1
|
Kocsis D, Varga PR, Keshwan R, Nader M, Lengyel M, Szabó P, Antal I, Kánai K, Keglevich G, Erdő F. Transdermal Delivery of α-Aminophosphonates as Semisolid Formulations-An In Vitro-Ex Vivo Study. Pharmaceutics 2023; 15:pharmaceutics15051464. [PMID: 37242706 DOI: 10.3390/pharmaceutics15051464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
α-Aminophosphonates are organophosphorus compounds with an obvious similarity with α-amino acids. Owing to their biological and pharmacological characteristics, they have attracted the attention of many medicinal chemists. α-Aminophosphonates are known to exhibit antiviral, antitumor, antimicrobial, antioxidant and antibacterial activities, which can all be important in pathological dermatological conditions. However, their ADMET properties are not well studied. The aim of the current study was to provide preliminary information about the skin penetration of three preselected α-aminophosphonates when applying them as topical cream formulations in static and dynamic diffusion chambers. The results indicate that aminophosphonate 1a, without any substituent in the para position, shows the best release from the formulation and the highest absorption through the excised skin. However, based on our previous study, the in vitro pharmacological potency was higher in the case of para-substituted molecules 1b and 1c. The particle size and rheological studies revealed that the 2% cream of aminophosphonate 1a was the most homogenous formulation. In conclusion, the most promising molecule was 1a, but further experiments are proposed to uncover the possible transporter interactions in the skin, optimize the topical formulations and improve PK/PD profiles in case of transdermal delivery.
Collapse
Affiliation(s)
- Dorottya Kocsis
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Petra Regina Varga
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Rusul Keshwan
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Mina Nader
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| | - Miléna Lengyel
- Department of Pharmaceutics, Semmelweis University, H-1092 Budapest, Hungary
| | - Pál Szabó
- Centre for Structural Study, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, H-1092 Budapest, Hungary
| | - Károly Kánai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
| | - Franciska Erdő
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50a, H-1083 Budapest, Hungary
| |
Collapse
|
2
|
Nicotinic acid transport into human liver involves organic anion transporter 2 (SLC22A7). Biochem Pharmacol 2020; 174:113829. [PMID: 32001236 DOI: 10.1016/j.bcp.2020.113829] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Nicotinic acid (NA) and nicotinamide (NAM) are biosynthetic precursors of nicotinamide adenine dinucleotide (NAD+) - a physiologically important coenzyme that maintains the redox state of cells. Mechanisms driving their entry into cells are not well understood. Here we evaluated the hepatic uptake mechanism(s) of NA and NAM using transporter-transfected cell systems and primary human hepatocytes. NA showed robust organic anion transporter (OAT)2-mediated transport with an uptake ratio (i.e., ratio of accumulation in transfect cells to wild-type cells) of 9.7 ± 0.3, and a Michaelis-Menten constant (Km) of 13.5 ± 3.3 µM. However, no transport was apparent via other major hepatic uptake and renal secretory transporters, including OAT1/3/4, organic anion transporting polypeptide (OATP)1B1/1B3/2B1, sodium-taurocholate co-transporting polypeptide, organ cation transporter 1/2/3. OAT2-specific transport of NA was inhibited by ketoprofen and indomethacin (known OAT2 inhibitors) in a concentration-dependent manner. Similarly, NA uptake into primary human hepatocytes showed pH- and concentration-dependence and was subject to inhibition by specific OAT2 inhibitors. Unlike NA, NAM was not transported by the hepatic and renal solute carriers upon assessment in transfected cells, although its uptake into human hepatocytes was significantly inhibited by excess unlabelled NAM and a pan-SLC inhibitor (rifamycin SV 1 mM). In conclusion, these studies demonstrate, for the first time, a specific transport mechanism for NA uptake in the human liver and suggest that OAT2 (SLC22A7) has a critical role in its physiological and pharmacological functions.
Collapse
|
3
|
Erdő F, Hashimoto N, Karvaly G, Nakamichi N, Kato Y. Critical evaluation and methodological positioning of the transdermal microdialysis technique. A review. J Control Release 2016; 233:147-61. [DOI: 10.1016/j.jconrel.2016.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/28/2023]
|
4
|
Takusagawa S, Ushigome F, Nemoto H, Takahashi Y, Li Q, Kerbusch V, Miyashita A, Iwatsubo T, Usui T. Intestinal absorption mechanism of mirabegron, a potent and selective β₃-adrenoceptor agonist: involvement of human efflux and/or influx transport systems. Mol Pharm 2013; 10:1783-94. [PMID: 23560393 DOI: 10.1021/mp300582s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mirabegron, a weak-basic compound, is a potent and selective β3-adrenoceptor agonist for the treatment of overactive bladder. Mirabegron extended release formulation shows dose-dependent oral bioavailability in humans, which is likely attributable to saturation of intestinal efflux abilities leading to higher absorption with higher doses. This study evaluated the membrane permeability of mirabegron and investigated the involvement of human intestinal transport proteins in the membrane permeation of mirabegron. Transcellular transport and cellular/vesicular uptake assays were performed using Caco-2 cells and/or human intestinal efflux (P-glycoprotein [P-gp], breast cancer resistance protein [BCRP], and multidrug resistance associated protein 2 [MRP2]) and influx (peptide transporter 1 [PEPT1], OATP1A2, and OATP2B1) transporter-expressing cells, vesicles, or Xenopus laevis oocytes. The absorptive permeability coefficients of mirabegron in Caco-2 cells (1.68-1.83 × 10(-6) cm/s) at the apical and basal pH of 6.5 and 7.4, respectively, were slightly higher than those of nadolol (0.97-1.41 × 10(-6) cm/s), a low permeability reference standard, but lower than those of metoprolol and propranolol (both ranged from 8.49 to 11.6 × 10(-6) cm/s), low/high permeability boundary reference standards. Increasing buffer pH at the apical side from 5.5 to 8.0 gradually increased the absorptive permeation of mirabegron from 0.226 to 1.66 × 10(-6) cm/s, but was still less than the value in the opposite direction (11.0-14.2 × 10(-6) cm/s). The time- and concentration-dependent transport of mirabegron was observed in P-gp-expressing cells and OATP1A2-expressing oocytes with apparent Km values of 294 and 8.59 μM, respectively. In contrast, no clear BCRP-, MRP2-, PEPT1-, or OATP2B1-mediated uptake of mirabegron was observed in their expressing vesicles or cells. These findings suggest that mirabegron has low-to-moderate membrane permeability and P-gp is likely to be involved in its efflux into the lumen in the intestinal absorption process. The results also suggest that mirabegron could possibly be transported by intestinal influx transporters as well as simple diffusion.
Collapse
Affiliation(s)
- Shin Takusagawa
- Drug Metabolism Research Laboratories, Astellas Pharma Inc., Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Modeling the human skin barrier--towards a better understanding of dermal absorption. Adv Drug Deliv Rev 2013; 65:152-68. [PMID: 22525516 DOI: 10.1016/j.addr.2012.04.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/03/2012] [Accepted: 04/09/2012] [Indexed: 12/29/2022]
Abstract
Many drugs are presently delivered through the skin from products developed for topical and transdermal applications. Underpinning these technologies are the interactions between the drug, product and skin that define drug penetration, distribution, and elimination in and through the skin. Most work has been focused on modeling transport of drugs through the stratum corneum, the outermost skin layer widely recognized as presenting the rate-determining step for the penetration of most compounds. However, a growing body of literature is dedicated to considering the influence of the rest of the skin on drug penetration and distribution. In this article we review how our understanding of skin physiology and the experimentally observed mechanisms of transdermal drug transport inform the current models of drug penetration and distribution in the skin. Our focus is on models that have been developed to describe particular phenomena observed at particular sites of the skin, reflecting the most recent directions of investigation.
Collapse
|
6
|
ATP binding cassette transporters in two distinct compartments of the skin contribute to transdermal absorption of a typical substrate. J Control Release 2013; 165:54-61. [DOI: 10.1016/j.jconrel.2012.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/05/2012] [Accepted: 10/13/2012] [Indexed: 01/11/2023]
|
7
|
Morofuji R, Hikima T, Tojo K. Effect of Diffusive Direction across the Skin on the Penetration Profile of Chemicals in Vitro. Biol Pharm Bull 2013; 36:1760-5. [DOI: 10.1248/bpb.b13-00331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryo Morofuji
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
| | - Tomohiro Hikima
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
| | - Kakuji Tojo
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology
| |
Collapse
|
8
|
Oshizaka T, Todo H, Sugibayashi K. Effect of direction (epidermis-to-dermis and dermis-to-epidermis) on the permeation of several chemical compounds through full-thickness skin and stripped skin. Pharm Res 2012; 29:2477-88. [PMID: 22622509 DOI: 10.1007/s11095-012-0777-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/11/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE Compound permeation through stratum corneum-stripped skin is generally greater than that through full-thickness skin. In addition, epidermis-to-dermis permeation profile should be the same as dermis-to-epidermis permeation profile. However, stripped skin permeability of some compounds was lower than full-thickness skin permeability and different permeabilities were found for some compounds between the two directions of skin permeation. The reasons for these findings were investigated in this study. METHODS Full-thickness or stripped hairless rat skin was set in a Franz-type diffusion cell, and a solution of compound was applied on the epidermis or dermis side to determine the in vitro skin permeability. RESULTS Although the stripped skin permeability of pentyl paraben (PeP) with extremely high logK(o/w) was lower than full-thickness skin permeabilities, the addition of 3% ethanol resulted in the expected permeation order. Epidermis-to-dermis permeation of PeP through full-thickness skin was higher than dermis-to-epidermis permeation. Epidermis-to-dermis permeations of fluorescein isothiocyanate dextran (FD-4) and isosorbide 5-mononitrate with negative logK(o/w) were also higher than those in the opposite direction. CONCLUSIONS Morphological observation of skin after FD-4 permeation suggested that a conically shaped trans-follicular permeation pathway model could be advocated to explain the difference between the epidermis-to-dermis permeation and that in the opposite direction.
Collapse
Affiliation(s)
- Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | | | | |
Collapse
|
9
|
Goi N, Morishita K, Taniguchi A, Ishii T, Saitoh K. Evaluation of percutaneous permeation of flurbiprofen and ketoprofen after application of transdermal patches using a lateral sectioning approach in hairless rats. Pharm Dev Technol 2010; 15:658-65. [PMID: 20883157 DOI: 10.3109/10837450.2010.516437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The dispositions and pharmacokinetic parameters of non-steroidal anti-inflammatory drugs (NSAIDs) after patch applications have typically been evaluated on a whole-skin basis, and the detailed permeation profiles remain unclear. The aim of this study was to establish a new method for clearly analyzing the flow of drugs in the skin layers and evaluating the drug levels in the target area of the skin tissue. METHODS The skin tissue areas where flurbiprofen and ketoprofen patches were applied were cut into 20 μm-thick lateral slices from the surface to the deepest layer and the drug concentrations in the slices were measured. RESULTS The results revealed the presence of depth-dependent concentration gradients from the surface to the deep layer and that the drug concentration in the deepest layer was less than one tenth of the surface concentration for both flurbiprofen and ketoprofen. In addition, flurbiprofen yielded higher and more rapid concentrations in the deepest skin layer adjacent to the intramuscular tissue. CONCLUSIONS The present data suggest that our technique involving lateral slicing of skin tissues and measurement of drug concentrations allows visual understanding of drug dispositions in the skin layers and makes it possible to evaluate the drug levels in the target area of the skin tissue.
Collapse
Affiliation(s)
- Nobuhiro Goi
- Research & Development Division, Mikasa Seiyaku Co. Ltd, Nerima-ku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
10
|
Kato Y, Miyazaki T, Kano T, Sugiura T, Kubo Y, Tsuji A. Involvement of influx and efflux transport systems in gastrointestinal absorption of celiprolol. J Pharm Sci 2009; 98:2529-39. [PMID: 19067419 DOI: 10.1002/jps.21618] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastrointestinal absorption of several beta-blockers is inhibited by citrus juices, although molecular mechanism(s) lying on their small intestinal absorption has not yet been identified. Here, we attempted to demonstrate involvement of both influx and efflux transporters in vivo in gastrointestinal absorption of celiprolol in mice. Plasma concentration of celiprolol (3 mg/kg) after oral administration was mostly under the limit of quantification in wild mice, whereas that in mdr1a/b knockout (mdr1a/b(-/-)) mice was much more obvious, indicating P-glycoprotein-mediated efflux. Then, the oral absorption of celiprolol in mdr1a/b(-/-) mice was further examined to investigate influx transport mechanism with avoiding effect of P-glycoprotein. Coadministration of bromosulfophthalein (BSP), an inhibitor of various influx transporters including organic anion transporting polypeptide (OATP) reduced plasma celiprolol concentration. Inhibition by BSP of celiprolol uptake from apical membranes was confirmed in Ussing-type chamber of small intestinal tissues. Uptake of celiprolol by human small intestinal transporter OATP-A/1A2 was also confirmed in Xenopus Laevis oocytes. Interestingly, OATP-A/1A2 accepts various beta-blockers including acebutolol, atenolol and sotalol, oral absorption of which is inhibited by coadministration of citrus juice or telithromycin in human. Taken together, these findings have suggested fundamental role of influx transport system(s) in oral absorption of celiprolol.
Collapse
Affiliation(s)
- Yukio Kato
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Kano T, Kato Y, Ito K, Ogihara T, Kubo Y, Tsuji A. Carnitine/organic cation transporter OCTN2 (Slc22a5) is responsible for renal secretion of cephaloridine in mice. Drug Metab Dispos 2009; 37:1009-16. [PMID: 19220985 DOI: 10.1124/dmd.108.025015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carnitine/organic cation transporter (OCTN) 2 (SLC22A5) plays a pivotal role in renal tubular reabsorption of carnitine, a vitamin-like compound, on apical membranes of proximal tubules, but its role in relation to therapeutic drugs remains to be clarified. The purpose of the present study was to elucidate the involvement of OCTN2 in renal disposition of a beta-lactam antibiotic, cephaloridine (CER), based on experiments with juvenile visceral steatosis (jvs) mice, which have a functional deficiency of the octn2 gene. Renal clearance of CER during constant intravenous infusion in wild-type mice was much higher than could be accounted for by glomerular filtration, but was decreased by increasing the infusion rate with minimal change in kidney-to-plasma concentration ratio, suggesting the existence of saturable transport mechanism(s) across the apical membranes. The plasma concentration profile and kidney-to-plasma concentration ratio after intravenous injection in jvs mice were higher than those in wild-type mice, whereas renal clearance in jvs mice was much lower than that in wild-type mice and could be accounted for by glomerular filtration. Uptake of CER by mouse OCTN2 was shown in Xenopus laevis oocytes expressing mouse OCTN2. The CER transport by OCTN2 exhibited saturation with K(m) of approximately 3 mM, which is similar to the renal CER concentration exhibiting saturation in renal clearance in vivo. The OCTN2-mediated CER transport was inhibited by carnitine and independent of Na(+) replacement in the medium. These results show OCTN2 on apical membranes of proximal tubules plays a major role in renal secretion of CER in mice.
Collapse
Affiliation(s)
- Takashi Kano
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Ito K, Nguyen HT, Kato Y, Wakayama T, Kubo Y, Iseki S, Tsuji A. P-glycoprotein (Abcb1) is involved in absorptive drug transport in skin. J Control Release 2008; 131:198-204. [PMID: 18725258 DOI: 10.1016/j.jconrel.2008.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/22/2008] [Accepted: 08/03/2008] [Indexed: 10/21/2022]
Abstract
The purpose of the present study was to investigate the role of P-glycoprotein (P-gp) in drug disposition in skin. The distribution of P-gp substrates (rhodamine 123 and itraconazole) to the skin after administration from the epidermal side was lower in P-gp gene knockout (mdr1a/1b(-/-)) mice than that in wild-type mice. Coadministration of propranolol, a P-gp inhibitor, decreased the distribution of itraconazole to the skin in wild-type mice, but not in mdr1a/1b(-/-) mice. These results suggest that P-gp contributes to the influx (from the epidermal side) of its substrates into skin, although P-gp is generally involved in efflux of drugs from various tissues. This finding was supported by the lower vectorial transport of rhodamine 123 from the epidermal to the hypodermal side in mdr1a/1b(-/-) mice in Ussing-type chamber experiments and by the immunohistochemical localization of P-gp throughout the dermal layer. Distribution of itraconazole after intravenous administration, on the other hand, was higher in mdr1a/1b(-/-) mice than that in wild-type mice, suggesting that P-gp transports this drug from the skin to the circulation. The present findings are the first to demonstrate involvement of P-gp in dermal drug disposition.
Collapse
Affiliation(s)
- Katsuaki Ito
- Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Cal K. Skin disposition of menthol after its application in the presence of drug substances. Biopharm Drug Dispos 2008; 29:449-54. [DOI: 10.1002/bdd.631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|