1
|
Ray S, Puente A, Steinmetz NF, Pokorski JK. Recent advancements in single dose slow-release devices for prophylactic vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1832. [PMID: 35850120 PMCID: PMC9840709 DOI: 10.1002/wnan.1832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 01/31/2023]
Abstract
Single dose slow-release vaccines herald a new era in vaccine administration. An ideal device for slow-release vaccine delivery would be minimally invasive and self-administered, making these approaches an attractive alternative for mass vaccination programs, particularly during the time of a pandemic. In this review article, we discuss the latest advances in this field, specifically for prophylactic vaccines able to prevent infectious diseases. Recent studies have found that slow-release vaccines elicit better immune responses and often do not require cold chain transportation and storage, thus drastically reducing the cost, streamlining distribution, and improving efficacy. This promise has attracted significant attention, especially when poor patient compliance of the standard multidose vaccine regimes is considered. Single dose slow-release vaccines are the next generation of vaccine tools that could overcome most of the shortcomings of present vaccination programs and be the next platform technology to combat future pandemics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Sayoni Ray
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
| | - Armando Puente
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA
- Department of Radiology, University of California-San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California-San Diego, La Jolla, California, USA
| | - Jonathan K. Pokorski
- Department of NanoEngineering, University of California-San Diego, La Jolla, California, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
3
|
Lin Y, Yin W, Li Y, Liu G. Influence of different solid lipids on the properties of a novel nanostructured lipid carrier containing Antarctic krill oil. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yunwei Lin
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Wenting Yin
- School of Food Science and Technology Henan University of Technology 100 Lianhua Road Zhengzhou 450001 China
| | - Yujie Li
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Guoqin Liu
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| |
Collapse
|
4
|
An J, Forchheimer D, Sävmarker J, Brülls M, Frenning G. Nanoscale characterization of PEGylated phospholipid coatings formed by spray drying on silica microparticles. J Colloid Interface Sci 2020; 577:92-100. [DOI: 10.1016/j.jcis.2020.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/29/2020] [Accepted: 05/09/2020] [Indexed: 10/24/2022]
|
5
|
Chauhan G, Shaik AA, Kulkarni NS, Gupta V. The preparation of lipid-based drug delivery system using melt extrusion. Drug Discov Today 2020; 25:S1359-6446(20)30330-5. [PMID: 32835807 DOI: 10.1016/j.drudis.2020.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 01/16/2023]
Abstract
Melt extrusion of lipids is versatile with high applicability in the pharmaceutical industry. The formulations prepared can be easily customized depending on the requirements, and have the potential to open a window on personalized medicine.
Collapse
Affiliation(s)
- Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Abdul A Shaik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Current address: School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nishant S Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
6
|
Paulo BB, Schmiele M, Maximo GJ, Prata AS. Carnauba Wax Particles: Investigation of Dripping and Cold‐Extrusion Processes. J AM OIL CHEM SOC 2019. [DOI: 10.1002/aocs.12224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bruna Barbon Paulo
- Department of Food Engineering, School of Food EngineeringState University of Campinas 80 Monteiro Lobato Street, 13083‐862, Campinas Brazil
| | - Marcio Schmiele
- Department of Food Technology, School of Food EngineeringState University of Campinas 80 Monteiro Lobato Street, 13083‐862, Campinas Brazil
| | - Guilherme José Maximo
- Department of Food Engineering, School of Food EngineeringState University of Campinas 80 Monteiro Lobato Street, 13083‐862, Campinas Brazil
| | - Ana Silvia Prata
- Department of Food Engineering, School of Food EngineeringState University of Campinas 80 Monteiro Lobato Street, 13083‐862, Campinas Brazil
| |
Collapse
|
7
|
|
8
|
Kallakunta VR, Patil H, Tiwari R, Ye X, Upadhye S, Vladyka RS, Sarabu S, Kim DW, Bandari S, Repka MA. Exploratory studies in heat-assisted continuous twin-screw dry granulation: A novel alternative technique to conventional dry granulation. Int J Pharm 2018; 555:380-393. [PMID: 30458256 DOI: 10.1016/j.ijpharm.2018.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022]
Abstract
Dry granulation is the preferred technique for solvent-sensitive products, especially drugs with stability problems such as hydrolysis. Twin-screw granulation is a continuous granulation technique, offering a potential alternative to conventional dry granulation techniques such as roller compaction. The major advantage of twin-screw granulation is the ability to adjust process parameters of dry granulation without compromising the compression properties. This study was aimed to perform exploratory studies of heat-assisted continuous twin-screw dry granulation process to formulate sustained release tablets for APIs with different melting points: theophylline, acetaminophen and lidocaine hydrochloride hydrate. Granulation feasibility was studied with different binders (e.g. Klucel™ EF, Kollidon® VA64), sustained release agents (e.g. Klucel™ MF, Eudragit® RSPO) and diluents at various drug loads. The processing conditions were below the melting point or glass transition temperature of the formulation ingredients. After successful granulation, DSC and XRD studies revealed the crystalline nature of the granules and FTIR studies showed no interaction of the API with the excipients. The granules were compressed into sustained release tablets without any compressibility issues. The tablets were stable after testing for 6 months at 25 °C/60% RH. This novel continuous dry granulation technique may offer an excellent alternative to conventional dry granulation techniques.
Collapse
Affiliation(s)
- Venkata Raman Kallakunta
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, United States
| | - Hemlata Patil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, United States
| | - Roshan Tiwari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, United States
| | - Xingyou Ye
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, United States
| | - Sampada Upadhye
- Catalent Pharma Solutions, 14 School House Road, Somerset, NJ 08873, USA
| | - Ronald S Vladyka
- Catalent Pharma Solutions, 14 School House Road, Somerset, NJ 08873, USA
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, United States
| | - Dong Wuk Kim
- College of Pharmacy, Kyungpook National University, Daegu 41566, South Korea
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, United States
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, MS 38677, United States; Pii Center for Pharmaceutical Technology, University of Mississippi, MS 38677, USA.
| |
Collapse
|
9
|
Effect of excipients on encapsulation and release of insulin from spray-dried solid lipid microparticles. Int J Pharm 2018; 550:439-446. [DOI: 10.1016/j.ijpharm.2018.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023]
|
10
|
Kallakunta VR, Tiwari R, Sarabu S, Bandari S, Repka MA. Effect of formulation and process variables on lipid based sustained release tablets via continuous twin screw granulation: A comparative study. Eur J Pharm Sci 2018; 121:126-138. [PMID: 29772273 PMCID: PMC6235737 DOI: 10.1016/j.ejps.2018.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/03/2018] [Accepted: 05/12/2018] [Indexed: 11/30/2022]
Abstract
The current study's aim is to prepare lipid based sustained release tablets via a twin-screw granulation technique and compare those dosage forms with conventional techniques, namely wet granulation and direct compression. The granules were successfully manufactured in a single-step, continuous twin-screw granulation process with a low proportion of binder (Klucel™ EF, HPC SSL) using Compritol® 888 ATO, Precirol® ATO 5 and Geleol™ as sustained release agents. The granules prepared showed good flow characteristics and compaction properties. DSC and XRD studies were conducted to characterize the granules prepared via a twin-screw granulation method and the results demonstrated the crystalline nature of lipids within the granules. FTIR data indicated that there were no interactions with the formulation components investigated. The formulations developed by all three methods were compressed into tablets with a mechanical strength of 14-16 KP. The tablets formulated were characterized for physicochemical properties, in vitro drug release studies, water uptake and erosion studies. These results showed that the drug was not completely released after 24 h for tablets developed by the wet granulation process using all three lipids. The tablets prepared by the direct compression method demonstrated a burst release within 8 to 10 h from Precirol ATO 5® and Geleol™ formulations compared to Compritol® 888 ATO. However, tablets prepared using twin-screw granulation exhibited sustained release of the drug over 24 h and the water uptake and erosion results were in accordance with dissolution data. Stability data for 45 days at accelerated conditions (40 °C/75% RH) showed similar release profiles with ƒ2 values above 50 for all of the twin screw granulation formulations, indicating the suitability of the process for formulating sustained release tablets. These findings of a single-step, continuous twin-screw granulation process are novel and demonstrate new opportunities for development of sustained release tablets.
Collapse
Affiliation(s)
- Venkata Raman Kallakunta
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Roshan Tiwari
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Sandeep Sarabu
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
11
|
Wang B, Friess W. Lipid-coated mannitol core microparticles for sustained release of protein. Eur J Pharm Biopharm 2018; 128:91-97. [DOI: 10.1016/j.ejpb.2018.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/16/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023]
|
12
|
Vollrath M, Engert J, Winter G. New insights into process understanding of solid lipid extrusion (SLE) of extruded lipid implants for sustained protein delivery. Eur J Pharm Biopharm 2018; 130:11-21. [PMID: 29913270 DOI: 10.1016/j.ejpb.2018.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022]
Abstract
The aim of this work is a better understanding of solid lipid extrusion (SLE) for protein depot production using a lab-scale twin-screw (tsc)-extruder. In this context, little is known about the relationship of process parameters such as extrusion temperature, screw speed, or formulation on implant characteristics. It is difficult to attribute release characteristics to only one parameter, since the release will always be influenced by a combination of parameters. In this study, we describe the use of an online pressure measurement tool which allows to characterize pressure profiles during an extrusion run. We systematically investigated the impact of various process parameters on implant properties as well as release patterns using a monoclonal antibody (mAb). Solid lipid implants (SLIs) were produced by tsc-extrusion using the low melting triglyceride H12 and the high melting triglyceride Dynasan® D118. A mAb available in a freeze-dried matrix containing hydroxypropyl-β-cyclodextrine (HP-β-CD) was used as incorporated active pharmaceutical ingredient. Extrusion temperature (33-37 °C), screw speed (40-80 rpm) and the lipid composition (30-70% of each triglyceride) were modified. Additionally, freshly extruded SLIs were ground and extruded again as a preparation technique to optimize properties of SLIs. Using the pressure monitoring tool, four characteristic phases were defined for an extrusion run. We found that both, sufficient pressure and adequately molten material, is needed to form a suitable implant. Using the double extrusion technique, release rates could substantially be slowed down without changing formulation.
Collapse
Affiliation(s)
- Moritz Vollrath
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, D-81377 Munich, Germany.
| | - Julia Engert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, D-81377 Munich, Germany
| |
Collapse
|
13
|
Duque L, Körber M, Bodmeier R. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants. Eur J Pharm Sci 2018; 117:128-137. [PMID: 29452211 DOI: 10.1016/j.ejps.2018.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 11/28/2022]
Abstract
The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired.
Collapse
Affiliation(s)
- Luisa Duque
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany
| | - Martin Körber
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany; Pensatech Pharma GmbH, Kelchstrasse 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany.
| |
Collapse
|
14
|
Wu C, Baldursdottir S, Yang M, Mu H. Lipid and PLGA hybrid microparticles as carriers for protein delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Formation of mannitol core microparticles for sustained release with lipid coating in a mini fluid bed system. Eur J Pharm Biopharm 2017; 120:126-132. [PMID: 28893692 DOI: 10.1016/j.ejpb.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/18/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
Abstract
The goal of this study was to prepare sustained release microparticles for methyl blue and aspartame as sparingly and freely water-soluble model drugs by lipid film coating in a Mini-Glatt fluid bed, and to assess the effect of coating load of two of lipids, hard fat and glyceryl stearate, on the release rates. 30g drug-loaded mannitol carrier microparticles with average diameter of 500 or 300μm were coated with 5g, 10g, 20g and 30g lipids, respectively. The model drugs were completely released in vitro through pores which mainly resulted from dissolution of the polyol core beads. The release of methyl blue from microparticles based on 500μm carrier beads extended up to 25days, while aspartame release from microparticles formed from 300μm carrier beads was extended to 7days. Although glyceryl stearate exhibits higher wettability, burst and release rates were similar for the two lipid materials. Polymorphic transformation of the hart fat was observed upon release. The lipid-coated microparticles produced with 500μm carrier beads showed slightly lower burst release compared to the microparticles produced with 300μm carrier beads as they carried relatively thicker lipid layer based on an equivalent lipid to mannitol ratio. Aspartame microparticles showed a much faster release than methyl blue due to the higher water-solubility of aspartame.
Collapse
|
16
|
Vollrath M, Engert J, Winter G. Long-term release and stability of pharmaceutical proteins delivered from solid lipid implants. Eur J Pharm Biopharm 2017; 117:244-255. [PMID: 28442372 DOI: 10.1016/j.ejpb.2017.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/19/2017] [Accepted: 04/13/2017] [Indexed: 01/13/2023]
Abstract
Solid lipid implants (SLIs) prepared by twin-screw (tsc) extrusion represent a promising technology platform for the sustained release of pharmaceutical proteins. In this work, we report on two aspects, long-term release and stability of released protein. First, SLIs were produced by tsc-extrusion containing the low melting triglyceride H12 and the high melting triglyceride Dynasan D118. Two different proteins available in a freeze-dried matrix containing hydroxypropyl-β-cyclodextrine (HP-β-CD) were incorporated into the lipid matrix: a monoclonal antibody (mAb) from the IgG1 class and the fab-fragment Ranibizumab (Lucentis®). SLIs, composed of 10% protein lyophilizate and both triglycerides, were extruded at 35°C and 40rpm. Sustained release of both proteins was observed in a sustained manner for approximately 120days. Protein load per implant was increased by three different approaches resulting in a protein load of 3.00mg per implant without affecting the release profiles. The incubation medium containing the released protein was collected, concentrated and analyzed including liquid chromatography (SE-HPLC, IEX, HIC), electrophoresis (SDS-PAGE, on-chip gel electrophoresis) and FT-IR spectroscopy. The mAb showed a monomer loss of up to 7% (SE-HPLC) and IEX analysis revealed the formation of 16% acidic subspecies after 18weeks. FT-IR spectra of mAb indicated the formation of random coil structures towards the end of the release study. Ranibizumab was mainly released in its monomeric form (>95%), and approximately 5% hydrophobic subspecies were formed after 18weeks of release. FT-IR analysis revealed no changes in secondary structure. The release and stability profiles of both proteins underline the potential of SLIs as a delivery system. SLIs provide a promising platform for applications where really long-term release is needed, for example for intraocular delivery of anti-vascular endothelial growth factor (VEGF) drugs for age related macular degeneration (AMD).
Collapse
Affiliation(s)
- Moritz Vollrath
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich D-81377, Germany
| | - Julia Engert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich D-81377, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, Butenandtstrasse 5-13, Munich D-81377, Germany.
| |
Collapse
|
17
|
Cossé A, König C, Lamprecht A, Wagner KG. Hot Melt Extrusion for Sustained Protein Release: Matrix Erosion and In Vitro Release of PLGA-Based Implants. AAPS PharmSciTech 2017; 18:15-26. [PMID: 27193002 DOI: 10.1208/s12249-016-0548-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022] Open
Abstract
The design of biodegradable implants for sustained release of proteins is a complex challenge optimizing protein polymer interaction in combination with a mini-scale process which is predictive for production. The process of hot melt extrusion (HME) was therefore conducted on 5- and 9-mm mini-scale twin screw extruders. Poly(lactic-co-glycolic acid) (PLGA) implants were characterized for their erosion properties and the in vitro release of the embedded protein (bovine serum albumin, BSA). The release of acidic monomers as well as other parameters (pH value, mass loss) during 16 weeks indicated a delayed onset of matrix erosion in week 3. BSA-loaded implants released 17.0% glycolic and 5.9% lactic acid after a 2-week lag time. Following a low burst release (3.7% BSA), sustained protein release started in week 4. Storage under stress conditions (30°C, 75% rH) revealed a shift of erosion onset of 1 week (BSA-loaded implants: 26.9% glycolic and 9.3% lactic acid). Coherent with the changed erosion profiles, an influence on the protein release was observed. Confocal laser scanning and Raman microscopy showed a homogenous protein distribution throughout the matrix after extrusion and during release studies. Raman spectra indicated a conformational change of the protein structure which could be one reason for incomplete protein release. The study underlined the suitability of the HME process to obtain a solid dispersion of protein inside a polymeric matrix providing sustained protein release. However, the incomplete protein release and the impact by storage conditions require thorough characterization and understanding of erosion and release mechanisms.
Collapse
|
18
|
Kuentz M, Holm R, Elder DP. Methodology of oral formulation selection in the pharmaceutical industry. Eur J Pharm Sci 2016; 87:136-63. [DOI: 10.1016/j.ejps.2015.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/24/2015] [Accepted: 12/06/2015] [Indexed: 12/30/2022]
|
19
|
Panda B, Subhadarsini R, Mallick S. Biointerfacial phenomena of amlodipine buccomucosal tablets of HPMC matrix system containing polyacrylate polymer/β-cyclodextrin: Correlation of swelling and drug delivery performance. Expert Opin Drug Deliv 2016; 13:633-43. [DOI: 10.1517/17425247.2016.1154038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Brajabihari Panda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, University, Bhubaneswar, OR, India
| | - Rajalaxmi Subhadarsini
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, University, Bhubaneswar, OR, India
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan, University, Bhubaneswar, OR, India
| |
Collapse
|
20
|
Becker K, Salar-Behzadi S, Zimmer A. Solvent-free melting techniques for the preparation of lipid-based solid oral formulations. Pharm Res 2015; 32:1519-45. [PMID: 25788447 PMCID: PMC4381087 DOI: 10.1007/s11095-015-1661-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/19/2015] [Indexed: 01/08/2023]
Abstract
Lipid excipients are applied for numerous purposes such as taste masking, controlled release, improvement of swallowability and moisture protection. Several melting techniques have evolved in the last decades. Common examples are melt coating, melt granulation and melt extrusion. The required equipment ranges from ordinary glass beakers for lab scale up to large machines such as fluid bed coaters, spray dryers or extruders. This allows for upscaling to pilot or production scale. Solvent free melt processing provides a cost-effective, time-saving and eco-friendly method for the food and pharmaceutical industries. This review intends to give a critical overview of the published literature on experiences, formulations and challenges and to show possibilities for future developments in this promising field. Moreover, it should serve as a guide for selecting the best excipients and manufacturing techniques for the development of a product with specific properties using solvent free melt processing.
Collapse
Affiliation(s)
- Karin Becker
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University Graz, Member of BioTechMed, Universitätplatz 1, 8010 Graz, Austria
| | | | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University Graz, Member of BioTechMed, Universitätplatz 1, 8010 Graz, Austria
| |
Collapse
|
21
|
Cao H, Yuan M, Wang L, Yu J, Xu F. Coupling purification and in situ immobilization process of monoclonal antibodies to clenbuterol for immunosensor application. Anal Biochem 2015; 476:59-66. [PMID: 25660529 DOI: 10.1016/j.ab.2015.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 11/29/2022]
Abstract
Clenbuterol (CL), which promotes the growth of muscular tissue and the reduction of body fat in pigs and cattle, has been confirmed to be a potential hazard to human health. In this study, a monoclonal antibody to clenbuterol (CL mAb) from a hybridoma culture supernatant was purified by an aqueous two-phase system (ATPS) at different polyethylene glycol (PEG) concentrations, PEG molecular weights, pH values, and NaCl concentrations. Then the CL mAb was immobilized in situ by directly adding polystyrene microspheres (PSMSs) into a PEG phase containing CL mAb. Using the immobilized antibody, an immunosensor was constructed to detect the CL residues in pork samples. The results showed that using an ATPS composed of 15% (w/w) PEG6000, 15% (w/w) phosphate, and 15% (w/w) NaCl at pH 8.0, the partition coefficient was 7.24, the activity recovery was 87.86%, and the purification fold was 2.88. The PEG-CL mAb-PSMS retained approximately 98% of its initial activity after 30-ml phosphate buffer (PBS) washings. After 30days of storage, the CL mAb-PSMS lost nearly 75% of its activity, whereas the PEG-CL mAb-PSMS retained as much as 95% of its initial activity. Furthermore, the constructed immunosensor obtained recoveries of 90.5 to 102.6% when applied to pork samples spiked with CL.
Collapse
Affiliation(s)
- Hui Cao
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Min Yuan
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Lili Wang
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jingsong Yu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Fei Xu
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
| |
Collapse
|
22
|
Engert J. Implants as Sustained Release Delivery Devices for Vaccine Antigens. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-1-4939-1417-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Oliveira G, Wahl MA, Pinto JF. Delivery of drugs from laminar co-extrudates manufactured by a solvent-free process at room temperature. J Pharm Sci 2014; 103:3501-3510. [PMID: 25212969 DOI: 10.1002/jps.24133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/03/2014] [Accepted: 07/30/2014] [Indexed: 11/06/2022]
Abstract
This work aims to design and manufacture laminar co-extrudates as a new dosage form for the delivery of drugs. Co-extrudates made of lipid-based materials with a laminar shape were manufactured at room temperature in the absence of solvents and assessed over time for their mechanical properties (bending strength, deformation, stiffness, and elasticity), density, porosity, thermal behavior and main mechanism of drug release. The study has shown that the extrusion force at steady state increased with the extrusion rate and with the number of layers. The bending strength and stiffness of extrudates increased over time. Laminar co-extrudates with higher number of layers presented a decreasing dissolution efficiency of 38.3 ± 0.6%, 23.0 ± 0.2%, and 12.3 ± 0.2%, for mono-, bi-, and trilayer, respectively. After 90 days, the density, the deformation, and elasticity decreased: trilayer extrudates were the denser and the ones to present the lowest ability to deform and the highest elasticity, whereas monolayer extrudates were the less dense presenting the highest ability to deform. Changes were more evident in the first days after manufacture leading to stabilization over time. Laminar (co-)extrudates have been confirmed as an innovative dosage form for tailored delivery of drugs made without solvents at room temperature.
Collapse
Affiliation(s)
- Gonçalo Oliveira
- iMed.UL-Departamento de Farmácia Galénica e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Martin A Wahl
- Pharmazeutisches Institut, Eberhard Karls Universität Tübingen, TübingenD-72076, Deutschland
| | - JoãO F Pinto
- iMed.UL-Departamento de Farmácia Galénica e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
24
|
Rosiaux Y, Jannin V, Hughes S, Marchaud D. Solid lipid excipients — Matrix agents for sustained drug delivery. J Control Release 2014; 188:18-30. [DOI: 10.1016/j.jconrel.2014.06.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
25
|
Oliveira G, Wahl M, Pinto J. Characterization of laminar extrudates manufactured at room temperature in the absence of solvents for the delivery of drugs. Int J Pharm 2013; 454:90-8. [DOI: 10.1016/j.ijpharm.2013.06.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
26
|
Keen JM, McGinity JW, Williams III RO. Enhancing bioavailability through thermal processing. Int J Pharm 2013; 450:185-96. [DOI: 10.1016/j.ijpharm.2013.04.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 11/26/2022]
|
27
|
Gan L, Gao YP, Zhu CL, Zhang XX, Gan Y. Novel pH-Sensitive Lipid-Polymer Composite Microspheres of 10-Hydroxycamptothecin Exhibiting Colon-Specific Biodistribution and Reduced Systemic Absorption. J Pharm Sci 2013; 102:1752-1759. [DOI: 10.1002/jps.23499] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/17/2013] [Accepted: 02/04/2013] [Indexed: 12/29/2022]
|
28
|
Haupt M, Thommes M, Heidenreich A, Breitkreutz J. Lipid-based intravesical drug delivery systems with controlled release of trospium chloride for the urinary bladder. J Control Release 2013; 170:161-6. [PMID: 23732944 DOI: 10.1016/j.jconrel.2013.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 05/02/2013] [Accepted: 05/23/2013] [Indexed: 12/22/2022]
Abstract
The overactive bladder (OAB) is a common disease with an overactivity of the detrusor muscle in the bladder wall. Besides peroral administration of anticholinergic drugs and bladder irrigations, there is a need for a sustained release formulation in the urinary bladder. In order to realise a local long-term treatment of the overactive urinary bladder, lipidic drug delivery systems were prepared. Requirements for an intravesical application are a long-term controlled release of trospium chloride, a high drug loading and small sized drug carriers to permit an insertion through the urethra into the urinary bladder. The drug delivery systems were manufactured by using compression (mini-tablets), solid lipid extrusion (extrudates) and a melting and casting technique (mini-moulds) with different amounts of trospium chloride and glyceryl tristearate as matrix former. Drug release depended on the drug loading and the preparation method. Mini-tablets and lipidic extrudates showed a drug release over five days, whereas that from mini-moulds was negligibly small. The appearance of polymorphic transformations during processing and storage was investigated by using differential scanning calorimetry and X-ray diffraction. In contrast to mini-tablets and mini-moulds, lipidic extrudates showed no polymorphic transformations. In summary, lipids are suitable matrix formers for a highly water-soluble drug, like trospium chloride. Despite a drug loading of up to 30%, it was feasible to achieve a drug release ranging from several days up to weeks. In addition, small dosage forms with a size of only a few millimetres were realised. Therefore, an insertion and excretion through the urethra is possible and the requirements for an intravesical application are fulfilled.
Collapse
Affiliation(s)
- M Haupt
- Department of Urology, RWTH University Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | |
Collapse
|
29
|
Sax G, Winter G. Mechanistic studies on the release of lysozyme from twin-screw extruded lipid implants. J Control Release 2012; 163:187-94. [DOI: 10.1016/j.jconrel.2012.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/15/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
|
30
|
In-vivo biodegradation of extruded lipid implants in rabbits. J Control Release 2012; 163:195-202. [DOI: 10.1016/j.jconrel.2012.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/15/2012] [Accepted: 08/24/2012] [Indexed: 11/23/2022]
|
31
|
Release pathways of interferon α2a molecules from lipid twin screw extrudates revealed by single molecule fluorescence microscopy. J Control Release 2012; 162:295-302. [DOI: 10.1016/j.jconrel.2012.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/04/2012] [Accepted: 07/10/2012] [Indexed: 11/23/2022]
|
32
|
Impact of the experimental conditions on drug release from parenteral depot systems: From negligible to significant. Int J Pharm 2012; 432:11-22. [DOI: 10.1016/j.ijpharm.2012.04.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/11/2012] [Accepted: 04/21/2012] [Indexed: 11/24/2022]
|
33
|
Kreye F, Hamm G, Karrout Y, Legouffe R, Bonnel D, Siepmann F, Siepmann J. MALDI-TOF MS imaging of controlled release implants. J Control Release 2012; 161:98-108. [PMID: 22551600 DOI: 10.1016/j.jconrel.2012.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/07/2012] [Accepted: 04/10/2012] [Indexed: 11/27/2022]
Abstract
MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) imaging is used to characterize novel lipid implants allowing for controlled drug delivery. Importantly, this innovative technique provides crucial information on the inner structure of the implants before and after exposure to the release medium and does not require the addition of marker substances. Implants were prepared by extrusion at room temperature. Thus, in contrast to hot-melt extruded systems, the risks of drug inactivation and solid state transformations of the lipid matrix former are reduced. Hydrogenated/hardened soybean oil and glyceryl tristearate were studied as lipids and propranolol hydrochloride and theophylline as drugs, exhibiting significantly different solubility in water. The implants were also characterized by optical microscopy, differential scanning calorimetry, water uptake and lipid erosion studies, mathematical modeling as well as in vitro drug release measurements. Importantly, broad spectra of drug release patterns with release periods ranging from a few days up to several months could easily be provided when varying the initial drug content and type of lipid, irrespective of the type of drug. The diameter of the implants can be as small as 1mm, facilitating injection. MALDI-TOF MS imaging revealed homogeneous macroscopic drug distributions within the systems, but steep drug concentration gradients in radial and axial direction at the lower micrometer level, indicating drug- and lipid-rich domains. As the implants do not significantly swell, local irritation upon administration due to mechanical stress can be expected to be limited. Good agreement between experimentally measured and theoretically calculated drug release kinetics revealed that diffusional mass transport plays a major role for the control of drug release from this type of advanced drug delivery systems.
Collapse
Affiliation(s)
- F Kreye
- College of Pharmacy, University of Lille, 3 Rue du Prof. Laguesse, 59006 Lille, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Bauersachs S, Ulbrich SE, Reichenbach HD, Reichenbach M, Büttner M, Meyer HH, Spencer TE, Minten M, Sax G, Winter G, Wolf E. Comparison of the Effects of Early Pregnancy with Human Interferon, Alpha 2 (IFNA2), on Gene Expression in Bovine Endometrium1. Biol Reprod 2012; 86:46. [DOI: 10.1095/biolreprod.111.094771] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
35
|
Witzleb R, Müllertz A, Kanikanti VR, Hamann HJ, Kleinebudde P. Dissolution of solid lipid extrudates in biorelevant media. Int J Pharm 2012; 422:116-24. [DOI: 10.1016/j.ijpharm.2011.10.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 10/16/2022]
|
36
|
Mathematical modeling of drug release from lipid dosage forms. Int J Pharm 2011; 418:42-53. [DOI: 10.1016/j.ijpharm.2011.07.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 11/22/2022]
|
37
|
Drug release mechanisms of cast lipid implants. Eur J Pharm Biopharm 2011; 78:394-400. [DOI: 10.1016/j.ejpb.2011.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 02/09/2011] [Accepted: 02/15/2011] [Indexed: 11/23/2022]
|
38
|
Shamma RN, Basalious EB, Shoukri R. Development of novel sustained release matrix pellets of betahistine dihydrochloride: effect of lipophilic surfactants and co-surfactants. Pharm Dev Technol 2011; 17:583-93. [PMID: 21770719 DOI: 10.3109/10837450.2011.557730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sustained release matrix pellets of the freely water soluble drug, betahistine dihydrochloride (BH), were prepared using freeze pelletization technique. Different waxes and lipids (cetyl alcohol, beeswax, glyceryl tripalmitate (GTP) and glyceryl tristearate) were evaluated for the preparation of matrix pellets. A D-optimal design was employed for the optimization and to explore the effect of drug loading (X(1)), concentration of lipophilic surfactant (X(2)), concentration of co-surfactant (X(3)) and wax type (X(4)) on the release extent of the drug from matrix pellets. The entrapment efficiency (Y(1)), pellet diameter (Y(2)), and the percentage drug released at given times were selected as dependent variables. Results revealed a significant impact of all independent variables on drug release from the formulated pellets. The lipophilic surfactant significantly increased both the entrapment efficiency and the in vitro drug release and significantly decreased the pellet size. The optimized BH-loaded pellets were composed of 19.95% drug loading, 9.95% Span(®) 80 (surfactant), 0.25% Capmul(®) (co-surfactant) using glyceryl tripalmitate as a matrix former. The release profiles of the drug from hard gelatin capsule containing optimized pellets equivalent to 32 mg BH was similar to that of target release model for once-daily administration based on similarity factor. It could be concluded that a promising once-daily capsule containing sustained release pellets of BH was successfully designed.
Collapse
|
39
|
Gao Y, Zhu CL, Zhang XX, Gan L, Gan Y. Lipid–polymer composite microspheres for colon-specific drug delivery prepared using an ultrasonic spray freeze-drying technique. J Microencapsul 2011; 28:549-56. [DOI: 10.3109/02652048.2011.599442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Kreye F, Siepmann F, Zimmer A, Willart J, Descamps M, Siepmann J. Controlled release implants based on cast lipid blends. Eur J Pharm Sci 2011; 43:78-83. [DOI: 10.1016/j.ejps.2011.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/27/2011] [Accepted: 03/28/2011] [Indexed: 11/17/2022]
|
41
|
Drug release mechanisms of compressed lipid implants. Int J Pharm 2011; 404:27-35. [DOI: 10.1016/j.ijpharm.2010.10.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 11/24/2022]
|
42
|
|
43
|
Kleinebudde P. Pharmazeutisches Produktdesign: Gezielte Freisetzung von Wirkstoffen durch unterschiedliche Extrusionstechniken. CHEM-ING-TECH 2011. [DOI: 10.1002/cite.201000162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Witzleb R, Kanikanti VR, Hamann HJ, Kleinebudde P. Solid lipid extrusion with small die diameters – Electrostatic charging, taste masking and continuous production. Eur J Pharm Biopharm 2011; 77:170-7. [DOI: 10.1016/j.ejpb.2010.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 11/27/2022]
|
45
|
Tian W, Schulze S, Brandl M, Winter G. Vesicular phospholipid gel-based depot formulations for pharmaceutical proteins: Development and in vitro evaluation. J Control Release 2010; 142:319-25. [DOI: 10.1016/j.jconrel.2009.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/07/2009] [Accepted: 11/10/2009] [Indexed: 11/25/2022]
|
46
|
Salmaso S, Bersani S, Elvassore N, Bertucco A, Caliceti P. Biopharmaceutical characterisation of insulin and recombinant human growth hormone loaded lipid submicron particles produced by supercritical gas micro-atomisation. Int J Pharm 2009; 379:51-8. [DOI: 10.1016/j.ijpharm.2009.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
|