and brief evaluation of its systemic toxicity. Int J Pharm 2008; 358:177-83. [PMID: 18407443 DOI: 10.1016/j.ijpharm.2008.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/01/2008] [Accepted: 03/03/2008] [Indexed: 11/25/2022]
Abstract
A doxorubicin (DOX)-carrier micellar system consisting of poly(histidine)(5K)-b-poly(ethylene glycol)(2K) and poly(l-lactic acid)(3K)-b-PEG(2K)-folate has been developed targeting the early endosomal pH and it have been convincingly proved that intracellular high dose strategy using such micelles is effective in overcoming multidrug resistance (MDR) of cancer cells. Due to the low DOX concentrations in the micelle solution obtained by dialysis and the lack of long-term stability of the micelles, stable and lyophilized micelle formulations were the subject of investigation reported here by using excipients of sucrose, PEG or Pluronic. The reconstituted micelle solutions were examined by particle size, pH sensitivity, and cytotoxicity for MDR cells and the results were compared with the non-lyophilized micelles. Among tested excipients, Pluronic F127 (33 wt%) added to the polymer/drug solution prior to dialysis resulted in a reconstituted product stable for a week and presented equivalent benefits as the fresh micelle formulation. The blank micelles did not present any apparent systemic toxicity in mice up to 2400 mg/kg i.v. injection (800 mg/kg day) for 3 days). The brief toxicity of reconstituted DOX loaded micelles was examined by the maximum tolerated dose (MTD), which was approximately 7.5-fold higher than free DOX and guaranteeing further animal toxicity and efficacy study.
Collapse
Affiliation(s)
- Kyung T Oh
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, 421 Wakara Way, UT 84108, USA
| | | | | | | |
Collapse
|
41
|
Misinterpretation of the effect of amlodipine on cytosolic calcium concentration with fura-2 fluorospectrometry. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:423-7. [DOI: 10.1007/s00210-007-0243-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 12/02/2007] [Indexed: 10/22/2022]
|
42
|
Zhang YT, Lu W, Li T, Liang GW, Sun JB, Guo J, Men Y, Du J, Lu WL. A Continued Study on the Stealth Liposomal Topotecan Plus Amlodipine: In Vitro and In Vivo Characterization in Non-Resistant Solid Tumors. ACTA ACUST UNITED AC 2008. [DOI: 10.1248/jhs.54.450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yu-Teng Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Wei Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University
| | - Ting Li
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Gong-Wen Liang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Jia-Bei Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Jia Guo
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Ying Men
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Ju Du
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
| | - Wan-Liang Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University
| |
Collapse
|
43
|
Oral Therapy with Amlodipine and Lacidipine, 1,4-Dihydropyridine Derivatives Showing Activity against Experimental Visceral Leishmaniasis. Antimicrob Agents Chemother 2007; 52:374-7. [PMID: 17954702 DOI: 10.1128/aac.00522-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amlodipine and lacidipine, conventional antihypertensive drugs, inhibited Leishmania donovani infection in vitro and in BALB/c mice when administered orally. These 1,4-dihydropyridine derivatives functioned through dose-dependent inhibition of oxygen consumption, triggering caspase 3-like activation-mediated programmed cell death of the parasites.
Collapse
|
44
|
Duguay D, deBlois D. Differential regulation of Akt, caspases and MAP kinases underlies smooth muscle cell apoptosis during aortic remodelling in SHR treated with amlodipine. Br J Pharmacol 2007; 151:1315-23. [PMID: 17592516 PMCID: PMC2189834 DOI: 10.1038/sj.bjp.0707334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE The regression of aortic hypertrophy is initiated by a transient wave of smooth muscle cell (SMC) apoptosis in spontaneously hypertensive rats (SHR) treated with antihypertensive drugs, although the molecular pathways remain unclear. EXPERIMENTAL APPROACH Enzymes involved in apoptosis regulation were examined daily during onset aortic remodelling in SHR treated with amlodipine (20 mg kg(-1) day(-1)). KEY RESULTS Significant reduction of aortic SMC number occurred by day 3 of amlodipine, reaching -13% at 28 days, followed by a significant regression of medial hypertrophy by day 5, reaching -13% at 28 days. ISOL-positive (apoptotic) SMC nuclei increased by 4.6-fold between days 2 and 4, in temporal correlation with the activation of caspase-8 (2.7-fold) at day 2 only, caspase-3 at days 3 and 4 (1.7-fold) and caspase-9 at day 3 only (3.1-fold). Akt phosphorylation, a pro-survival pathway, was reduced prior to apoptosis at day 1 (-52%) and until day 3. During the first 6 days of amlodipine treatment, significant reduction in phosphorylation of mitogen-activated protein (MAP) kinases was transient for p38 (-46% at day 3 only) but continuous for ERK1/2 after 3 days (-40%), and for JNK after 4 days (>-50%). CONCLUSIONS AND IMPLICATIONS Amlodipine inhibition of Akt occurred prior to and during SMC apoptosis induction, a process mediated by the early activation of caspase-8 followed by caspase-9 and -3 and associated with MAP kinase inhibition. These findings provide insights about the molecular pathways underlying SMC apoptosis leading to vascular remodelling during amlodipine treatment of hypertension.
Collapse
Affiliation(s)
- D Duguay
- Department of Pharmacology, University of Montreal, 2900 Edouard-Montpetit Montreal, Quebec, Canada
| | - D deBlois
- Department of Pharmacology, University of Montreal, 2900 Edouard-Montpetit Montreal, Quebec, Canada
- Author for correspondence:
| |
Collapse
|
45
|
Deng WJ, Yang XQ, Liang YJ, Chen LM, Yan YY, Shuai XT, Fu LW. FG020326-loaded nanoparticle with PEG and PDLLA improved pharmacodynamics of reversing multidrug resistance in vitro and in vivo. Acta Pharmacol Sin 2007; 28:913-20. [PMID: 17506952 DOI: 10.1111/j.1745-7254.2007.00565.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM FG020326, a novel imidazole derivative, is a potent multidrug-resistance (MDR) modulator in vitro and in vivo. However, FG020326 is insoluble. PEDLLA-FG020326 is a FG020326-loaded nanoparticle formed with diblock copolymers of poly (ethylene glycol)-block-poly (D,L-lactic acid) (PEG:PDLLA, PEDLLA) that can solubilize FG020326. This work was intended to evaluate the pharmacodynamics of PEDLLA-FG020326 on reversing MDR in vitro and in vivo. METHODS Cytotoxicity was determined by tetrazolium assay. The intracellular accumulation and efflux of doxorubicin (Dox) were detected by fluorescence spectrophotometry. The function of P-glycoprotein was examined by Rhodamine 123 (Rh123) accumulation detected by flow cytometry. The KBv200 cell xenograft model was established to investigate the effect of PEDLLA-FG020326 on reversing MDR in vivo. RESULTS PEDLLA-FG020326 and FG020326 exhibited 56.4- and 35.9-fold activity in reversing KBv200 cells to vincristine (VCR) resistance, respectively and 14.98- and 7.64-fold to Dox resistance, respectively. PEDLLA-FG020326 was much stronger than FG020326, resulting in the increase of Dox and Rh123 accumulation and the decrease of intracellular Dox extrusion in KBv200 cells. Importantly, PEDLLA-FG020326 exhibited more powerful activity than FG020326 in enhancing the effect of VCR against KBv200 cell xenografts in nude mice, but did not appear more toxic. CONCLUSION The pharmacodynamics of FG020326 was improved by incorporating it into a micellar nanoparticle formed with PEG-block-PDLLA copolymers.
Collapse
Affiliation(s)
- Wen-Jing Deng
- State Key Laboratory of Oncology in Southern China Cancer Center, Sun Yat-Sen University, Guangzhou 510060, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Wong HL, Bendayan R, Rauth AM, Wu XY. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release 2006; 116:275-84. [PMID: 17097178 DOI: 10.1016/j.jconrel.2006.09.007] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 11/24/2022]
Abstract
Multidrug-resistant (MDR) cancer may be treated using combinations of encapsulated cytotoxic drugs and chemosensitizers. To optimize for the effectiveness of this combinational approach, novel polymer-lipid hybrid nanoparticle (PLN) formulations capable of delivering a cytotoxic drug, doxorubicin (Dox), a chemosensitizer, GG918, or their combination were prepared. Both acute and long-term anticancer activities of various combinations of Dox and GG918 in solution or PLN form were evaluated in a human MDR breast cancer cell line (MDA435/LCC6/MDR1) using trypan blue exclusion and clonogenic assays. Cellular Dox uptake and drug distribution within the cells were determined by fluoremetry and fluorescence microscopy. The results showed that the encapsulation efficiencies of Dox and GG918 in PLN were up to 89% and were not compromised by co-encapsulation of the two agents. Of various combinational treatment approaches, the Dox and GG918 co-encapsulated PLN formulation ((DG)n) demonstrated the greatest Dox uptake and anticancer activity to the MDR cells, while co-administration of two single-agent loaded PLN was least effective. Fluorescence microscopy indicated cellular internalization of (DG)n. These findings suggest that in addition to the total drug concentrations, the simultaneous delivery of Dox and GG918 to the same cellular location is critical in determining the therapeutic effectiveness of this anticancer drug-chemosensitizer combination.
Collapse
Affiliation(s)
- Ho Lun Wong
- Leslie Dan Faculty of Pharmacy, 19 Russell Street, University of Toronto, Ontario, Canada M5S 2S2
| | | | | | | |
Collapse
|