1
|
Topuz F, Uyar T. Recent Advances in Cyclodextrin-Based Nanoscale Drug Delivery Systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1995. [PMID: 39480078 DOI: 10.1002/wnan.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024]
Abstract
Cyclodextrins (CDs) belong to a class of cyclic oligosaccharides characterized by their toroidal shape consisting of glucose units linked via α-1,4-glycosidic bonds. This distinctive toroidal shape exhibits a dual nature, comprising a hydrophobic interior and a hydrophilic exterior, making CDs highly versatile in various pharmaceutical products. They serve multiple roles: they act as solubilizers, stabilizers, controlled release promoters, enhancers of drug bioavailability, and effective means of masking undesirable tastes and odors. Taking advantage of these inherent benefits, CDs have been integrated into numerous nanoscale drug delivery systems. The resulting nanomaterials exploit the exceptional properties of CDs, including their ability to solubilize hydrophobic drugs for substantial drug loading, engage in supramolecular complexation for engineered nanomaterials, increase bioavailability for improved therapeutic efficacy, stabilize labile drugs, and exhibit biocompatibility and versatility. This paper compiles recent studies on CD functional nanoscale drug delivery platforms. First, we described the physicochemical and toxicological aspects of CDs, CD/drug inclusion complexation, and their impact on improving drug bioavailability. We then summarized applications for CD-functional nano delivery systems based on polymeric, hybrid, lipid-based nanoparticles, and CD-based nanofibers. Particular interest was in the targeted applications and the function of the CD molecules used. In most applications, CD molecules were used for drug solubilization and loading, while in some studies, CD molecules were employed for supramolecular complexation to construct nanoscale drug delivery systems. Finally, the review concludes with a thoughtful consideration of the current challenges and outlook.
Collapse
Affiliation(s)
- Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Oikawa M, Matsuura S, Okudaira T, Ito R, Arima K, Fushimi M, Oda T, Ohyama K, Kawakami K. Bridging the Gap between in vitro and in vivo Solubility-Permeability Interplay. J Pharm Sci 2024:S0022-3549(24)00446-5. [PMID: 39447870 DOI: 10.1016/j.xphs.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Use of solubilization carriers for poorly soluble drugs may disturb transmembrane absorption by lowering the activity of drug molecules, which is known as the solubility-permeability interplay. However, although many in vitro studies have indicated the negative impacts of use of solubilization carriers for oral absorption, in vivo studies that showed the interplay effect are limited. This study provides systematic in vitro, in situ, and in vivo investigation of the interplay effect of cyclodextrin using dexamethasone as a model drug. The evaluation methods included permeation through polymeric, artificial lipid, cell, and intestinal closed-loop membranes. Then, the results were compared with oral administration studies in mice and dogs. Although the interplay effect was clearly observed in the in vitro studies, no obvious interplay was found in the in vivo studies, suggesting that the interplay effect is more prominent in the in vitro permeation studies. Absence of in vivo interplay was attributed to the dilution effect in the gastrointestinal tract, interaction of the drug with living components, and clearance of the drug after membrane permeation. Overall, this investigation clearly demonstrated the applicability and limitations of in vitro permeation studies for predicting the interplay effects of solubilizers after the oral administration.
Collapse
Affiliation(s)
- Michinori Oikawa
- Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan
| | - Satoru Matsuura
- Nippon Shinyaku Co., Ltd, 14, Nishinosho-Monguchi-cho, Kisshoin, Minami-ku, Kyoto, 601-8550, Japan
| | - Takeyuki Okudaira
- Taiho Pharmaceutical Co., Ltd, 224-2, Ebisuno, Hiraishi, Kawauchi-cho, Tokushima, 771-0194, Japan
| | - Ryo Ito
- Towa Pharmaceutical Co., Ltd., Kyoto Research Park KISTIC #202, 134, Chudoji Minami-machi, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Kanako Arima
- Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan
| | - Masahiro Fushimi
- Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka, 532-0003, Japan
| | - Takamasa Oda
- Nippon Shinyaku Co., Ltd, 14, Nishinosho-Monguchi-cho, Kisshoin, Minami-ku, Kyoto, 601-8550, Japan
| | - Kaoru Ohyama
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
3
|
Wang Y, Yang X, Luo J, Yi S, Guo T, Liao Y, Yu C, Zhang X. Cucurbit[7]uril-based host-guest complexes for improving bioavailability and reducing side effects of piroxicam. Int J Pharm 2024; 660:124351. [PMID: 38897491 DOI: 10.1016/j.ijpharm.2024.124351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Piroxicam (PX) is a nonsteroidal anti-inflammatory drug (NSAID) commonly associated with gastrointestinal (GI) injuries, including dyspepsia, heartburn, inflammation, bleeding, ulceration, and life-threatening perforation. The β-cyclodextrin (β-CD)-based PX formulation (PX@CD) has been shown to reduce gastric side effects by improving PX's solubility and dissolution rates. However, the solubility of PX can only be increased to a limited extent by β-CD, due to the low binding constant between PX and β-CD (∼100 M-1). As a result, adverse reactions such as epigastric pain and pyrosis are still commonly reported. Cucurbit[7]uril (CB[7]) is a synthetic macrocyclic host compound that binds strongly to various drugs. In this study, we demonstrated that CB[7] forms complexes with PX in the gastric acid environment with a binding constant approximately 70 times higher than that between β-CD and PX. The PX@CB[7] inclusion complexes exhibited rapid dissolution rates in the gastric environment. In addition, PX@CB[7] showed significantly higher oral bioavailability and maximum concentration (Cmax) compared to PX and PX@CD (1:2.5), resulting in improved anti-inflammatory effects in both mouse and rat models. Moreover, PX@CB[7] (1:2.5) had the least adhesion to the gastric mucosa and caused the mildest gastric side effects in rat models when compared to PX, PX@CD (1:2.5), and PX@CB[7] (1:1). Lastly, CB[7] demonstrated good oral biocompatibility in a subacute toxicity evaluation study. These findings indicate that CB[7] could be used as an excipient to improve treatment effectiveness and decrease adverse reactions in orally administered formulations with a favorable safety profile.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiaodi Yang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jianguo Luo
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Sisi Yi
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Tao Guo
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Yue Liao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
4
|
Ozon EA, Mati E, Karampelas O, Anuta V, Sarbu I, Musuc AM, Mitran RA, Culita DC, Atkinson I, Anastasescu M, Lupuliasa D, Mitu MA. The development of an innovative method to improve the dissolution performance of rivaroxaban. Heliyon 2024; 10:e33162. [PMID: 39021978 PMCID: PMC11253053 DOI: 10.1016/j.heliyon.2024.e33162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Recent advancements in the formulation of solid dosage forms involving active ingredient-cyclodextrin complexes have garnered considerable attention in pharmaceutical research. While previous studies predominantly focused on incorporating these complexes into solid states, issues regarding incomplete inclusion prompted the exploration of novel methods. In this study, we aimed to develop an innovative approach to integrate liquid-state drug-cyclodextrin inclusion complexes into solid dosage forms. Our investigation centered on rivaroxaban, a hydrophobic compound practically insoluble in water, included in hydroxypropyl-β-cyclodextrin at a 1:1 M ratio, and maintained in a liquid state. To enhance viscosity, hydroxypropyl-cellulose (2 % w/w) was introduced, and the resulting dispersion was sprayed onto the surface of cellulose pellets (CELLETS®780) using a Caleva Mini Coater. The process parameters were meticulously controlled, with atomization air pressure set at 1.1 atm and a fluidizing airflow maintained at 35-45 m3/h. Characterization of the coated cellets, alongside raw materials, was conducted using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) analyses. Physicochemical evaluations affirmed the successful incorporation of rivaroxaban into hydroxypropyl-β-cyclodextrin, with the final cellets demonstrating excellent flowability, compressibility, and adequate hardness. Quantitative analysis via the HPLC-DAD method confirmed a drug loading of 10 mg rivaroxaban/750 mg coated cellets. In vitro dissolution studies were performed in two distinct media: 0.022 M sodium acetate buffer pH 4.5 with 0.2 % sodium dodecyl sulfate (mirroring compendial conditions for 10 mg rivaroxaban tablets), and 0.05 M phosphate buffer pH 6.8 without surfactants, compared to reference capsules and conventional tablet formulations. The experimental capsules exhibited similar release profiles to the commercial product, Xarelto® 10 mg, with enhanced dissolution rates observed within the initial 10 min. This research presents a significant advancement in the development of solid dosage forms incorporating liquid-state drug-cyclodextrin inclusion complexes, offering a promising avenue for improving drug delivery and bioavailability.
Collapse
Affiliation(s)
- Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Erand Mati
- "Titu Maiorescu" University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 16 Sincai Boulevard, 040314, Bucharest, Romania
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Iulian Sarbu
- "Titu Maiorescu" University, Faculty of Pharmacy, Department of Pharmaceutical Physics and Biophysics, Drug Industry and Pharmaceutical Biotechnologies, 16 Sincai Boulevard, 040314, Bucharest, Romania
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Raul-Augustin Mitran
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Daniela C. Culita
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Mihai Anastasescu
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Mirela Adriana Mitu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| |
Collapse
|
5
|
Zhong C, Zong X, Hua B, Sun J. Anti-inflammatory effect of a novel piperazino-enaminone delivered by liposomes in a mouse model of hemophilic arthropathy. Int J Pharm 2024; 659:124291. [PMID: 38821434 DOI: 10.1016/j.ijpharm.2024.124291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Hemophilic arthropathy (HA) is a condition caused by recurrent intra-articular bleeding in patients with hemophilia. Pro-inflammatory cytokines play a crucial role in the pathogenesis of HA. Our previous research demonstrated that a novel compound, piperazino-enaminone (JODI), effectively inhibited pro-inflammatory cytokines, including IL-6, MCP-1, MIP-1α, and MIP-1β, in a mouse model of hemarthrosis. This study aims to enhance the anti-inflammatory effect of JODI by employing nanoparticle delivery systems, which could potentially improve its poor water solubility. Here, we developed liposomes modified with polyethylene glycol (PEG) for the delivery of JODI (JODI-LIP), and found that JODI-LIP exhibited uniform size, morphology, good stability and in vitro release degree. JODI-LIP mitigated cytotoxicity of JODI, and significantly suppressed the production of pro-inflammatory cytokines (TNF-α and IL-1β) and nitric oxide (NO) release in RAW 264.7 cells stimulated by lipopolysaccharide (LPS), as well as the proliferation of human fibroblast-like synovial (HFLS) cells. In a murine model of HA, JODI-LIP demonstrated superior efficacy in ameliorating joint swelling and synovitis, compared to JODI. Importantly, JODI-LIP markedly reduced pro-inflammatory cytokines (TNF-α, IFN-γ, IL-33, and MCP-1) in injured joints. No hepatic or hematological toxicity was observed in mice treated with JODI-LIP. In summary, our results suggest that JODI-LIP holds promise as a therapeutic intervention for HA by attenuating pro-inflammatory cytokine levels.
Collapse
Affiliation(s)
- Chen Zhong
- Marine Science Research Institute of Shandong Province, Qingdao, People's Republic of China; School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiaoying Zong
- School of Bioengineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Baolai Hua
- Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Junjiang Sun
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Che A, Espejo J, Ling CC. Synthesis and Inclusion Properties of a β-Cyclodextrin Heptaphosphoramidate. Molecules 2024; 29:2714. [PMID: 38930780 PMCID: PMC11205585 DOI: 10.3390/molecules29122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we report a novel per-6-substituted β-cyclodextrin (4) featuring seven phosphoramidate moieties as an innovative host for inclusion. This structurally well-defined host has remarkable water solubility and was isolated in pure form. Analytical techniques such as NMR and ITC were used to probe the molecular interactions with different drug molecules. Our investigations revealed that host 4 can form 2:1 inclusion complexes with various drugs. Further studies showed that the inclusions of drugs by β-CD host (4) are mostly enthalpy driven, highlighting the potential roles played by the phosphoramidate functionalities of the host. Comparatively, a per-O2, O3-acetylated analog (6) of compound 4 was also obtained, which also shows unusual water solubility but diminished inclusion capability.
Collapse
Affiliation(s)
| | | | - Chang-Chun Ling
- Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.C.); (J.E.)
| |
Collapse
|
7
|
Volkova T, Simonova O, Perlovich G. Controlling the Solubility, Release Rate and Permeation of Riluzole with Cyclodextrins. Pharmaceutics 2024; 16:757. [PMID: 38931879 PMCID: PMC11206789 DOI: 10.3390/pharmaceutics16060757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Riluzole (RLZ), a sodium channel-blocking benzothiazole anticonvulsant BCS class II drug, is very slightly soluble in aqueous medium. To improve aqueous solubility and modulate dissolution rate and membrane permeability, complex formation of RLZ with two cyclodextrin, α-cyclodextrin (α-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD), was studied. The stability constants demonstrated a greater affinity of SBE-β-CD towards RLZ compared to α-CD. A solubility growth of 1.7-fold and 3.7-fold with α-CD and SBE-β-CD, respectively, was detected in the solutions of 1% cyclodextrins and accompanied by the permeability reduction. For 1% CD solutions, several biopolymers (1% w/v) were tested for the membrane permeability under static conditions. The synergistic positive effect of α-CD and polymer on the solubility accompanied by unchanged permeability was revealed in RLZ/α-CD/PG, RLZ/α-CD/PEG400, and RLZ/α-CD/PEG1000 systems. Solid RLZ/CD complexes were prepared. Dynamic dissolution/permeation experiments for the solid samples disclosed the characteristic features of the release processes and permeation rate through different artificial membranes. The maximal permeation rate was determined across the hydrophilic semi-permeable cellulose membrane followed by the lipophilic PermeaPad barrier (model of intestinal and buccal absorption) and polydimethylsiloxane-polycarbonate membrane (simulating transdermal delivery way). Different mode of the permeation between the membranes was estimated and discussed.
Collapse
Affiliation(s)
| | | | - German Perlovich
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia; (T.V.); (O.S.)
| |
Collapse
|
8
|
Alghaith AF, Mahrous GM, Alenazi AS, ALMufarrij SM, Alhazzaa MS, Radwan AA, Alhamed AS, Bin Salamah MS, Alshehri S. Dissolution enhancement of Gefitinib by solid dispersion and complexation with β-cyclodextrins: In vitro testing, cytotoxic activity, and tablet formulation. Saudi Pharm J 2024; 32:102070. [PMID: 38645413 PMCID: PMC11031755 DOI: 10.1016/j.jsps.2024.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024] Open
Abstract
Cancer is the leading cause of mortality worldwide. In patients with metastatic non-small cell lung cancer, epidermal growth factor receptor (EGFR) is often overexpressed. Gefitinib (GEF), an inhibitor of EGFR, is approved for the treatment of patients with metastatic non-small cell lung cancer (NSCLC). However, the low solubility and dissolution of GEF limits its bioavailability. Numerous methods, including solid dispersion (SD) and complexation, have been reported to enhance the dissolution of poorly soluble drugs. In this study, GEF complexes were prepared using methyl-β-cyclodextrin (MβCD) and hydroxypropyl-β-cyclodextrin (HPβCD) in two molar ratios (1:1 and 1:2), furthermore, GEF SDs were prepared using polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and poloxamer-188(PXM) in three different ratios (1:2, 1:4 and 1:6 w/w). Dissolution studies were conducted on the prepared formulations. Dissolution results showed a 1.22-2.17-fold enhancement in drug dissolution after one hour compared to untreated GEF. Two formulations that showed higher dissolution enhancement were subsequently evaluated for in-vitro cytotoxicity and were formulated into tablets. The selected PVP-GEF (1:4 w/w) and MβCD-GEF (1:1M) formulas displayed improved cytotoxicity compared to untreated GEF. The IC50 values of the PVP-GEF and MβCD-GEF were 4.33 ± 0.66 and 4.84 ± 0.38 µM, respectively which are significantly lower (p < 0.05) than free GEF. In addition, the formulated tablets exhibited enhanced dissolution compared to pure GEF tablets. PVP-GEF SD tablets released (35.1 %±0.4) of GEF after one hour, while GEF-MβCD tablets released (42.2 % ± 0.7) after one hour. In the meantime, tablets containing pure GEF showed only 15 % ± 0.5 release at the same time. The findings of this study offer valuable insights for optimizing the dissolution and hence therapeutic capabilities of GEF while mitigating its limitations.
Collapse
Affiliation(s)
- Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamal M. Mahrous
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S. Alenazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Suliaman M. ALMufarrij
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Alhazzaa
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Awwad A. Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S. Bin Salamah
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Yardy A, Entz K, Bennett D, Macphail B, Adronov A. Incorporation of Loratadine-Cyclodextrin Complexes in Oral Thin Films for Rapid Drug Delivery. J Pharm Sci 2024; 113:1220-1227. [PMID: 37984698 DOI: 10.1016/j.xphs.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Rapidly dissolving polymer thin films, or oral thin films (OTFs), have recently emerged as an improved oral drug delivery vehicle with its ability to bypass liver first pass metabolism, longer shelf-life, and simpler transport and distribution requirements, compared to traditional tablets and liquid formulations. Loratadine (LOR), an antihistamine commonly used to treat allergic rhinitis, undergoes liver first pass metabolism and is a prime candidate for incorporation within an OTF. However, loratadine is a BCS II drug with low aqueous solubility. Herein, the solubility of loratadine was improved by complexation with methyl β-cyclodextrin (MBCD) by co-evaporation of 2:1, 1:1, and 1:2 LOR:MBCD ratios and incorporation into a pullulan-based OTF at 4 wt% by solvent casting at 50 °C for 30 - 35 min. A therapeutically relevant 10 mg LOR dose could be prepared in a 3 cm by 3 cm OTF. The feasibility of complexation was observed with a Bs-type phase solubility diagram, and complexation itself was confirmed via differential scanning calorimetry (DSC) by disappearance of the LOR melting peak, Fourier-transform infrared spectroscopy (FTIR) by shifting of the C=O peak, via 1H NMR spectroscopy by downfield shifting and change in peak multiplicity of the LOR aromatic protons, and via diffusion-ordered spectroscopy by a decrease in the diffusion coefficient of LOR:MBCD complex. LOR:MBCD could be incorporated homogeneously throughout an OTF, and LOR:MBCD OTFs exhibited reasonable mechanical strength and endured 12 ± 3 folds before breaking. LOR:MBCD OTFs disintegrated within 38 ± 10 s. The cumulative in vitro release of LOR:MBCD OTFs peaked at 80 % within 3-4 min of dissolution, and LOR in LOR:MBCD OTFs exhibited permeability across a 0.22 μm nitrocellulose membrane, demonstrating its applicability as a rapid drug delivery vehicle.
Collapse
Affiliation(s)
- Annika Yardy
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - Kirsten Entz
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | - Dayna Bennett
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada
| | | | - Alex Adronov
- Department of Chemistry and Chemical Biology and the Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
10
|
Garra R, Piersanti A, Del Vicario M, Pizzo CM, Festa R, Tosi F, Sbaraglia F, Spano MM, Della Sala F, Rossi M. Clinical Evaluation of Oral Midazolam Containing Cyclodextrin in Pediatric Magnetic Resonance: A Retrospective Cohort Study. J Pers Med 2024; 14:472. [PMID: 38793054 PMCID: PMC11122387 DOI: 10.3390/jpm14050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Reducing a child's level of anxiety before magnetic resonance imaging (MRI) procedures allows for better behavioral outcomes. The aim of this retrospective study was to evaluate anxiolytic efficacy of Midazolam/γ-cyclodextrin oral formulation. METHODS We retrospectively reviewed 100 medical charts of children who, between 1 February and 31 July 2022, underwent MRI under general anesthesia with or without premedication with midazolam/γ-cyclodextrin. Primary outcome was comparison of behavior to facemask positioning, while secondary endpoints were degree of drugs acceptance, anxiolytic effect evaluation, child's behavior on separation, and sevoflurane need. RESULTS Facemask positioning was accepted by 58% of the midazolam/γ-cyclodextrin group compared to 22% of children in the control group. The rate of acceptance was >90%. At the moment of separation from parent, none of the premedicated children needed to be restrained compared to 18% in the control group. A lower percentage of sevoflurane was needed for eye-closure at induction of anesthesia and for anesthesia maintenance. At emergence from anesthesia, 46% of children in the premedicated group compared to 66% of children in the control group showed transient agitation. CONCLUSIONS Midazolam/γ-cyclodextrin showed a good profile of acceptance, satisfactory anxiolytic properties, and reduced need for anesthetics when administered to children before MRI under general anesthesia.
Collapse
Affiliation(s)
- Rossella Garra
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Alessandra Piersanti
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Miryam Del Vicario
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Cecilia Maria Pizzo
- Department of Anesthesia and Critical Care, Ospedale Pediatrico Bambino Gesù IRCCS, 00146 Rome, Italy;
| | - Rossano Festa
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Federica Tosi
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Fabio Sbaraglia
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Michelangelo Mario Spano
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Filomena Della Sala
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| | - Marco Rossi
- Department of Anesthesia and Intensive Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (A.P.); (M.D.V.); (R.F.); (F.T.); (F.S.); (M.M.S.); (F.D.S.); (M.R.)
| |
Collapse
|
11
|
Liu H, Guo S, Wei S, Liu J, Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr Polym 2024; 329:121763. [PMID: 38286540 DOI: 10.1016/j.carbpol.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.
Collapse
Affiliation(s)
- Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
12
|
Zhou J, Ji J, Li X, Zhang Y, Gu L, Zheng X, Li Y, He J, Yang C, Xiao K, Gong Q, Gu Z, Luo K. Homomultivalent Polymeric Nanotraps Disturb Lipid Metabolism Homeostasis and Tune Pyroptosis in Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312528. [PMID: 38240412 DOI: 10.1002/adma.202312528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Genetic manipulations and pharmaceutical interventions to disturb lipid metabolism homeostasis have emerged as an attractive approach for the management of cancer. However, the research on the utilization of bioactive materials to modulate lipid metabolism homeostasis remains constrained. In this study, heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin (TMCD) is utilized to fabricate homomultivalent polymeric nanotraps, and surprisingly, its unprecedented ability to perturb lipid metabolism homeostasis and induce pyroptosis in tumor cells is found. Through modulation of the density of TMCD arrayed on the polymers, one top-performing nanotrap, PTMCD4, exhibits the most powerful cholesterol-trapping and depletion capacity, thus achieving prominent cytotoxicity toward different types of tumor cells and encouraging antitumor effects in vivo. The interactions between PTMCD4 and biomembranes of tumor cells effectively enable the reduction of cellular phosphatidylcholine and cholesterol levels, thus provoking damage to the biomembrane integrity and perturbation of lipid metabolism homeostasis. Additionally, the interplays between PTMCD4 and lysosomes also induce lysosomal stress, activate the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasomes, and subsequently trigger tumor cell pyroptosis. To sum up, this study first introduces dendronized bioactive polymers to manipulate lipid metabolism and has shed light on another innovative insight for cancer therapy.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiecheng Ji
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xue Li
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuxin Zhang
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiuli Zheng
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunkun Li
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhan He
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610064, China
| | - Kai Xiao
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, 361000, China
| | - Zhongwei Gu
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, and Department of Pharmacy, Huaxi MR Research Center (HMRRC), Laboratory of Stem Cell Biology, and Laboratory of Precision Cancer Therapeutics, Precision Medicine Research Center, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
13
|
Akaki S, Hosokawa M, Maeda S, Kono Y, Maeda H, Ogawara KI. Efficient Loading into and Controlled Release of Lipophilic Compound from Liposomes by Using Cyclodextrin as Novel Trapping Agent. Biol Pharm Bull 2024; 47:1832-1835. [PMID: 39522976 DOI: 10.1248/bpb.b24-00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Lipid bilayer vesicles, liposomes are representative drug delivery carriers. High encapsulation efficiency and release control of drugs are essential for clinical application of liposomes. For efficient drug loading into liposomes, remote loading method using driving force like transmembrane gradients of pH and ions are utilized. Ions are called as "trapping agents," which are also critical for the controlled release of drugs loaded into liposomes inside. It is difficult to apply ions as trapping agents to various drugs because of limited physicochemical compatibility between drugs and ions. Cyclodextrins (CDs) with hydrophobic cavity can make inclusion complexes with various hydrophobic compounds. Therefore, we aimed to evaluate the potential of CDs as a novel trapping agent using sulfobutylether-β-cyclodextrin (SBE-β-CD) and ibuprofen (IB), a weak acid hydrophobic drug. Encapsulation efficiency of IB in liposomes with pH gradient was approximately 27%, and it was enhanced by intraliposomal SBE-β-CD inclusion in addition to pH gradient, which was SBE-β-CD concentration-dependent. In liposomes with pH gradient, a large fraction of IB was released in a short time. This early-stage rapid IB release was significantly suppressed by the inclusion of SBE-β-CD inside liposomes. Thus, novel remote loading technology by intraliposomal SBE-β-CD enabled the efficient encapsulation of the hydrophobic drug into the aqueous phase of liposomes as well as their controlled release. This technology should be applied to various drugs that can be included into CDs in order to enhance their therapeutic benefits.
Collapse
Affiliation(s)
- Sae Akaki
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University
| | - Mika Hosokawa
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University
| | - Saki Maeda
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University
| | - Yusuke Kono
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University
| | - Hideko Maeda
- Comprehensive Education and Research Center (Support Division), Kobe Pharmaceutical University
| | | |
Collapse
|
14
|
Fine-Shamir N, Dahan A. Solubility-enabling formulations for oral delivery of lipophilic drugs: considering the solubility-permeability interplay for accelerated formulation development. Expert Opin Drug Deliv 2024; 21:13-29. [PMID: 38124383 DOI: 10.1080/17425247.2023.2298247] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Tackling low water solubility of drug candidates is a major challenge in today's pharmaceutics/biopharmaceutics, especially by means of modern solubility-enabling formulations. However, drug absorption from these formulations oftentimes remains unchanged or even decreases, despite substantial solubility enhancement. AREAS COVERED In this article, we overview the simultaneous effects of the formulation on the solubility and the apparent permeability of the drug, and analyze the contribution of this solubility-permeability interplay to the success/failure of the formulation to increase the overall absorption and bioavailability. Three different patterns of interplay were identified: (1) solubility-permeability tradeoff in which every solubility gain comes with a price of concomitant permeability loss; (2) an advantageous interplay pattern in which the permeability remains unchanged alongside the solubility gain; and (3) an optimal interplay pattern in which the formulation increases both the solubility and the permeability. Passive vs. active intestinal permeability considerations in the context of the solubility-permeability interplay are also thoroughly discussed. EXPERT OPINION The solubility-permeability interplay pattern of a given formulation has a critical effect on its overall success/failure, and hence, taking into account both parameters in solubility-enabling formulation development is prudent and highly recommended.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
15
|
Ghaeini Hesarooeyeh Z, Basham A, Sheybani-Arani M, Abbaszadeh M, Salimi Asl A, Moghbeli M, Saburi E. Effect of resveratrol and curcumin and the potential synergism on hypertension: A mini-review of human and animal model studies. Phytother Res 2024; 38:42-58. [PMID: 37784212 DOI: 10.1002/ptr.8023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Resveratrol (RES) and curcumin (CUR) are two of the most extensively studied bioactive compounds in cardiovascular research from the past until today. These compounds have effectively lowered blood pressure by downregulating the renin-angiotensin system, exerting antioxidant effects, and exhibiting antiproliferative activities on blood vessels. This study aims to summarize the results of human and animal studies investigating the effects of CUR, RES, and their combination on hypertension and the molecular mechanisms involved. The published trials' results are controversial regarding blood pressure reduction with different doses of RES and CUR, highlighting the need to address this issue.
Collapse
Affiliation(s)
- Zahra Ghaeini Hesarooeyeh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ayoub Basham
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mahshid Abbaszadeh
- Student Research Committee, School of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Boczar D, Michalska K. Investigation of the Affinity of Ceftobiprole for Selected Cyclodextrins Using Molecular Dynamics Simulations and HPLC. Int J Mol Sci 2023; 24:16644. [PMID: 38068968 PMCID: PMC10706467 DOI: 10.3390/ijms242316644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
This paper presents the theoretical calculations of the inclusion complex formation between native ceftobiprole, a promising antibiotic from the cephalosporin group, and selected cyclodextrins (CDs) approved by the European Medicines Agency. Ceftobiprole was studied in three protonation states predicted from pKa calculations, along with three selected CDs in a stoichiometric ratio of 1:1. It was introduced into the CD cavity in two opposite directions, resulting in 18 possible combinations. Docking studies determined the initial structures of the complexes, which then served as starting structures for molecular dynamics simulations. The analysis of the obtained trajectories included the spatial arrangement of ceftobiprole and CD, the hydrogen bonds forming between them, and the Gibbs free energy (ΔG) of the complex formation, which was calculated using the Generalised Born Surface Area (GBSA) equation. Among them, a complex of sulfobutyl ether- (SBE-) β-CD with protonated ceftobiprole turned out to be the most stable (ΔG = -12.62 kcal/mol = -52.80 kJ/mol). Then, experimental studies showed changes in the physiochemical properties of the ceftobiprole in the presence of the CDs, thus confirming the validity of the theoretical results. High-performance liquid chromatography analysis showed that the addition of 10 mM SBE-β-CD to a 1 mg/mL solution of ceftobiprole in 0.1 M of HCl increased the solubility 1.5-fold and decreased the degradation rate constant 2.5-fold.
Collapse
Affiliation(s)
| | - Katarzyna Michalska
- Department of Synthetic Drugs, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland;
| |
Collapse
|
17
|
Karthikeyan M, Dhinesh Kumar M, Kaniraja G, Karunakaran C. Theoretical investigations of free energy of binding and chiral recognition studies of (R)- and (S)-Noradrenaline towards β-cyclodextrin. J Mol Graph Model 2023; 124:108552. [PMID: 37379759 DOI: 10.1016/j.jmgm.2023.108552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Noradrenaline (NA), one of the important excitatory catecholamine neurotransmitters, is used as a medication for Parkinson's Disease (PD). The β-cyclodextrin (β-CD) is one of the most effective drug carrier & also used in chiral separation. So, in this theoretical investigation, the R/S-Noradrenaline (R/S-NA) forms binding & chiral recognition mechanisms and energies with β-CD were explored. Using the AutoDock, R/S forms were first docked into the cavity of β-CD giving host-guest complexes with the free energy of binding for S-NA (-4.81 kcal/mol) larger than R-NA (-4.53 kcal/mol). The host-guest inclusion 1:1 complexes between R/S-NA and β-CD have been also modeled and optimized with ONIOM2 (B3LYP/6-31g++DP: PM6) method by using the Gaussian software. Further, frequency calculations were carried out to obtain the free energies. In comparison to the R-NA (-54.59 kcal/mol), it was observed that the S-NA (-56.48 kcal/mol) with β-CD is more stable. Furthermore, the H-bond results from molecular dynamics simulation revealed that S-NA/β-CD was more stable than R-NA/β-CD. In addition, the thermodynamic properties, vibrational analysis (IR), HOMO-LUMO band gap energy, inter molecular hydrogen bond interactions, and conformational analysis were investigated for both the R/S forms to support & compare the stability of the inclusion complex. These inclusion & high stability of S-NA/β-CD and in turn its theoretical chiral recognition behavior observed agreeing well with the reported NMR experimental data have implications in drug delivery and chiral separation research.
Collapse
Affiliation(s)
- Murugesan Karthikeyan
- Biomedical Research Laboratory, Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar- 626 001, Tamil Nadu, India
| | - Marimuthu Dhinesh Kumar
- Biomedical Research Laboratory, Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar- 626 001, Tamil Nadu, India
| | - Ganesan Kaniraja
- Biomedical Research Laboratory, Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar- 626 001, Tamil Nadu, India
| | - Chandran Karunakaran
- Biomedical Research Laboratory, Department of Chemistry, Virudhunagar Hindu Nadars' Senthikumara Nadar College (Autonomous & Affiliated to Madurai Kamaraj University), Virudhunagar- 626 001, Tamil Nadu, India.
| |
Collapse
|
18
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
19
|
Tong F, Zhou Y, Xu Y, Chen Y, Yudintceva N, Shevtsov M, Gao H. Supramolecular nanomedicines based on host-guest interactions of cyclodextrins. EXPLORATION (BEIJING, CHINA) 2023; 3:20210111. [PMID: 37933241 PMCID: PMC10624390 DOI: 10.1002/exp.20210111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/09/2023] [Indexed: 11/08/2023]
Abstract
In the biomedical and pharmaceutical fields, cyclodextrin (CD) is undoubtedly one of the most frequently used macrocyclic compounds as the host molecule because it has good biocompatibility and can increase the solubility, bioavailability, and stability of hydrophobic drug guests. In this review, we generalized the unique properties of CDs, CD-related supramolecular nanocarriers, supramolecular controlled release systems, and targeting systems based on CDs, and introduced the paradigms of these nanomedicines. In addition, we also discussed the prospects and challenges of CD-based supramolecular nanomedicines to facilitate the development and clinical translation of these nanomedicines.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Yuxiu Chen
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| | - Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery SystemsWest China School of PharmacySichuan UniversityChengduChina
| |
Collapse
|
20
|
Volkova T, Simonova O, Perlovich G. Cyclodextrin's Effect on Permeability and Partition of Nortriptyline Hydrochloride. Pharmaceuticals (Basel) 2023; 16:1022. [PMID: 37513934 PMCID: PMC10386514 DOI: 10.3390/ph16071022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclodextrin-based delivery systems have been intensively used to improve the bioavailability of drugs through the modification of their pharmaceutically relevant properties, such as solubility, distribution and membrane permeation. The present work aimed to disclose the influence of HP-β-CD and SBE-β-CD on the distribution and permeability of nortriptyline hydrochloride (NTT•HCl), a tricyclic antidepressant drug. To this end, the distribution coefficients in the 1-octanol/buffer and n-hexane/buffer model systems and the coefficients of permeability through the cellulose membrane and lipophilic PermeaPad barrier were determined at several cyclodextrin concentrations. The results demonstrated a dramatic decrease in both the distribution and the permeability coefficients as the cyclodextrin concentration rose, with the decrease being more pronounced in SBE-β-CD due to the charge-charge attraction and electrostatic interactions between NTT and SBE-β-CD. It is these interactions that were shown to be responsible for the greater value of the constant of NTT's association with SBE-β-CD than that with HP-β-CD. The findings of this study revealed similar trends in the 1-octanol/buffer 6.8 pH distribution and permeability through the PermeaPad barrier in the presence of CDs. These results were attributed to the determinative role of the distribution coefficient (serving as a descriptor) in permeation through the PermeaPad barrier modeling the lipophilic nature of biological barriers.
Collapse
Affiliation(s)
- Tatyana Volkova
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia; (O.S.); (G.P.)
| | | | | |
Collapse
|
21
|
Xie L, Liu R, Wang D, Pan Q, Yang S, Li H, Zhang X, Jin M. Golden Buckwheat Extract-Loaded Injectable Hydrogel for Efficient Postsurgical Prevention of Local Tumor Recurrence Caused by Residual Tumor Cells. Molecules 2023; 28:5447. [PMID: 37513319 PMCID: PMC10383787 DOI: 10.3390/molecules28145447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 07/30/2023] Open
Abstract
To prevent local tumor recurrence caused by possible residual cancer cells after surgery, avoid toxicity of systemic chemotherapy and protect the fragile immune system of postsurgical patients, an increasing amount of attention has been paid to local anti-cancer drug delivery systems. In this paper, golden buckwheat was first applied to prevent post-operative tumor recurrence, which is a Chinese herb and possesses anti-tumor activity. Golden buckwheat extract-loaded gellan gum injectable hydrogels were fabricated via Ca2+ crosslinking for localized chemotherapy. Blank and/or drug-loaded hydrogels were characterized via FT-IR, TG, SEM, density functional theory, drug release and rheology studies to explore the interaction among gellan gum, Ca2+ and golden buckwheat extract (GBE). Blank hydrogels were non-toxic to NIH3T3 cells. Of significance, GBE and GBE-loaded hydrogel inhibited the proliferation of tumor cells (up to 90% inhibition rate in HepG2 cells). In vitro hemolysis assay showed that blank hydrogel and GBE-loaded hydrogel had good blood compatibility. When GBE-loaded hydrogel was applied to the incompletely resected tumor of mice bearing B16 tumor xenografts, it showed inhibition of tumor growth in vivo and induced the apoptosis of tumor cells. Taken together, gellan gum injectable hydrogel containing GBE is a potential local anticancer drug delivery system for the prevention of postsurgical tumor recurrence.
Collapse
Affiliation(s)
- Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Dan Wang
- Department of Pharmacy, Sichuan Nursing Vocational College, Chengdu 610100, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Shujie Yang
- Department of Pharmacy, Chengdu University, Chengdu 610059, China
| | - Huilun Li
- Clinical Medical College, Chengdu University, Chengdu 610106, China
| | - Xinmu Zhang
- Department of Pharmacy, Chengdu University, Chengdu 610059, China
| | - Meng Jin
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| |
Collapse
|
22
|
Abdelkader J, Alelyani M, Alashban Y, Alghamdi SA, Bakkour Y. Modification of Dispersin B with Cyclodextrin-Ciprofloxacin Derivatives for Treating Staphylococcal. Molecules 2023; 28:5311. [PMID: 37513185 PMCID: PMC10386341 DOI: 10.3390/molecules28145311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
To address the high tolerance of biofilms to antibiotics, it is urgent to develop new strategies to fight against these bacterial consortia. An innovative antibiofilm nanovector drug delivery system, consisting of Dispersin B-permethylated-β-cyclodextrin/ciprofloxacin adamantyl (DspB-β-CD/CIP-Ad), is described here. For this purpose, complexation assays between CIP-Ad and (i) unmodified β-CD and (ii) different derivatives of β-CD, which are 2,3-O-dimethyl-β-CD, 2,6-O-dimethyl-β-CD, and 2,3,6-O-trimethyl-β-CD, were tested. A stoichiometry of 1/1 was obtained for the β-CD/CIP-Ad complex by NMR analysis. Isothermal Titration Calorimetry (ITC) experiments were carried out to determine Ka, ΔH, and ΔS thermodynamic parameters of the complex between β-CD and its different derivatives in the presence of CIP-Ad. A stoichiometry of 1/1 for β-CD/CIP-Ad complexes was confirmed with variable affinity according to the type of methylation. A phase solubility study showed increased CIP-Ad solubility with CD concentration, pointing out complex formation. The evaluation of the antibacterial activity of CIP-Ad and the 2,3-O-dimethyl-β-CD/CIP-Ad or 2,3,6-O-trimethyl-β-CD/CIP-Ad complexes was performed on Staphylococcus epidermidis (S. epidermidis) strains. The Minimum Inhibitory Concentration (MIC) studies showed that the complex of CIP-Ad and 2,3-O-dimethyl-β-CD exhibited a similar antimicrobial activity to CIP-Ad alone, while the interaction with 2,3,6-O-trimethyl-β-CD increased MIC values. Antimicrobial assays on S. epidermidis biofilms demonstrated that the synergistic effect observed with the DspB/CIP association was partly maintained with the 2,3-O-dimethyl-β-CDs/CIP-Ad complex. To obtain this "all-in-one" drug delivery system, able to destroy the biofilm matrix and release the antibiotic simultaneously, we covalently grafted DspB on three carboxylic permethylated CD derivatives with different-length spacer arms. The strategy was validated by demonstrating that a DspB-permethylated-β-CD/ciprofloxacin-Ad system exhibited efficient antibiofilm activity.
Collapse
Affiliation(s)
- Jinan Abdelkader
- Laboratory of Applied Chemistry (LAC), Department of Chemistry, Faculty of Sciences III, Lebanese University Mont Michel, El Koura 826, Lebanon
| | - Magbool Alelyani
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Yazeed Alashban
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Sami A Alghamdi
- Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, P.O. Box 145111, Riyadh 4545, Saudi Arabia
| | - Youssef Bakkour
- Department of Radiological Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
23
|
Volkova T, Simonova O, Perlovich G. Modulation of Distribution and Diffusion through the Lipophilic Membrane with Cyclodextrins Exemplified by a Model Pyridinecarboxamide Derivative. Pharmaceutics 2023; 15:pharmaceutics15051531. [PMID: 37242773 DOI: 10.3390/pharmaceutics15051531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The main aims of the study were to disclose the influence of the structure on the solubility, distribution and permeability of the parent substances, iproniazid (IPN), isoniazid (INZ) and isonicotinamide (iNCT), at 310.2 K and to evaluate how the presence of cyclodextrins (2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and methylated β-cyclodextrin (M-β-CD)) affects the distribution behavior and diffusion properties of a model pyridinecarboxamide derivative, iproniazid (IPN). The following order of decreasing the distribution and permeability coefficients was estimated: IPN > INZ > iNAM. A slight reduction of the distribution coefficients in the 1-octanol/buffer pH 7.4 and n-hexane/buffer pH 7.4 systems (more pronounced in the first system) was revealed. The extremely weak IPN/cyclodextrins complexes were estimated from the distribution experiments: KC(IPN/HP-β-CD) > KC(IPN/M-β-CD). The permeability coefficients of IPN through the lipophilic membrane-the PermeaPad barrier-were also measured with and without cyclodextrins in buffer solution. Permeability of iproniazid was increased in the presence of M-β-CD and reduced by HP-β-CD.
Collapse
Affiliation(s)
- Tatyana Volkova
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - Olga Simonova
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - German Perlovich
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| |
Collapse
|
24
|
Ma J, Fan J, Xia Y, Kou X, Ke Q, Zhao Y. Preparation of aromatic β-cyclodextrin nano/microcapsules and corresponding aromatic textiles: A review. Carbohydr Polym 2023; 308:120661. [PMID: 36813345 DOI: 10.1016/j.carbpol.2023.120661] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Fragrance finishing of textiles is receiving substantial interest, with aromatherapy being one of the most popular aspects of personal health care. However, the longevity of aroma on textiles and presence after subsequent launderings are major concerns for aromatic textiles directly loaded with essential oils. These drawbacks can be weakened by incorporating essential oil-complexed β-cyclodextrins (β-CDs) onto various textiles. This article reviews various preparation methods of aromatic β-cyclodextrin nano/microcapsules, as well as a wide variety of methods for the preparation of aromatic textiles based on them before and after forming, proposing future trends in preparation processes. The review also covers the complexation of β-CDs with essential oils, and the application of aromatic textiles based on β-CD nano/microcapsules. Systematic research on the preparation of aromatic textiles facilitates the realization of green and simple industrialized large-scale production, providing needed application potential in the fields of various functional materials.
Collapse
Affiliation(s)
- Jiajia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiaxuan Fan
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Yichang Xia
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
25
|
Shumilin I, Tanbuz A, Harries D. Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin. Pharmaceutics 2023; 15:pharmaceutics15051462. [PMID: 37242704 DOI: 10.3390/pharmaceutics15051462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Deep eutectic solvents (DESs) show promise in pharmaceutical applications, most prominently as excellent solubilizers. Yet, because DES are complex multi-component mixtures, it is challenging to dissect the contribution of each component to solvation. Moreover, deviations from the eutectic concentration lead to phase separation of the DES, making it impractical to vary the ratios of components to potentially improve solvation. Water addition alleviates this limitation as it significantly decreases the melting temperature and stabilizes the DES single-phase region. Here, we follow the solubility of β-cyclodextrin (β-CD) in DES formed by the eutectic 2:1 mole ratio of urea and choline chloride (CC). Upon water addition to DES, we find that at almost all hydration levels, the highest β-CD solubility is achieved at DES compositions that are shifted from the 2:1 ratio. At higher urea to CC ratios, due to the limited solubility of urea, the optimum composition allowing the highest β-CD solubility is reached at the DES solubility limit. For mixtures with higher CC concentration, the composition allowing optimal solvation varies with hydration. For example, β-CD solubility at 40 wt% water is enhanced by a factor of 1.5 for a 1:2 urea to CC mole ratio compared with the 2:1 eutectic ratio. We further develop a methodology allowing us to link the preferential accumulation of urea and CC in the vicinity of β-CD to its increased solubility. The methodology we present here allows a dissection of solute interactions with DES components that is crucial for rationally developing improved drug and excipient formulations.
Collapse
Affiliation(s)
- Ilan Shumilin
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| | - Ahmad Tanbuz
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
26
|
Naringin: Nanotechnological Strategies for Potential Pharmaceutical Applications. Pharmaceutics 2023; 15:pharmaceutics15030863. [PMID: 36986723 PMCID: PMC10054771 DOI: 10.3390/pharmaceutics15030863] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Polyphenols comprise a number of natural substances, such as flavonoids, that show interesting biological effects. Among these substances is naringin, a naturally occurring flavanone glycoside found in citrus fruits and Chinese medicinal herbs. Several studies have shown that naringin has numerous biological properties, including cardioprotective, cholesterol-lowering, anti-Alzheimer’s, nephroprotective, antiageing, antihyperglycemic, antiosteoporotic and gastroprotective, anti-inflammatory, antioxidant, antiapoptotic, anticancer and antiulcer effects. Despite its multiple benefits, the clinical application of naringin is severely restricted due to its susceptibility to oxidation, poor water solubility, and dissolution rate. In addition, naringin shows instability at acidic pH, is enzymatically metabolized by β-glycosidase in the stomach and is degraded in the bloodstream when administered intravenously. These limitations, however, have been overcome thanks to the development of naringin nanoformulations. This review summarizes recent research carried out on strategies designed to improve naringin’s bioactivity for potential therapeutic applications.
Collapse
|
27
|
Chopra H, Verma R, Kaushik S, Parashar J, Madan K, Bano A, Bhardwaj R, Pandey P, Kumari B, Purohit D, Kumar M, Bhatia S, Rahman MH, Mittal V, Singh I, Kaushik D. Cyclodextrin-Based Arsenal for Anti-Cancer Treatments. Crit Rev Ther Drug Carrier Syst 2023; 40:1-41. [PMID: 36734912 DOI: 10.1615/critrevtherdrugcarriersyst.2022038398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Anti-cancer drugs are mostly limited in their use due to poor physicochemical and biopharmaceutical properties. Their lower solubility is the most common hurdle limiting their use upto their potential. In the recent years, the cyclodextrin (CD) complexation have emerged as existing approach to overcome the problem of poor solubility. CD-based nano-technological approaches are safe, stable and showed well in vivo tolerance and greater payload for encapsulation of hydrophobic drugs for the targeted delivery. They are generally chosen due to their ability to get self-assembled to form liposomes, nanoparticles, micelles and nano-sponges etc. This review paper describes a birds-eye view of the various CD-based nano-technological approaches applied for the delivery of anti-cancer moieties to the desired target such as CD based liposomes, niosomes, niosoponges, micelles, nanoparticles, monoclonal antibody, magnetic nanoparticles, small interfering RNA, nanorods, miscellaneous formulation of anti-cancer drugs containing CD. Moreover, the author also summarizes the various shortcomings of such a system and their way ahead.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Ravinder Verma
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram 122103, India
| | - Sakshi Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Jatin Parashar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kumud Madan
- Lloyd Institute of Management and Technology (Pharm), Knowledge Park, Greater Noida, U.P., India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak 124001, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram 122413, India
| | - Beena Kumari
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Deepika Purohit
- Department of Pharmaceutical Sciences, Indira Gandhi University, Meerpur, Rewari, India
| | - Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
28
|
Wu D, Li M. Current State and Challenges of Physiologically Based Biopharmaceutics Modeling (PBBM) in Oral Drug Product Development. Pharm Res 2023; 40:321-336. [PMID: 36076007 DOI: 10.1007/s11095-022-03373-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/17/2022] [Indexed: 01/17/2023]
Abstract
Physiologically based biopharmaceutics modeling (PBBM) emphasizes the integration of physicochemical properties of drug substance and formulation characteristics with system physiological parameters to predict the absorption and pharmacokinetics (PK) of a drug product. PBBM has been successfully utilized in drug development from discovery to postapproval stages and covers a variety of applications. The use of PBBM facilitates drug development and can reduce the number of preclinical and clinical studies. In this review, we summarized the major applications of PBBM, which are classified into six categories: formulation selection and development, biopredictive dissolution method development, biopharmaceutics risk assessment, clinically relevant specification settings, food effect evaluation and pH-dependent drug-drug-interaction risk assessment. The current state of PBBM applications is illustrated with examples from published studies for each category of application. Despite the variety of PBBM applications, there are still many hurdles limiting the use of PBBM in drug development, that are associated with the complexity of gastrointestinal and human physiology, the knowledge gap between the in vitro and the in vivo behavior of drug products, the limitations of model interfaces, and the lack of agreed model validation criteria, among other issues. The challenges and essential considerations related to the use of PBBM are discussed in a question-based format along with the scientific thinking on future research directions. We hope this review can foster open discussions between the pharmaceutical industry and regulatory agencies and encourage collaborative research to fill the gaps, with the ultimate goal to maximize the applications of PBBM in oral drug product development.
Collapse
Affiliation(s)
- Di Wu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Min Li
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
29
|
Gasbarri C, Angelini G. Combined calorimetric, spectroscopic and microscopic investigation on the inclusion complex from cyclocurcumin and sulfobutylether-β-cyclodextrin in aqueous solution and Kinetics of thermal cis-trans isomerization. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
30
|
Shankar VK, Police A, Ajjarapu S, Murthy SN. Development of silymarin topical formulation: In vitro and ex vivo dermal kinetics of silymarin. Int J Pharm 2023; 630:122431. [PMID: 36436747 DOI: 10.1016/j.ijpharm.2022.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Silymarin constituents are extensively investigated in the treatment of skin disorders. The main constituents of silymarin include taxifolin (TX), silychristin (ST), silydianin (SDN), silybin A (SA), silybin B (SB), isosilybin A (ISA) and isosilybin B (ISB). The objective of the present study was to determine in-vitro dermal kinetics of individual silymarin constituents in human skin models and to develop a silymarin topical formulation. In-vitro studies indicate human skin binding of silymarin was in the range of 2.09 to 12.3% and half-life of silymarin constituents was > 15.5 h in epidermal and dermal cells. Topical silymarin cream was prepared using sulfobutylether-β-cyclodextrins as solubilizer and propylene glycol as permeation enhancer. The cream was subjected to ex-vivo human skin permeation studies. In ex-vivo studies, cumulative amount of TX, ST, SDN, SA, SB, ISA and ISB permeated across human cadaver skin at 24 h was 921 ± 13.5, 1992 ± 67.6, 345 ± 39.2, 1089 ± 45.0, 1770 ± 100, 1469 ± 81.5 and 1285 ± 33.1 ng/cm2, respectively. The amount TX, ST, SDN, SA, SB, ISA and ISB retained after 24 h was 60.7 ± 8.2, 376 ± 45.5, 72.3 ± 6.9, 66.4 ± 8.0, 208 ± 31.3, 154 ± 12.4 and 102 ± 6.3 ng/mg of human cadaver skin, respectively. The study results demonstrate silymarin topical formulation could deliver significant amount of silymarin constituents into skin. The developed silymarin formulation could be beneficial for treatment or management of a broad spectrum of dermatological disorders.
Collapse
Affiliation(s)
- Vijay Kumar Shankar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Anitha Police
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - Srinivas Ajjarapu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| | - S Narasimha Murthy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
31
|
Hădărugă NG, Popescu G, Gligor (Pane) D, Mitroi CL, Stanciu SM, Hădărugă DI. Discrimination of β-cyclodextrin/hazelnut ( Corylus avellana L.) oil/flavonoid glycoside and flavonolignan ternary complexes by Fourier-transform infrared spectroscopy coupled with principal component analysis. Beilstein J Org Chem 2023; 19:380-398. [PMID: 37025496 PMCID: PMC10071518 DOI: 10.3762/bjoc.19.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
The goal of the study was the discrimination of β-cyclodextrin (β-CD)/hazelnut (Corylus avellana L.) oil/antioxidant ternary complexes through Fourier-transform infrared spectroscopy coupled with principal component analysis (FTIR-PCA). These innovative complexes combine the characteristics of the three components and improve the properties of the resulting material such as the onsite protection against oxidative degradation of hazelnut oil unsaturated fatty acid glycerides. Also, the apparent water solubility and bioaccessibility of the hazelnut oil components and antioxidants can be increased, as well as the controlled release of bioactive compounds (fatty acid glycerides and antioxidant flavonoids, namely hesperidin, naringin, rutin, and silymarin). The appropriate method for obtaining the ternary complexes was kneading the components at various molar ratios (1:1:1 and 3:1:1 for β-CD hydrate:hazelnut oil (average molar mass of 900 g/mol):flavonoid). The recovering yields of the ternary complexes were in the range of 51.5-85.3% and were generally higher for the 3:1:1 samples. The thermal stability was evaluated by thermogravimetry and differential scanning calorimetry. Discrimination of the ternary complexes was easily performed through the FTIR-PCA coupled method, especially based on the stretching vibrations of CO groups in flavonoids and/or CO/CC groups in the ternary complexes at 1014.6 (± 3.8) and 1023.2 (± 1.1) cm-1 along the second PCA component (PC2), respectively. The wavenumbers were more appropriate for discrimination than the corresponding intensities of the specific FTIR bands. On the other hand, ternary complexes were clearly distinguishable from the starting β-CD hydrate along the first component (PC1) by all FTIR band intensities and along PC2 by the wavenumber of the asymmetric stretching vibrations of the CH groups at 2922.9 (± 0.4) cm-1 for ternary complexes and 2924.8 (± 1.4) cm-1 for β-CD hydrate. The first two PCA components explain 70.38% from the variance of the FTIR data (from a total number of 26 variables). Other valuable classifications were obtained for the antioxidant flavonoids, with a high similarity for hesperidin and naringin, according to FTIR-PCA, as well as for ternary complexes depending on molar ratios. The FTIR-PCA coupled technique is a fast, nondestructive and cheap method for the evaluation of quality and similarity/characteristics of these new types of cyclodextrin-based ternary complexes having enhanced properties and stability.
Collapse
Affiliation(s)
- Nicoleta G Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Research Institute for Biosecurity and Bioengineering, Calea Aradului 119, 300645 Timişoara, Romania
- Department of Food Science, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Gabriela Popescu
- Department of Rural Management and Development, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Dina Gligor (Pane)
- Doctoral School “Engineering of Vegetable and Animal Resources”, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Cristina L Mitroi
- Department of Food Science, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Sorin M Stanciu
- Department of Economy and Company Financing, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
| | - Daniel Ioan Hădărugă
- Doctoral School “Engineering of Vegetable and Animal Resources”, University of Life Sciences “King Mihai I” from Timişoara, Calea Aradului 119, 300645 Timişoara, Romania
- Department of Applied Chemistry, Organic and Natural Compounds Engineering, Polytechnic University of Timişoara, Carol Telbisz 6, 30001 Timişoara, Romania
| |
Collapse
|
32
|
Zornoza A, Vélaz I, González-Gaitano G, Martínez-Ohárriz MC. A Comprehensive Study of Gemfibrozil Complexation with β-Cyclodextrins in Aqueous Solution Using Different Analytical Techniques. Int J Mol Sci 2022; 23:ijms232416119. [PMID: 36555759 PMCID: PMC9788108 DOI: 10.3390/ijms232416119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Gemfibrozil (GEM) is a hypolipidemic agent, which is effective in reducing serum cholesterol and triglyceride levels. Complexation of GEM with native β-cyclodextrin (β-CD) and with the derivatives hydroxypropyl-β- and randomly methylated β-CD (HPβ-CD and Meβ-CD) was studied in aqueous solution of pH 2.8 and 7.0. The stability constants were determined by spectrofluorimetry, 1H-NMR spectroscopy and solubility assays. Considering the well-known difficulties to obtain similar stability constants by different techniques, the agreement of the values obtained supports the reliability of the results presented. The advantages and drawbacks of each analytical technique for the study of inclusion complexation were discussed as well. In addition, the thermodynamic parameters of complexation, enthalpy (ΔH) and entropy (ΔS), were determined and related to the type of molecular interactions that take place between GEM and the different cyclodextrins. Finally, solid dispersions were prepared by co-evaporation, kneading, vacuum desiccation, and coprecipitation, and complexation was evaluated by X-ray diffraction.
Collapse
|
33
|
Soni SS, D'Elia AM, Alsasa A, Cho S, Tylek T, O'Brien EM, Whitaker R, Spiller KL, Rodell CB. Sustained release of drug-loaded nanoparticles from injectable hydrogels enables long-term control of macrophage phenotype. Biomater Sci 2022; 10:6951-6967. [PMID: 36341688 PMCID: PMC9724601 DOI: 10.1039/d2bm01113a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Injectable hydrogels may be pre-formed through dynamic crosslinks, allowing for injection and subsequent retention in the tissue by shear-thinning and self-healing processes, respectively. These properties enable the site-specific delivery of encapsulated therapeutics; yet, the sustained release of small-molecule drugs and their cell-targeted delivery remains challenging due to their rapid diffusive release and non-specific cellular biodistribution. Herein, we develop an injectable hydrogel system composed of a macrophage-targeted nanoparticle (cyclodextrin nanoparticles, CDNPs) crosslinked by adamantane-modified hyaluronic acid (Ad-HA). The polymer-nanoparticle hydrogel uniquely leverages cyclodextrin's interaction with small molecule drugs to create a spatially discrete drug reservoir and with adamantane to yield dynamic, injectable hydrogels. Through an innovative two-step drug screening approach and examination of 45 immunomodulatory drugs with subsequent in-depth transcriptional profiling of both murine and human macrophages, we identify celastrol as a potent inhibitor of pro-inflammatory (M1-like) behavior that furthermore promotes a reparatory (M2-like) phenotype. Celastrol encapsulation within the polymer-nanoparticle hydrogels permitted shear-thinning injection and sustained release of drug-laden nanoparticles that targeted macrophages to modulate cell behavior for greater than two weeks in vitro. The modular hydrogel system is a promising approach to locally modulate cell-specific phenotype in a range of applications for immunoregenerative medicine.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Abdulrahman Alsasa
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Sylvia Cho
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Tina Tylek
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Erin M O'Brien
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Ricardo Whitaker
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Arya P, Sharma MR, Raghav N. Carboxymethyl β-cyclodextrin: Box-behnken model optimized synthesis, modification with Cetyltrimethylammonium bromide and usage as sustained release system for curcumin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Veras KS, Fachel FNS, Bassani VL, Teixeira HF, Koester LS. Cyclodextrin-Based Delivery Systems and Hydroxycinnamic Acids: Interactions and Effects on Crucial Parameters Influencing Oral Bioavailability-A Review. Pharmaceutics 2022; 14:pharmaceutics14112530. [PMID: 36432720 PMCID: PMC9699215 DOI: 10.3390/pharmaceutics14112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Hydroxycinnamic acids (HCAs) are a subclass of phenolic acids presenting caffeic acid (CA), chlorogenic acid (CGA), coumaric acid (COA) isomers, ferulic acid (FA), and rosmarinic acid (RA) as the major representants, being broadly distributed into vegetal species and showing a range of biological potentials. Due to the low oral bioavailability of the HCAs, the development of delivery systems to promote better administration by the oral route is demanding. Among the systems, cyclodextrin (CD)-based delivery systems emerge as an important technology to solve this issue. Regarding these aspects, in this review, CD-based delivery systems containing HCAs are displayed, described, and discussed concerning the degree of interaction and their effects on crucial parameters that affect the oral bioavailability of HCAs.
Collapse
|
36
|
Pardeshi CV, Kothawade RV, Markad AR, Pardeshi SR, Kulkarni AD, Chaudhari PJ, Longhi MR, Dhas N, Naik JB, Surana SJ, Garcia MC. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydr Polym 2022; 301:120347. [DOI: 10.1016/j.carbpol.2022.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
37
|
Alghaith AF, Mahrous GM, Shazly GA, Zidan DEZ, Alhamed AS, Alqinyah M, Almutairi MM, Syed SA. The Optimization and Evaluation of Flibanserin Fast-Dissolving Oral Films. Polymers (Basel) 2022; 14:polym14204298. [PMID: 36297875 PMCID: PMC9609929 DOI: 10.3390/polym14204298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Flibanserin (FLB) is a drug used for female hypotensive sexual desire disorder approved by the FDA in August 2015. FLB exhibits extensive hepatic first-pass metabolism and low aqueous solubility, hence poor oral bioavailability. In this study, beta hydroxypropyl cyclodextrin-FLB inclusion complexes were incorporated into orally fast dissolving films. This dosage form was expected to improve FLB aqueous solubility, which would give fast onset of action and decrease presystemic metabolism, hence improving oral bioavailability. The inclusion complex at a ratio of 1:1 was prepared by the kneading method. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffractometry (XRD) were used to confirm complex formation. The Box–Behnken design (15 different formulae of FLB fast-dissolving oral films (FLBFDOFs) were utilized for the optimization of the prepared films. The Expert Design 11 program was utilized to examine the effects of three selected factors, polymer concentration (X1), plasticizer concentration (X2), and disintegrant concentration (X3) on four responses: disintegration time (DT), initial dissolution rate (IDR), dissolution efficiency (DE), and film quality (QF). Numerical optimization was performed by minimizing disintegration time (Y1), while maximizing the initial drug dissolution rate (Y2), dissolution efficiency (Y3), and the quality factor (Y4). The statistical analysis showed that X1 has a significant positive effect on the disintegration time and a significant negative effect on IDR. While X2 and X3 produced a nonsignificant negative effect on IDR. Dissolution efficiency was maximized at the middle concentration of both X2 and X3. The best film quality was observed at the middle concentration of both X1 and X2. In addition, increasing X3 leads to an improvement in film quality. The optimized film cast from an aqueous solution contains hydroxypropyl cellulose (2%) as a hydrophilic film-forming agent and propylene glycol (0.8%) as a plasticizer and cross povidone (0.2%) as a disintegrant. The prepared film released 98% of FLB after 10 min and showed good physical and mechanical properties. The optimized formula showed a disintegration time of 30 s, IDR of 16.6% per minute, DE15 of 77.7%, and QF of 90%. This dosage form is expected to partially avoid the pre-systemic metabolism with a fast onset of action, hence improving its bioavailability that favors an advantage over conventional dosage forms.
Collapse
Affiliation(s)
- Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Gamal M. Mahrous
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence:
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Diaa Eldin Z. Zidan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed M. Almutairi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Saeed A. Syed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
38
|
Tzanova MM, Moretti F, Grassi G, Stein PC, Hiorth M, Abrami M, Grassi M, Pio di Cagno M. Modelling drug diffusion through unstirred water layers allows real-time quantification of free/loaded drug fractions and release kinetics from colloidal-based formulations. Eur J Pharm Biopharm 2022; 178:168-178. [PMID: 36029937 DOI: 10.1016/j.ejpb.2022.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/27/2022] [Accepted: 08/20/2022] [Indexed: 11/04/2022]
Abstract
The correlation between in vivo and in vitro data is yet not sufficiently optimized to allow a significant reduction and replacement of animal testing in pharmaceutical development. One of the main reasons for this lies in the poor mechanistic understanding and interpretation of the physical mechanisms enabling formulation rely on for deploying the drug. One mechanism that still lacks a proper interpretation is the kinetics of drug release from nanocarriers. In this work, we investigate two different types of classical enabling formulations - i) cyclodextrin solutions and ii) liposomal dispersions - by a combination of an experimental method (i.e. UV-Vis localized spectroscopy) and mathematical modelling/numerical data fitting. With this approach, we are able to discriminate precisely between the amount of drug bound to nanocarriers or freely dissolved at any time point; in addition, we can precisely estimate the binding and diffusivity constants of all chemical species (free drug/bound drug). The results obtained should serve as the first milestone for the further development of reliable in vitro/in silico models for the prediction of in vivo drug bioavailability when enabling formulations are used.
Collapse
Affiliation(s)
- Martina M Tzanova
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Federica Moretti
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Gabriele Grassi
- Department of Medicine, Surgery and Health Sciences, Strada di Fiume 447, 34149 Trieste, Italy
| | - Paul C Stein
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Marianne Hiorth
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127 Trieste, Italy
| | - Massimiliano Pio di Cagno
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Sem Saelands vei 3, 0371 Oslo, Norway.
| |
Collapse
|
39
|
Assaf KI. Host-guest complexation between cucurbit[7]uril and doxepin induced supramolecular assembly. Org Biomol Chem 2022; 20:5796-5802. [PMID: 35833381 DOI: 10.1039/d2ob01065h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supramolecular complexation of doxepin (DOX) with cucurbit[7]uril (CB7) was investigated in aqueous solution. The results indicated the formation of a host-guest complex, as verified by complexation-induced chemical shifts in the NMR experiments and supported by quantum-chemical calculations, in which the alkylammonium tail of DOX was found to be encapsulated inside the CB7 cavity, while the tricyclic moiety remained exposed to bulk water. Isothermal titration calorimetry and dye-displacement experiments provided a moderate binding affinity (104 M-1). Interestingly, the partial encapsulation of DOX by the CB7 macrocycle led to the development of a supramolecular assembly at a low millimolar concentration, as verified by NMR and dynamic light scattering (DLS) measurements, which showed homogeneous size distributions with an average diameter of 1700 nm.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan.
| |
Collapse
|
40
|
Yu J, Xie J, Xie H, Hu Q, Wu Z, Cai X, Guo Z, Lin J, Han L, Zhang D. Strategies for Taste Masking of Orodispersible Dosage Forms: Time, Concentration, and Perception. Mol Pharm 2022; 19:3007-3025. [PMID: 35848076 DOI: 10.1021/acs.molpharmaceut.2c00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Orodispersible dosage forms, characterized as quick dissolving and swallowing without water, have recently gained great attention from the pharmaceutical industry, as these forms can satisfy the needs of children, the elderly, and patients suffering from mental illnesses. However, poor taste by thorough exposure of the drugs' dissolution in the oral cavity hinders the effectiveness of the orodispersible dosage forms. To bridge this gap, we put forward three taste-masking strategies with respect to the intensity of time, concentration, and perception. We further investigated the raw material processing, the composition of auxiliary material, formulation techniques, and process control in each strategy and drew conclusions about their effects on taste masking.
Collapse
Affiliation(s)
- Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Huijuan Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Qi Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Xinfu Cai
- Sichuan Guangda Pharmaceutical Co., Ltd., Pengzhou 611930, PR China
| | - Zhiping Guo
- Sichuan Houde Pharmaceutical Technology Co., Ltd., Chengdu 610041, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| |
Collapse
|
41
|
Volkova TV, Simonova OR, Perlovich GL. Another Move towards Bicalutamide Dissolution and Permeability Improvement with Acetylated β-Cyclodextrin Solid Dispersion. Pharmaceutics 2022; 14:pharmaceutics14071472. [PMID: 35890367 PMCID: PMC9316079 DOI: 10.3390/pharmaceutics14071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
The complex formation of antiandrogen bicalutamide (BCL) with methylated (Me-β-CD) and acetylated (Ac-β-CD) β-cyclodextrins was investigated in buffer solution pH 6.8. A two-fold strongly binding of BCL to Ac-β-CD as compared to Me-β-CD was revealed. The solid dispersion of BCL with Ac-β-CD was prepared by the mechanical grinding procedure to obtain the complex in the solid state. The BCL/Ac-β-CD complex was characterized by DSC, XPRD, FTIR, and SEM techniques. The effect of Ac-β-CD in the BCL solid dispersions on the non-sink dissolution/permeation simultaneous processes was disclosed using the side-by-side diffusion cell with the help of the cellulose membrane. The elevated dissolution of the ground complex, as compared to the raw drug as well as the simple physical mixture, accompanied by the supersaturation was revealed. Two biopolymers—polyvinylpyrrolidone (PVP, Mn = 58,000) and hydroxypropylmethylcellulose (HPMC, Mn ~ 10,000)—were examined as the precipitation inhibitors and were shown to be useful in prolonging the supersaturation state. The BCL/Ac-β-CD complex has the fastest dissolution rate in the presence of HPMC. The maximal concentration of the complex was achieved at a time of 20, 30, and 90 min in the pure buffer, with PVP and with HPMC, respectively. The effectiveness of the BCL dissolution (release) processes (illustrated by the AUCC(t) parameter) was estimated to be 7.8-, 5.8-, 3.0-, and 1.8-fold higher for BCL/Ac-β-CD (HPMC), BCL/Ac-β-CD (PVP), BCL/Ac-β-CD (buffer), and the BCL/Ac-β-CD physical mixture, respectively, as compared to the BCL_raw sample. The excipient gain factor (EGF), calculated for the dissolution of the BCL complex, was shown to be 2.6 in the presence of HPMC, which is 1.3-fold greater as compared to PVP. From the experimental dissolution results, it can be concluded that the formation of BCL ground complex with Ac-β-CD enhances the dissolution rate of the compound. The permeation was also shown to be advantageous in the presence of the polymers, which was demonstrated by the elevated fluxes of BCL through the membrane. The comparison of the dissolution/permeation processes was illustrated and discussed. The conclusion was made that the presence of HPMC as a stabilizer of the supersaturation state is promising and seems to be a useful tool for the optimization of BCL pharmaceutical formulations manufacturing.
Collapse
|
42
|
alizadeh N, Poorbagher N. Host-guest inclusion complexes of sulfabenzamide with β- and methyl-β-cyclodextrins: Characterization, antioxidant activity and DFT calculation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Cyclodextrin Inclusion Complexes with Antibiotics and Antibacterial Agents as Drug-Delivery Systems—A Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14071389. [PMID: 35890285 PMCID: PMC9323747 DOI: 10.3390/pharmaceutics14071389] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Cyclodextrins (CDs) are a family of cyclic oligosaccharides, consisting of a macrocyclic ring of glucose subunits linked by α-1,4 glycosidic bonds. The shape of CD molecules is similar to a truncated cone with a hydrophobic inner cavity and a hydrophilic surface, which allows the formation of inclusion complexes with various molecules. This review article summarises over 200 reports published by the end of 2021 that discuss the complexation of CDs with antibiotics and antibacterial agents, including beta-lactams, tetracyclines, quinolones, macrolides, aminoglycosides, glycopeptides, polypeptides, nitroimidazoles, and oxazolidinones. The review focuses on drug-delivery applications such as improving solubility, modifying the drug-release profile, slowing down the degradation of the drug, improving biological membrane permeability, and enhancing antimicrobial activity. In addition to simple drug/CD combinations, ternary systems with additional auxiliary substances have been described, as well as more sophisticated drug-delivery systems including nanosponges, nanofibres, nanoparticles, microparticles, liposomes, hydrogels, and macromolecules. Depending on the desired properties of the drug product, an accelerated or prolonged dissolution profile can be achieved when combining CD with antibiotics or antimicrobial agents.
Collapse
|
44
|
Kondoros BA, Berkesi O, Tóth Z, Aigner Z, Ambrus R, Csóka I. Cyclodextrin Complexation of Fenofibrate by Co-Grinding Method and Monitoring the Process Using Complementary Analytical Tools. Pharmaceutics 2022; 14:pharmaceutics14071329. [PMID: 35890225 PMCID: PMC9319411 DOI: 10.3390/pharmaceutics14071329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Solvent-free preparation types for cyclodextrin complexation, such as co-grinding, are technologies desired by the industry. However, in-depth analytical evaluation of the process and detailed characterization of intermediate states of the complexes are still lacking in areas. In our work, we aimed to apply the co-grinding technology and characterize the process. Fenofibrate was used as a model drug and dimethyl-β-cyclodextrin as a complexation excipient. The physical mixture of the two substances was ground for 60 min; meanwhile, samples were taken. A solvent product of the same composition was also prepared. The intermediate samples and the final products were characterized with instrumental analytical tools. The XRPD measurements showed a decrease in the crystallinity of the drug and the DSC results showed the appearance of a new crystal form. Correlation analysis of FTIR spectra suggests a three-step complexation process. In vitro dissolution studies were performed to compare the dissolution properties of the pure drug to the products. Using a solvent-free production method, we succeeded in producing a two-component system with superior solubility properties compared to both the active ingredient and the product prepared by the solvent method. The intermolecular description of complexation was achieved with a detailed analysis of FTIR spectra.
Collapse
Affiliation(s)
- Balázs Attila Kondoros
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (B.A.K.); (Z.A.); (I.C.)
| | - Ottó Berkesi
- Faculty of Science and Informatics, Department of Physical Chemistry and Materials Science, University of Szeged, Béla Rerrich Square 1, H-6720 Szeged, Hungary;
| | - Zsolt Tóth
- Department of Medical Physics and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary;
| | - Zoltán Aigner
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (B.A.K.); (Z.A.); (I.C.)
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (B.A.K.); (Z.A.); (I.C.)
- Correspondence: ; Tel.: +36-62-545-575
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (B.A.K.); (Z.A.); (I.C.)
| |
Collapse
|
45
|
Inclusion complex of 20(S)-protopanaxatriol with modified β-cyclodextrin: Characterization, solubility, and interaction with bovine serum albumin. Anal Biochem 2022; 653:114753. [PMID: 35691377 DOI: 10.1016/j.ab.2022.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
Abstract
20(S)-protopanaxatriol (PPT) is one of the ginsenosides isolated from Panax ginseng which have many pharmaceutical activities. However, the poor water solubility of PPT restrict its applications. Herein, a novel bridged-bis-[6-(3,3'-(ethylenedioxy) bis (propylamine))-6-deoxy-β-cyclodextrin] (EDBA-bis-β-CD) was designed and synthesized, and the inclusion complex (IC) of EDBA-bis-β-CD with PPT was successfully prepared in the solid state, and characterized by UV, 1H NMR, 2D ROESY, FT-IR, XRD and SEM and molecular modelling methods. The continuous variation method analysis indicated that the stoichiometry of the IC was 1:1. UV-vis spectral analysis demonstrated the binding constant Ks was 995.94 M-1, and the solubility study showed that the solubility of PPT improved 290 times. The interaction of the IC with bovine serum albumin (BSA) was investigated via fluorescence spectroscopy. The results indicated that fluorescence quenching of BSA by IC was static quenching. Thermodynamic studies showed that van der Waals forces and hydrogen bonding play significant roles in interaction. The esterase-like activity of BSA in the presence of IC showed that it reduce the esterase activity of BSA in a competitive manner. Furthermore, molecular docking and molecular dynamics simulations for EDBA-bis-β-CD/PPT and BSA/IC systems were generated to provide information on the stability and the forces in the binding.
Collapse
|
46
|
Aihara R, Minami K, Messerschmid R, Wada K, Takagi T, Yamashita S. Mechanistic analysis for positive and negative food effects on oral absorption of poorly soluble drugs from cyclodextrin containing formulations: Study with a mini-scale in vitro system. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Sripetch S, Ryzhakov A, Loftsson T. Preformulation studies of dovitinib free base: Solubility, lipophilicity and stability. Int J Pharm 2022; 619:121721. [PMID: 35398252 DOI: 10.1016/j.ijpharm.2022.121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 11/24/2022]
Abstract
Dovitinib has been investigated as an anti-tumor drug due to its ability to inhibit multiple receptor tyrosine kinases. Dovitinib free base has a poor water solubility leading to poor absorption. Salts and lipid-based formulations have been used to improve drug availability. Here, we investigated the physiochemical properties of the dovitinib free base in the presence of some pharmaceutical excipients. We sought to study the effect of acidic counterions on the aqueous solubility and lipophilicity of dovitinib and how pH, buffer species, and cyclodextrin (CD) influenced dovitinib stability. pH-solubility studies were performed by titration against five different acids. Aqueous solubility of dovitinib salt depended on the counterion. Lactic acid greatly increased the aqueous solubility of dovitinib. The counterion effect on the solubility was also investigated in the aqueous complexing media. Unexpected synergistic solubilization was found with γ-CD/phosphoric acid and γ-CD/maleic acid. The counterion did not affect the lipophilicity of dovitinib at physiological pH. Accelerated degradation of dovitinib was carried out at high temperature. Stability was studied across a range of pH values, buffer species and in the presence of two CDs. Dovitinib was most stable at pH 4 in the phosphate buffer species. γ-CD stabilized the drug at relatively low pH.
Collapse
Affiliation(s)
- Suppakan Sripetch
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; Oculis ehf, Alfheimar 74, 6(th) Floor, 104 Reykjavik, Iceland.
| | - Alexey Ryzhakov
- Oculis ehf, Alfheimar 74, 6(th) Floor, 104 Reykjavik, Iceland.
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; Oculis ehf, Alfheimar 74, 6(th) Floor, 104 Reykjavik, Iceland.
| |
Collapse
|
48
|
Molecular simulation and experimental study on the inclusion of rutin with β-cyclodextrin and its derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Preparation of water-soluble altrenogest inclusion complex with β-cyclodextrin derivatives and in vitro sustained-release test. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Bio-enabling strategies to mitigate the pharmaceutical food effect: a mini review. Int J Pharm 2022; 619:121695. [PMID: 35339633 DOI: 10.1016/j.ijpharm.2022.121695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/02/2022] [Accepted: 03/19/2022] [Indexed: 12/27/2022]
Abstract
The concomitant administration of oral drugs with food can result in significant changes in bioavailability, leading to variable pharmacokinetics and considerable clinical implications, such as over- or under-dosing. Consequently, there is increasing demand for bio-enabling formulation strategies to reduce variability in exposure between the fasted and fed state and/or mitigate the pharmaceutical food effect. The current review critically evaluates technologies that have been implemented to overcome the positive food effects of pharmaceutical drugs, including, lipid-based formulations, nanosized drug preparations, cyclodextrins, amorphisation and solid dispersions, prodrugs and salts. Additionally, improved insight into preclinical models for predicting the food effect is provided. Despite the wealth of research, this review demonstrates that application of optimal formulation strategies to mitigate the positive food effects and the evaluation in preclinical models is not a universal approach, and improved standardisation of models to predict the food effects would be desirable. Ultimately, the successful reformulation of specific drugs to eliminate the food effect provides a panoply of advantages for patients with regard to clinical efficacy and compliance.
Collapse
|