1
|
Wei C, Guo Y, Ci Z, Li M, Zhang Y, Zhou Y. Advances of Schwann cells in peripheral nerve regeneration: From mechanism to cell therapy. Biomed Pharmacother 2024; 175:116645. [PMID: 38729050 DOI: 10.1016/j.biopha.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.
Collapse
Affiliation(s)
- Chuqiao Wei
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanxin Guo
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhen Ci
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Mucong Li
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yidi Zhang
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Wong FSY, Tsang KK, Chan BP, Lo ACY. Both non-coated and polyelectrolytically-coated intraocular collagen-alginate composite gels enhanced photoreceptor survival in retinal degeneration. Biomaterials 2023; 293:121948. [PMID: 36516686 DOI: 10.1016/j.biomaterials.2022.121948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Treatments of vision-threatening retinal diseases are often hampered by drug delivery difficulties. Polyelectrolytically-coated alginate encapsulated-cell therapy (ECT) systems have shown therapeutic efficacy through prolonged in vivo drug delivery but still face various biocompatibility, viability, drug delivery and mechanical stability issues in clinical trials. Here, novel, injectable alginate-poly-l-lysine (AP)-coated composite alginate-collagen (CAC) ECT gels were developed for sustained ocular drug delivery, and their long-term performance was compared with non-coated CAC ECT gels. All optimised AP-coated gels (AP1- and AP5.5-CAC ECT: 2 mg/ml collagen, 1.5% high molecular weight alginate, 50,000 cells/gel, with 0.01% or 0.05% poly-l-lysine coating for 5 min, followed by 0.15% alginate coating) and non-coated gels showed effective cell proliferation control, cell viability support and continuous delivery of bioactive glial cell-derived neurotrophic factor (GDNF) with no significant gel degradation in vitro and in rat vitreous. Most importantly, intravitreally injected gels demonstrated therapeutic efficacy in Royal College of Surgeons rats with retinal degeneration, resulting in reduced photoreceptor apoptosis and retinal function loss. At 6 months post-implantation, no host-tissue attachment or ingrowth was detected on the retrieved gels. Non-coated gels were mechanically more stable than AP5.5-coated ones under the current cell loading. This study demonstrated that both coated and non-coated ECT gels can serve as well-controlled, sustained drug delivery platforms for treating posterior eye diseases without immunosuppression.
Collapse
Affiliation(s)
- Francisca Siu Yin Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ken Kin Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Cardoso LMDF, Barreto T, Gama JFG, Alves LA. Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy. Polymers (Basel) 2022; 14:polym14132641. [PMID: 35808686 PMCID: PMC9268758 DOI: 10.3390/polym14132641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
One of the limitations in organ, tissue or cellular transplantations is graft rejection. To minimize or prevent this, recipients must make use of immunosuppressive drugs (IS) throughout their entire lives. However, its continuous use generally causes several side effects. Although some IS dose reductions and withdrawal strategies have been employed, many patients do not adapt to these protocols and must return to conventional IS use. Therefore, many studies have been carried out to offer treatments that may avoid IS administration in the long term. A promising strategy is cellular microencapsulation. The possibility of microencapsulating cells originates from the opportunity to use biomaterials that mimic the extracellular matrix. This matrix acts as a support for cell adhesion and the syntheses of new extracellular matrix self-components followed by cell growth and survival. Furthermore, by involving the cells in a polymeric matrix, the matrix acts as an immunoprotective barrier, protecting cells against the recipient’s immune system while still allowing essential cell survival molecules to diffuse bilaterally through the polymer matrix pores. In addition, this matrix can be associated with IS, thus diminishing systemic side effects. In this context, this review will address the natural biomaterials currently in use and their importance in cell therapy.
Collapse
|
4
|
Adeyemi SA, Choonara YE. Current advances in cell therapeutics: A biomacromolecules application perspective. Expert Opin Drug Deliv 2022; 19:521-538. [PMID: 35395914 DOI: 10.1080/17425247.2022.2064844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Many chronic diseases have evolved and to circumvent the limitations of using conventional drug therapies, smart cell encapsulating delivery systems have been explored to customize the treatment with alignment to disease longevity. Cell therapeutics has advanced in tandem with improvements in biomaterials that can suitably deliver therapeutic cells to achieve targeted therapy. Among the promising biomacromolecules for cell delivery are those that share bio-relevant architecture with the extracellular matrix and display extraordinary compatibility in the presence of therapeutic cells. Interestingly, many biomacromolecules that fulfil these tenets occur naturally and can form hydrogels. AREAS COVERED This review provides a concise incursion into the paradigm shift to cell therapeutics using biomacromolecules. Advances in the design and use of biomacromolecules to assemble smart therapeutic cell carriers is discussed in light of their pivotal role in enhancing cell encapsulation and delivery. In addition, the principles that govern the application of cell therapeutics in diabetes, neuronal disorders, cancers and cardiovascular disease are outlined. EXPERT OPINION Cell therapeutics promises to revolutionize the treatment of various secretory cell dysfunctions. Current and future advances in designing functional biomacromolecules will be critical to ensure that optimal delivery of therapeutic cells is achieved with desired biosafety and potency.
Collapse
Affiliation(s)
- Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, 2193, South Africa
| |
Collapse
|
5
|
Zhang Y, Gallego I, Plou J, Pedraz JL, Liz-Marzán LM, Ciriza J, García I. SERS monitoring of local pH in encapsulated therapeutic cells. NANOSCALE 2021; 13:14354-14362. [PMID: 34477718 DOI: 10.1039/d1nr03969e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microencapsulation of therapeutic cells has widely advanced toward the development of treatments for various diseases, in particular seeking the protection of cell transplants from immune rejection. However, several challenges in cell therapy remain due to the lack of suitable methods to monitor in vivo microcapsule tracking, microcapsule stability and/or altered cell viability and proliferation upon transplantation. We propose in this work the incorporation of contrast agents in microcapsules, which can be easily visualized by SERS imaging. By placing SERS probes in the alginate extracellular layer, a high contrast can be obtained with negligible toxicity. Specifically, we used a pH-sensitive SERS tracking probe consisting of gold nanostars encoded with a pH-sensitive Raman-active molecule, and protected by a layer of biocompatible polymer coating, grafted on the nanoparticles via electrostatic interactions. This nanomaterial is highly sensitive within the biologically relevant pH range, 5.5-7.8. We demonstrate that this SERS-based pH sensor can provide information about cell death of microencapsulated cells, in a non-invasive manner. As a result, we expect that this approach should provide a general strategy to study biological interactions at the microcapsule level.
Collapse
Affiliation(s)
- Yizhi Zhang
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Bonani W, Cagol N, Maniglio D. Alginate Hydrogels: A Tool for 3D Cell Encapsulation, Tissue Engineering, and Biofabrication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:49-61. [PMID: 32601937 DOI: 10.1007/978-981-15-3262-7_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide variety of hydrogels have been proposed for tissue engineering applications, cell encapsulation, and bioinks for bioprinting applications. Cell-laden hydrogel constructs rely on natural hydrogels such as alginate, agarose, chitosan, collagen, gelatin, fibroin, and hyaluronic acid (HA), as well as on synthetic hydrogels such as poloxamers (Pluronics®) and polyethylene glycol (PEG). Alginate has become more and more important in the last years, thanks to the possibility to prepare alginate hydrogels suitable for cell encapsulation mainly because of the mild and reversible cross-linking conditions. In this paper alginate will be described in detail with respect to its chemistry, cross-linking behavior, biocompatibility, manufacturing capacity, and possible modifications.
Collapse
Affiliation(s)
- Walter Bonani
- Directorate for Nuclear Safety and Security, European Commission, Joint Research Centre, Karlsruhe, Germany.,Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy
| | - Nicola Cagol
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy
| | - Devid Maniglio
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy.
| |
Collapse
|
7
|
Stabler CL, Li Y, Stewart JM, Keselowsky BG. Engineering immunomodulatory biomaterials for type 1 diabetes. NATURE REVIEWS. MATERIALS 2019; 4:429-450. [PMID: 32617176 PMCID: PMC7332200 DOI: 10.1038/s41578-019-0112-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A cure for type 1 diabetes (T1D) would help millions of people worldwide, but remains elusive thus far. Tolerogenic vaccines and beta cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent beta cell loss. However, both approaches require some form of systematic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and beta cell replacement devices. We investigate nano- and microparticles for the delivery of tolerogenic agents and autoantigens, and as artificial antigen presenting cells, and highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immunoisolation devices for cell therapy and islet transplantation, and explore synergies with other fields for the development of new T1D treatment strategies.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Y Li
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - JM Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - BG Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
8
|
Ciriza J, Saenz Del Burgo L, Gurruchaga H, Borras FE, Franquesa M, Orive G, Hernández RM, Pedraz JL. Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Deliv 2018; 25:1147-1160. [PMID: 29781340 PMCID: PMC6058697 DOI: 10.1080/10717544.2018.1474966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
The combination of protein-coated graphene oxide (GO) and microencapsulation technology has moved a step forward in the challenge of improving long-term alginate encapsulated cell survival and sustainable therapeutic protein release, bringing closer its translation from bench to the clinic. Although this new approach in cell microencapsulation represents a great promise for long-term drug delivery, previous studies have been performed only with encapsulated murine C2C12 myoblasts genetically engineered to secrete murine erythropoietin (C2C12-EPO) within 160 µm diameter hybrid alginate protein-coated GO microcapsules implanted into syngeneic mice. Here, we show that encapsulated C2C12-EPO myoblasts survive longer and release more therapeutic protein by doubling the micron diameter of hybrid alginate-protein-coated GO microcapsules to 380 µm range. Encapsulated mesenchymal stem cells (MSC) genetically modified to secrete erythropoietin (D1-MSCs-EPO) within 380 µm-diameter hybrid alginate-protein-coated GO microcapsules confirmed this improvement in survival and sustained protein release in vitro. This improved behavior is reflected in the hematocrit increase of allogeneic mice implanted with both encapsulated cell types within 380 µm diameter hybrid alginate-protein-coated GO microcapsules, showing lower immune response with encapsulated MSCs. These results provide a new relevant step for the future clinical application of protein-coated GO on cell microencapsulation.
Collapse
Affiliation(s)
- Jesús Ciriza
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Laura Saenz Del Burgo
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Haritz Gurruchaga
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Francesc E Borras
- c REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol , Badalona , Spain
- d Department of Cell Biology, Physiology and Immunology , Universitat Autònoma de Barcelona , Bellaterra , Spain
- e Nephrology Service, Germans Trias i Pujol University Hospital , Badalona , Spain
| | - Marcella Franquesa
- c REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol , Badalona , Spain
- e Nephrology Service, Germans Trias i Pujol University Hospital , Badalona , Spain
| | - Gorka Orive
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - Rosa Maria Hernández
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| | - José Luis Pedraz
- a Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine , CIBER-BBN , Vitoria-Gasteiz , Spain
- b NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy , University of the Basque Country, UPV/EHU , Vitoria-Gasteiz , Spain
| |
Collapse
|
9
|
Cagol N, Bonani W, Maniglio D, Migliaresi C, Motta A. Effect of Cryopreservation on Cell-Laden Hydrogels: Comparison of Different Cryoprotectants. Tissue Eng Part C Methods 2018; 24:20-31. [DOI: 10.1089/ten.tec.2017.0258] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nicola Cagol
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - Walter Bonani
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - Devid Maniglio
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - Claudio Migliaresi
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - Antonella Motta
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| |
Collapse
|
10
|
Abstract
This chapter presents a description of standardized techniques used routinely in our laboratory to encapsulate different cell types using the alginate-PLL-alginate immunoisolation system. Given the importance of noninvasive tracking of encapsulated cell transplants, we present a detailed guidance to achieve maximum efficiency and functionality of the capsule preparations for optimal tracking posttransplantation. The provided protocols cover tracking of encapsulated cells using magnetic resonance (MR), X-ray, computed tomography (CT), and ultrasound (US) imaging. Practical suggestions to optimize each method with specific references to recommended suppliers are included.
Collapse
|
11
|
Lopez-Mendez TB, Santos-Vizcaino E, Blanco FJ, Pedraz JL, Hernandez RM, Orive G. Improved control over MSCs behavior within 3D matrices by using different cell loads in both in vitro and in vivo environments. Int J Pharm 2017; 533:62-72. [DOI: 10.1016/j.ijpharm.2017.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022]
|
12
|
Sarker B, Zehnder T, Rath SN, Horch RE, Kneser U, Detsch R, Boccaccini AR. Oxidized Alginate-Gelatin Hydrogel: A Favorable Matrix for Growth and Osteogenic Differentiation of Adipose-Derived Stem Cells in 3D. ACS Biomater Sci Eng 2017; 3:1730-1737. [DOI: 10.1021/acsbiomaterials.7b00188] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Bapi Sarker
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Tobias Zehnder
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Subha N. Rath
- Department
of Plastic and Hand Surgery, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Raymund E. Horch
- Department
of Plastic and Hand Surgery, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Ulrich Kneser
- Department
of Hand, Plastic, and Reconstructive Surgery, Burn Center, BG Trauma
Center Ludwigshafen and Department of Plastic and Hand Surgery, University of Heidelberg, Heidelberg, Germany
| | - Rainer Detsch
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Shinohara K, Yoshida T, Liu H, Ichinose S, Ishida T, Nakahama KI, Nagaoka N, Moriyama M, Morita I, Ohno-Matsui K. Establishment of novel therapy to reduce progression of myopia in rats with experimental myopia by fibroblast transplantation on sclera. J Tissue Eng Regen Med 2017; 12:e451-e461. [DOI: 10.1002/term.2275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/24/2016] [Accepted: 07/22/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Kosei Shinohara
- Department of Ophthalmology and Visual Science; Tokyo Medical and Dental University; Bunkyoku Tokyo Japan
| | - Takeshi Yoshida
- Department of Ophthalmology and Visual Science; Tokyo Medical and Dental University; Bunkyoku Tokyo Japan
| | - Hongding Liu
- Department of Ophthalmology and Visual Science; Tokyo Medical and Dental University; Bunkyoku Tokyo Japan
| | - Shizuko Ichinose
- Instrumental Analysis Research Center; Tokyo Medical and Dental University; Bunkyoku Tokyo Japan
| | - Tomoka Ishida
- Department of Ophthalmology and Visual Science; Tokyo Medical and Dental University; Bunkyoku Tokyo Japan
| | - Ken-Ichi Nakahama
- Cellular Physiological Chemistry; Tokyo Medical and Dental University; Bunkyoku Tokyo Japan
| | - Natsuko Nagaoka
- Department of Ophthalmology and Visual Science; Tokyo Medical and Dental University; Bunkyoku Tokyo Japan
| | - Muka Moriyama
- Department of Ophthalmology and Visual Science; Tokyo Medical and Dental University; Bunkyoku Tokyo Japan
| | - Ikuo Morita
- Cellular Physiological Chemistry; Tokyo Medical and Dental University; Bunkyoku Tokyo Japan
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science; Tokyo Medical and Dental University; Bunkyoku Tokyo Japan
| |
Collapse
|
14
|
Hood RL, Hood GD, Ferrari M, Grattoni A. Pioneering medical advances through nanofluidic implantable technologies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/27/2016] [Accepted: 12/17/2016] [Indexed: 12/11/2022]
Affiliation(s)
- R. Lyle Hood
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX USA
- Department of Mechanical Engineering; University of Texas San Antonio; San Antonio TX USA
| | - Gold Darr Hood
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX USA
| | - Mauro Ferrari
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX USA
| | - Alessandro Grattoni
- Department of Nanomedicine; Houston Methodist Research Institute; Houston TX USA
| |
Collapse
|
15
|
Lizzi Lagranha V, Zambiasi Martinelli B, Baldo G, Ávila Testa G, Giacomet de Carvalho T, Giugliani R, Matte U. Subcutaneous implantation of microencapsulated cells overexpressing α-L-iduronidase for mucopolysaccharidosis type I treatment. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:43. [PMID: 28150116 DOI: 10.1007/s10856-017-5844-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of α-L-iduronidase (IDUA), resulting in accumulation of glycosaminoglycans (GAG) in lysosomes. Microencapsulation of recombinant cells is a promising gene/cell therapy approach that could overcome the limitations of the current available treatments. In the present study we produced alginate-poly-L-lysine-alginate (APA) microcapsules containing recombinant cells overexpressing IDUA, which were implanted in the subcutaneous space of MPS I mice in order to evaluate their potential effect as a treatment for this disease. APA microcapsules enclosing genetically modified Baby Hamster Kidney cells overexpressing IDUA were produced and implanted in the subcutaneous space of 4-month-old MPS I mice (Idua -/-). Treatment was performed using two cell concentrations: 8.3 × 107 and 8.3 × 106 cells/mL. Untreated MPS I and normal mice were used as controls. Microcapsules were retrieved and analyzed after treatment. Increased IDUA in the liver, kidney and heart was detected 24 h postimplantation. After 120 days, higher IDUA activity was detected in the liver, kidney and heart, in both groups, whereas GAG accumulation was reduced only in the high cell concentration group. Microcapsules analysis showed blood vessels around them, as well as inflammatory cells and a fibrotic layer. Microencapsulated cells were able to ameliorate some aspects of the disease, indicating their potential as a treatment. To achieve better performance of the microcapsules, improvements such as the modulation of inflammatory response are suggested.
Collapse
Affiliation(s)
- Valeska Lizzi Lagranha
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Barbara Zambiasi Martinelli
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Talita Giacomet de Carvalho
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Giugliani
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ursula Matte
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
16
|
Saenz del Burgo L, Ciriza J, Acarregui A, Gurruchaga H, Blanco FJ, Orive G, Hernández RM, Pedraz JL. Hybrid Alginate–Protein-Coated Graphene Oxide Microcapsules Enhance the Functionality of Erythropoietin Secreting C2C12 Myoblasts. Mol Pharm 2017; 14:885-898. [DOI: 10.1021/acs.molpharmaceut.6b01078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Laura Saenz del Burgo
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Argia Acarregui
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Haritz Gurruchaga
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Francisco Javier Blanco
- INIBIC-Hospital Universitario La Coruña, 15006, La Coruña, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), La
Coruña, Spain
| | - Gorka Orive
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa María Hernández
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| |
Collapse
|
17
|
Ciriza J, Saenz del Burgo L, Hernández RM, Orive G, Pedraz JL. Use of Flow Focusing Technique for Microencapsulation of Myoblasts. Methods Mol Biol 2017; 1479:207-216. [PMID: 27738938 DOI: 10.1007/978-1-4939-6364-5_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alginate cell microencapsulation implies the immobilization of cells within a polymeric membrane that allows the bidirectional diffusion of nutrients and oxygen inside the microcapsules and the release of waste and therapeutic molecules outside them. This technology has been applied to several cell types and it has been extensively described with pancreatic islets. However, other cells such as myoblasts are being currently studied and showing high interest. Moreover, different systems and approaches have been developed for cell encapsulation such as electrostatic extrusion and Flow focusing technology. When Flow focusing technology is applied for myoblast encapsulation, several factors should be considered, such as the pressure, the flow of the system, or the diameter size of the nebulizer, which will determine the final diameter size and shape of the microcapsules containing the myoblasts. Finally, viability of encapsulated myoblasts needs to be assessed before further studies are performed.
Collapse
Affiliation(s)
- J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - L Saenz del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - R M Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
- Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
18
|
Potentiated Osteoinductivity via Cotransfection with BMP-2 and VEGF Genes in Microencapsulated C2C12 Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:435253. [PMID: 26451370 PMCID: PMC4588358 DOI: 10.1155/2015/435253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 01/17/2023]
Abstract
Microcapsules with entrapped cells hold great promise for repairing bone defects. Unfortunately, the osteoinductivity of microcapsules has been restricted by many factors, among which the deficiency of functional proteins is a significant priority. We potentiated the osteoinductivity of microencapsulated cells via cotransfection with BMP-2 and VEGF genes. Various tissue-derived mesenchymal stem cells and cell lines were compared for BMP-2 and VEGF cotransfection. Ethidium bromide (EB)/Calcein AM staining revealed that all of the cell categories could survive for 4 weeks after microencapsulation. An ELISA assay indicated that all microencapsulated BMP-2 or VEGF transfected cells could secrete gene products constitutively for 1 month. Particularly, the recombinant microencapsulated C2C12 cells released the most desirable level of BMP-2 and VEGF. Further experiments demonstrated that microencapsulated BMP-2 and VEGF cotransfected C2C12 cells generated both BMP-2 and VEGF for 4 weeks. Additionally, the cotransfection of BMP-2 and VEGF in microencapsulated C2C12 cells showed a stronger osteogenic induction against BMSCs than individual BMP-2-transfected microencapsulated C2C12 cells. These results demonstrated that the cotransfection of BMP-2 and VEGF into microencapsulated C2C12 cells is of potent utility for the potentiation of bone regeneration, which would provide a promising clinical strategy for cellular therapy in bone defects.
Collapse
|
19
|
Ciriza J, Saenz del Burgo L, Virumbrales-Muñoz M, Ochoa I, Fernandez L, Orive G, Hernandez R, Pedraz J. Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Cryopreservation of microencapsulated murine mesenchymal stem cells genetically engineered to secrete erythropoietin. Int J Pharm 2015; 485:15-24. [DOI: 10.1016/j.ijpharm.2015.02.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/17/2015] [Indexed: 01/06/2023]
|
21
|
Pajoum Shariati SR, Moeinzadeh S, Jabbari E. Hydrogels for Cell Encapsulation and Bioprinting. BIOPRINTING IN REGENERATIVE MEDICINE 2015. [DOI: 10.1007/978-3-319-21386-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Gasperini L, Mano JF, Reis RL. Natural polymers for the microencapsulation of cells. J R Soc Interface 2014; 11:20140817. [PMID: 25232055 PMCID: PMC4191114 DOI: 10.1098/rsif.2014.0817] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/27/2014] [Indexed: 02/06/2023] Open
Abstract
The encapsulation of living mammalian cells within a semi-permeable hydrogel matrix is an attractive procedure for many biomedical and biotechnological applications, such as xenotransplantation, maintenance of stem cell phenotype and bioprinting of three-dimensional scaffolds for tissue engineering and regenerative medicine. In this review, we focus on naturally derived polymers that can form hydrogels under mild conditions and that are thus capable of entrapping cells within controlled volumes. Our emphasis will be on polysaccharides and proteins, including agarose, alginate, carrageenan, chitosan, gellan gum, hyaluronic acid, collagen, elastin, gelatin, fibrin and silk fibroin. We also discuss the technologies commonly employed to encapsulate cells in these hydrogels, with particular attention on microencapsulation.
Collapse
Affiliation(s)
- Luca Gasperini
- 3B's, Department of Polymer Engineering, University of Minho, 4806-909 Caldas das Taipas, Portugal ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's, Department of Polymer Engineering, University of Minho, 4806-909 Caldas das Taipas, Portugal ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's, Department of Polymer Engineering, University of Minho, 4806-909 Caldas das Taipas, Portugal ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
23
|
Gasperini L, Maniglio D, Motta A, Migliaresi C. An electrohydrodynamic bioprinter for alginate hydrogels containing living cells. Tissue Eng Part C Methods 2014; 21:123-32. [PMID: 24903714 DOI: 10.1089/ten.tec.2014.0149] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this work we present a bioprinting technique that exploits the electrohydrodynamic process to obtain a jet of liquid alginate beads containing cells. A printer is used to microfabricate hydrogels block by block following a bottom-up approach. Alginate beads constitute the building blocks of the microfabricated structures. The beads are placed at predefined position on a target substrate made of calcium-enriched gelatin, where they crosslink upon contact without the need of further postprocessing. The printed sample can be easily removed from the substrate at physiological temperature. Three-dimensional printing is accomplished by the deposition of multiple layers of hydrogel. We have investigated the parameters influencing the process, the compatibility of the printing procedure with cells, and their survival after printing.
Collapse
Affiliation(s)
- Luca Gasperini
- 1 Department of Industrial Engineering, Biotech Research Center, University of Trento , Trento, Italy
| | | | | | | |
Collapse
|
24
|
Paredes Juárez GA, Spasojevic M, Faas MM, de Vos P. Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol 2014; 2:26. [PMID: 25147785 PMCID: PMC4123607 DOI: 10.3389/fbioe.2014.00026] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 01/31/2023] Open
Abstract
Islets encapsulated in immunoprotective microcapsules are being proposed as an alternative for insulin therapy for treatment of type 1 diabetes. Many materials for producing microcapsules have been proposed but only alginate does currently qualify as ready for clinical application. However, many different alginate-based capsule systems do exist. A pitfall in the field is that these systems are applied without a targeted strategy with varying degrees of success as a consequence. In the current review, the different properties of alginate-based systems are reviewed in view of future application in humans. The use of allogeneic and xenogeneic islet sources are discussed with acknowledging the different degrees of immune protection the encapsulation system should supply. Also issues such as oxygen supply and the role of danger associated molecular patterns (DAMPS) in immune activation are being reviewed. A common property of the encapsulation systems is that alginates for medical application should have an extreme high degree of purity and lack pathogen-associated molecular patterns (PAMPs) to avoid activation of the recipient’s immune system. Up to now, non-inflammatory alginates are only produced on a lab-scale and are not yet commercially available. This is a major pitfall on the route to human application. Also the lack of predictive pre-clinical models is a burden. The principle differences between relevant innate and adaptive immune responses in humans and other species are reviewed. Especially, the extreme differences between the immune system of non-human primates and humans are cumbersome as non-human primates may not be predictive of the immune responses in humans, as opposed to the popular belief of regulatory agencies. Current insight is that although the technology is versatile major research efforts are required for identifying the mechanical, immunological, and physico-chemical requirements that alginate-based capsules should meet for successful human application.
Collapse
Affiliation(s)
- Genaro Alberto Paredes Juárez
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Milica Spasojevic
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands ; Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen , Groningen , Netherlands
| | - Marijke M Faas
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Paul de Vos
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
25
|
Orive G, Santos E, Pedraz J, Hernández R. Application of cell encapsulation for controlled delivery of biological therapeutics. Adv Drug Deliv Rev 2014; 67-68:3-14. [PMID: 23886766 DOI: 10.1016/j.addr.2013.07.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/26/2013] [Accepted: 07/12/2013] [Indexed: 01/12/2023]
Abstract
Cell microencapsulation technology is likely to have an increasingly important role in new approaches rather than the classical and pioneering organ replacement. Apart from becoming a tool for protein and morphogen release and long-term drug delivery, it is becoming a new three-dimensional platform for stem cell research. Recent progress in the field has resulted in biodegradable scaffolds that are able to retain and release the cell content in different anatomical locations. Additional advances include the use biomimetic scaffolds that provide greater control over material-cell interactions and the development of more precise encapsulated cell-tracking systems. This review summarises the state of the art of cell microencapsulation and discusses the main directions and challenges of this field towards the controlled delivery of biological therapeutics.
Collapse
|
26
|
Gasperini L, Maniglio D, Migliaresi C. Microencapsulation of cells in alginate through an electrohydrodynamic process. J BIOACT COMPAT POL 2013. [DOI: 10.1177/0883911513501599] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The encapsulation of living cells within a semi-permeable matrix is an attractive process for transplanting nonautologous cells by limiting the interaction with the host immune system. The electrohydrodynamic process is a low-cost and high-throughput system to encapsulate cells by means of a static potential. We evaluated the use of this system for cell entrapment by assessing and then manufacturing capsules that had the best dimensions. The effect of different cell densities on the beads was determined to set up the basic parameters of the encapsulation system. The cell viability inside the beads and as a function of release time was observed for their biological response.
Collapse
Affiliation(s)
- L Gasperini
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
| | - D Maniglio
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
- INSTM–Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Firenze, Italy
| | - C Migliaresi
- Department of Industrial Engineering, Biotech Research Center, University of Trento, Trento, Italy
- European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento, Italy
- INSTM–Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Firenze, Italy
| |
Collapse
|
27
|
Chan KW, Liu G, Song X, Kim H, Yu T, Arifin DR, Gilad AA, Hanes J, Walczak P, van Zijl PC, Bulte JW, McMahon MT. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability. NATURE MATERIALS 2013; 12:268-75. [PMID: 23353626 PMCID: PMC3578129 DOI: 10.1038/nmat3525] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 11/22/2012] [Indexed: 05/08/2023]
Abstract
Biocompatible nanomaterials and hydrogels have become an important tool for improving cell-based therapies by promoting cell survival and protecting cell transplants from immune rejection. Although their potential benefit has been widely evaluated, at present it is not possible to determine, in vivo, if and how long cells remain viable following their administration without the use of a reporter gene. Here, we report a pH-nanosensor-based magnetic resonance imaging (MRI) technique that can monitor cell death in vivo non-invasively. We demonstrate that specific MRI parameters that change on cell death of microencapsulated hepatocytes are associated with the measured bioluminescence imaging radiance. Moreover, the readout from this pH-sensitive nanosensor can be directly co-registered with high-resolution anatomical images. All of the components of these nanosensors are clinical grade and hence this approach should be a translatable and universal modification of hydrogels.
Collapse
Affiliation(s)
- Kannie W.Y. Chan
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guanshu Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Xiaolei Song
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heechul Kim
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Yu
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine
| | - Dian R. Arifin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Assaf A. Gilad
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin Hanes
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Nanomedicine, The Johns Hopkins University School of Medicine
| | - Piotr Walczak
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter C.M. van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| | - Jeff W.M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T. McMahon
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA
| |
Collapse
|
28
|
Lagranha VL, de Carvalho TG, Giugliani R, Matte U. Treatment of MPS I mice with microencapsulated cells overexpressing IDUA: effect of the prednisolone administration. J Microencapsul 2013; 30:383-9. [DOI: 10.3109/02652048.2012.746745] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Santos E, Larzabal L, Calvo A, Orive G, Pedraz JL, Hernández RM. Inactivation of encapsulated cells and their therapeutic effects by means of TGL triple-fusion reporter/biosafety gene. Biomaterials 2013; 34:1442-51. [DOI: 10.1016/j.biomaterials.2012.10.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
|
30
|
Abstract
The synergy of some promising advances in the fields of cell therapy and biomaterials together with improvements in the fabrication of more refined and tailored microcapsules for drug delivery have triggered the progress of cell encapsulation technology. Cell microencapsulation involves immobilizing the transplanted cells within a biocompatible scaffold surrounded by a membrane in attempt to isolate the cells from the host immune attack and enhance or prolong their function in vivo. This technology represents one strategy which aims to overcome the present difficulties related to local and systemic controlled release of drugs and growth factors as well as to organ graft rejection and thus the requirements for use of immunomodulatory protocols or immunosuppressive drugs. This chapter gives an overview of the current situation of cell encapsulation technology as a controlled drug delivery system, and the essential requirements of the technology, some of the therapeutic applications, the challenges, and the future directions under investigation are highlighted.
Collapse
|
31
|
Acarregui A, Murua A, Pedraz JL, Orive G, Hernández RM. A Perspective on Bioactive Cell Microencapsulation. BioDrugs 2012; 26:283-301. [DOI: 10.1007/bf03261887] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Huang X, Zhang X, Wang X, Wang C, Tang B. Microenvironment of alginate-based microcapsules for cell culture and tissue engineering. J Biosci Bioeng 2012; 114:1-8. [PMID: 22561878 DOI: 10.1016/j.jbiosc.2012.02.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/14/2012] [Accepted: 02/23/2012] [Indexed: 02/07/2023]
Abstract
As a type of 3D model, the technology of microencapsulation holds significant promise for tissue engineering and cell therapy due to its unique performance. The microenvironmental factors within microcapsules play an important role in influencing the behaviors of encapsulated cells. The aim of this review article is to give an overview on the construction of the microenvironmental factors, which include 3D space, physicochemical properties of alginate matrix, cell spheroids, nutritional status, and so on. Furthermore, we clarified the effect of microenvironmental factors on the behaviors of encapsulated cells and the methods about improving the microenvironment of microcapsules. This review will help to understand the interaction of the microenvironment and the encapsulated cells and lay a solid foundation for microcapsule-based cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Xiaobo Huang
- Institute of Surface Engineering, Taiyuan University of Technology, 79 Yingze Road, Taiyuan 030024, PR China.
| | | | | | | | | |
Collapse
|
33
|
Wang Y, Zhang G, Hou Y, Chen J, Wang J, Zou C, Li D, Li H, Zhang Q, Wang A, Fan Q. Transplantation of microencapsulated Schwann cells and mesenchymal stem cells augment angiogenesis and improve heart function. Mol Cell Biochem 2012; 366:139-47. [PMID: 22488214 DOI: 10.1007/s11010-012-1291-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/17/2012] [Indexed: 01/26/2023]
Abstract
Because of their plasticity and availability, bone-marrow-derived mesenchymal stem cells (MSC) are a potential cell source for treating ischemic heart disease. Schwann cells (SC) play a critical role in neural remodeling and angiogenesis because of their secretion of cytokines such as vascular endothelial growth factor (VEGF). Cell microencapsulation, surrounding cells with a semipermeable polymeric membrane, is a promising tool to shelter cells from the recipient's immune system. We investigated whether transplantation of microencapsulated SC (MC-SC) and MSC together could improve heart function by augmenting angiogenesis in acute myocardial infarction (AMI). Sprague-Dawley rats with ligation of the left anterior descending artery to induce AMI were randomly divided for cell transplantation into four groups-MC-SC+MSC, MC+MSC, MSC, MC-SC, and controls. Echocardiography was performed at 3 days and 2 and 4 weeks after AMI. Rat hearts were harvested on day 28 after transplantation and examined by immunohistochemistry and western blot analysis. Echocardiography revealed differences among the groups in fractional shortening and end-systolic and end-diastolic dimensions (P < 0.05). The number of BrdU-positive cells was greater with MC-SC+MSC transplantation than the other groups (P < 0.01). The vessel density and VEGF level in the infarcted zone was significantly increased with MC-SC+MSC transplantation (P < 0.05). These results show that transplanting a combination of MC-SC and MSC could augment angiogenesis and improve heart function in AMI.
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiac Surgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jingwu Rd. 324, Jinan 250021, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mendes AC, Baran ET, Pereira RC, Azevedo HS, Reis RL. Encapsulation and Survival of a Chondrocyte Cell Line within Xanthan Gum Derivative. Macromol Biosci 2011; 12:350-9. [DOI: 10.1002/mabi.201100304] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/22/2011] [Indexed: 02/04/2023]
|
35
|
Murua A, Orive G, Hernández RM, Pedraz JL. Emerging technologies in the delivery of erythropoietin for therapeutics. Med Res Rev 2011; 31:284-309. [PMID: 19967731 DOI: 10.1002/med.20184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deciphering the function of proteins and their roles in signaling pathways is one of the main goals of biomedical research, especially from the perspective of uncovering pathways that may ultimately be exploited for therapeutic benefit. Over the last half century, a greatly expanded understanding of the biology of the glycoprotein hormone erythropoietin (Epo) has emerged from regulator of the circulating erythrocyte mass to a widely used therapeutic agent. Originally viewed as the renal hormone responsible for erythropoiesis, recent in vivo studies in animal models and clinical trials demonstrate that many other tissues locally produce Epo independent of its effects on red blood cell mass. Thus, not only its hematopoietic activity but also the recently discovered nonerythropoietic actions in addition to new drug delivery systems are being thoroughly investigated in order to fulfill the specific Epo release requirements for each therapeutic approach. The present review focuses on updating the information previously provided by similar reviews and recent experimental approaches are presented to describe the advances in Epo drug delivery achieved in the last few years and future perspectives.
Collapse
Affiliation(s)
- Ainhoa Murua
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | | | | | | |
Collapse
|
36
|
Sánchez-Martín D, Sanz L, Álvarez-Vallina L. Engineering human cells for in vivo secretion of antibody and non-antibody therapeutic proteins. Curr Opin Biotechnol 2011; 22:924-30. [PMID: 21435857 DOI: 10.1016/j.copbio.2011.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 02/22/2011] [Accepted: 03/01/2011] [Indexed: 01/14/2023]
Abstract
Purified proteins such as antibodies are widely used as therapeutic agents in clinical medicine. However, clinical-grade proteins for therapeutic use require sophisticated technologies and are extremely expensive to produce. In vivo secretion of therapeutic proteins by genetically engineered human cells may advantageously replace injection of highly purified proteins. The use of gene transfer methods circumvents problems related to large-scale production and purification and offers additional benefits by achieving sustained concentrations of therapeutic protein with a syngenic glycosylation pattern that make the protein potentially less immunogenic. The feasibility of the in vivo production of therapeutic proteins by diverse cells/tissues has now been demonstrated using different techniques, such as ex vivo genetically modified cells and in vivo gene transfer mediated by viral vectors.
Collapse
Affiliation(s)
- David Sánchez-Martín
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Madrid, Spain
| | | | | |
Collapse
|
37
|
Brun-Graeppi AKAS, Richard C, Bessodes M, Scherman D, Merten OW. Cell microcarriers and microcapsules of stimuli-responsive polymers. J Control Release 2011; 149:209-24. [DOI: 10.1016/j.jconrel.2010.09.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 09/21/2010] [Indexed: 12/22/2022]
|
38
|
Murua A, Herran E, Orive G, Igartua M, Blanco FJ, Pedraz JL, Hernández RM. Design of a composite drug delivery system to prolong functionality of cell-based scaffolds. Int J Pharm 2010; 407:142-50. [PMID: 21094235 DOI: 10.1016/j.ijpharm.2010.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/21/2022]
Abstract
Cell encapsulation technology raises hopes in medicine and biotechnology. However, despite important advances in the field in the past three decades, several challenges associated with the biocompatibility are still remaining. In the present study, the effect of a temporary release of an anti-inflammatory agent on co-administered encapsulated allogeneic cells was investigated. The aim was to determine the biocompatibility and efficacy of the approach to prevent the inflammatory response. A composite delivery system comprised of alginate-poly-l-lysine-alginate (APA)-microencapsulated Epo-secreting myoblasts and dexamethasone (DXM)-releasing poly(lactic-co-glycolic acid) (PLGA) microspheres was implanted in the subcutaneous space of Balb/c mice for 45 days. The use of independently co-implanted DXM-loaded PLGA microspheres resulted in an improved functionality of the cell-based graft, evidenced by significantly higher hematocrit levels found in the cell-implanted groups by day 45, which was found to be more pronounced when higher cell-doses (100 μL) were employed. Moreover, no major host reaction was observed upon implantation of the systems, showing good biocompatibility and capability to partially avoid the inflammatory response, probably due to the immunosuppressive effects related to DXM. The findings of this study imply that DXM-loaded PLGA microspheres show promise as release systems to enhance biocompatibility and offer advantage in the development of long-lasting and effective implantable microencapsulated cells by generating a potential immunopriviledged local environment and an effective method to limit the structural ensheathing layer caused by inflammation.
Collapse
Affiliation(s)
- Ainhoa Murua
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Induction by TNF-α of IL-6 and IL-8 in cystic fibrosis bronchial IB3-1 epithelial cells encapsulated in alginate microbeads. J Biomed Biotechnol 2010; 2010. [PMID: 20936184 PMCID: PMC2946646 DOI: 10.1155/2010/907964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 06/21/2010] [Accepted: 06/28/2010] [Indexed: 01/22/2023] Open
Abstract
We have developed a microencapsulation procedure for the entrapment and manipulation of IB3-1 cystic fibrosis cells. The applied method is based on generation of monodisperse droplets by a vibrational nozzle. Different experimental parameters were analyzed, including frequency and amplitude of vibration, polymer pumping rate and distance between the nozzle and the gelling bath. We have found that the microencapsulation procedure does not alter the viability of the encapsulated IB3-1 cells. The encapsulated IB3-1 cells were characterized in term of secretomic profile, analyzing the culture medium by Bio-Plex strategy. The experiments demonstrated that most of the analyzed proteins, were secreted both by the free and encapsulated cells, even if in a different extent. In order to determine the biotechnological applications of this procedure, we determined whether encapsulated IB3-1 cells could be induced to pro-inflammatory responses, after treatment with TNF-α. In this experimental set-up, encapsulated and free IB3-1 cells were treated with TNF-α, thereafter the culture media from both cell populations were collected. As expected, TNF-α induced a sharp increase in the secretion of interleukins, chemokines and growth factors. Of great interest was the evidence that induction of interleukin-6 and interleukin-8 occurs also by encapsulated IB3-1 cells.
Collapse
|
40
|
Recent advances in the use of encapsulated cells for effective delivery of therapeutics. Ther Deliv 2010; 1:387-96. [DOI: 10.4155/tde.10.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell encapsulation can be defined as a living cell approach for the long-term delivery of therapeutic products. It consists of the immobilization of therapeutically active cells within a general polymer matrix that permits the ingress of nutrients and oxygen and the egress of therapeutic protein products but impedes the immune contact of the enclosed cells. In recent decades many attempts have evaluated the potential of this technology to release therapeutic agents for the treatment of different pathologies and disorders. At present, cell encapsulation may be used as a technological platform to improve knowledge and clinical use of stem cells. This review describes the main issues related to this cell-based approach and summarizes some of the most interesting therapeutic applications.
Collapse
|
41
|
|
42
|
Current world literature. Curr Opin Organ Transplant 2010; 15:254-61. [PMID: 20351662 DOI: 10.1097/mot.0b013e328337a8db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Freimark D, Pino-Grace P, Pohl S, Weber C, Wallrapp C, Geigle P, Pörtner R, Czermak P. Use of Encapsulated Stem Cells to Overcome the Bottleneck of Cell Availability for Cell Therapy Approaches. ACTA ACUST UNITED AC 2010; 37:66-73. [PMID: 20737048 DOI: 10.1159/000285777] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/29/2009] [Indexed: 11/19/2022]
Abstract
Nowadays cell-based therapy is rarely in clinical practice because of the limited availability of appropriate cells. To apply cells therapeutically, they must not cause any immune response wherefore mainly autologous cells have been used up to now. The amount of vital cells in patients is limited, and under certain circumstances in highly degenerated tissues no vital cells are left. Moreover, the extraction of these cells is connected with additional surgery; also the expansion in vitro is difficult. Other approaches avoid these problems by using allo-or even xenogenic cells. These cells are more stable concerning their therapeutic behavior and can be produced in stock. To prevent an immune response caused by these cells, cell encapsulation (e.g. with alginate) can be performed. Certain studies showed that encapsulated allo- and xenogenic cells achieve promising results in treatment of several diseases. For such cell therapy approaches, stem cells, particularly mesenchymal stem cells, are an interesting cell source. This review deals on the one hand with the use of encapsulated cells, especially stem cells, in cell therapy and on the other hand with bioreactor systems for the expansion and differentiation of mesenchymal stem cells in reproducible and sufficient amounts for potential clinical use.
Collapse
Affiliation(s)
- D Freimark
- Institute of Biopharmaceutical Technology, University of Applied Sciences, Giessen, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Park K. Xenogeneic delivery of therapeutic products using transient immunosuppression. J Control Release 2009; 137:173. [PMID: 19520124 DOI: 10.1016/j.jconrel.2009.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|