1
|
Martins Andrade JF, da Cunha Miranda T, Cunha-Filho M, Taveira SF, Gelfuso GM, Gratieri T. Iontophoresis application for drug delivery in high resistivity membranes: nails and teeth. Drug Deliv Transl Res 2022; 13:1272-1287. [PMID: 36209312 DOI: 10.1007/s13346-022-01244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
Iontophoresis has been vastly explored to improve drug permeation, mainly for transdermal delivery. Despite the skin's electrical resistance and barrier properties, it has a relatively high aqueous content and is permeable to many drugs. In contrast, nails and teeth are accessible structures for target drug delivery but possess low water content compared to the skin and impose significant barriers to drug permeation. Common diseases of these sites, such as nail onychomycosis and endodontic microbial infections that reach inaccessible regions for mechanical removal, often depend on time-consuming and ineffective treatments relying on drug's passive permeation. Iontophoresis application in nail and teeth structures may be a safe and effective way to improve drug transport across the nail and drug distribution through dental structures, making treatments more effective and comfortable for patients. Here, we provide an overview of iontophoresis applications in these "hard tissues," considering specificities such as their high electrical resistivity. Iontophoresis presents a promising option to enhance drug permeation through the nail and dental tissues, and further developments in these areas could lead to widespread clinical use.
Collapse
Affiliation(s)
| | - Thamires da Cunha Miranda
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil
| | - Marcílio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil
| | - Stephânia Fleury Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goias (UFG), Goiânia, GO, 74605-170, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil.
| | - Taís Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia (UnB), Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
2
|
The Penetrance of Topical Nail Therapy: Limitations and Current Enhancements. Clin Podiatr Med Surg 2021; 38:535-540. [PMID: 34538431 DOI: 10.1016/j.cpm.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chemical composition and thickness of nails are obstacles for treatments of various nail diseases, such as onychomycosis. Topical medications are currently the preferred method of treatment because of reduced adverse systemic effects. However, penetration of the product from the nail plate into the nail bed continues to be an issue because of factors such as distance required to reach the target area, chemical barriers, and drug inactivation upon keratin binding. Beyond developing novel drugs, some studies have investigated mechanical and chemical methods to optimize drug delivery. The issue of nail diseases is still a challenge and requires multifactorial treatments.
Collapse
|
3
|
Effect of Penetration Enhancers on Toenail Delivery of Efinaconazole from Hydroalcoholic Preparations. Molecules 2021; 26:molecules26061650. [PMID: 33809569 PMCID: PMC8000921 DOI: 10.3390/molecules26061650] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
The incorporation of permeation enhancers in topical preparations has been recognized as a simple and valuable approach to improve the penetration of antifungal agents into toenails. In this study, to improve the toenail delivery of efinaconazole (EFN), a triazole derivative for onychomycosis treatment, topical solutions containing different penetration enhancers were designed, and the permeation profiles were evaluated using bovine hoof models. In an in vitro permeation study in a Franz diffusion cell, hydroalcoholic solutions (HSs) containing lipophilic enhancers, particularly prepared with propylene glycol dicaprylocaprate (Labrafac PG), had 41% higher penetration than the HS base. Moreover, the combination of hydroxypropyl-β-cyclodextrin with Labrafac PG further facilitated the penetration of EFN across the hoof membrane. In addition, this novel topical solution prepared with both lipophilic and hydrophilic enhancers was physicochemically stable, with no drug degradation under ambient conditions (25 °C, for 10 months). Therefore, this HS system can be a promising tool for enhancing the toenail permeability and therapeutic efficacy of EFN.
Collapse
|
4
|
Chen K, Puri V, Michniak-Kohn B. Iontophoresis to Overcome the Challenge of Nail Permeation: Considerations and Optimizations for Successful Ungual Drug Delivery. AAPS JOURNAL 2021; 23:25. [PMID: 33439400 DOI: 10.1208/s12248-020-00552-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Iontophoresis is a widely used drug delivery technique that has been used clinically to improve permeation through the skin for drugs and other actives in topical formulations. It is however not commonly used for the treatment of nail diseases despite its potential to improve transungual nail delivery. Instead, treatments for nail diseases are limited to relatively ineffective topical passive permeation techniques, which often result in relapses of nail diseases due to the thickness and hardness of the nail barrier resulting in lower permeation of the actives. Oral systemic antifungal agents that are also used are often associated with various undesirable side effects resulting in low patient compliance. This review article discusses what is currently known about the field of transungual iontophoresis, providing evidence of its efficacy and practicality in delivering drug to the entire surface of the nail for extended treatment periods. It also includes relevant details about the nail structure, the mechanisms of iontophoresis, and the associated in vitro and in vivo studies which have been used to investigate the optimal characteristics for a transungual iontophoretic drug delivery system. Iontophoresis is undoubtedly a promising option to treat nail diseases, and the use of this technique for clinical use will likely improve patient outcomes.Graphical abstract.
Collapse
Affiliation(s)
- Kevin Chen
- Ernest Mario School of Pharmacy, Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,Center for Dermal Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Vinam Puri
- Ernest Mario School of Pharmacy, Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,Center for Dermal Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Bozena Michniak-Kohn
- Ernest Mario School of Pharmacy, Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA. .,Center for Dermal Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA. .,Life Sciences Building, Rutgers, The State University of New Jersey, 145, Bevier Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
5
|
Monteiro E Silva SA, Souza JGD, Melo PS, Moreno IAM, Alencar SM, Lopez RFV, Ricci Leonardi G. Target action of antioxidants using iontophoresis. J Cosmet Dermatol 2020; 20:664-676. [PMID: 32573989 DOI: 10.1111/jocd.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/10/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND The use of antioxidants in applications for topical use seems promising, however, many studies must be performed to ensure processes and products that can effectively bring benefits to combat the action of free radicals in the skin. For topical antioxidants to be effective against free radicals from the skin, it is essential that the antioxidants compounds permeate the different skin layers, to reach deeper layers of the epidermis in active form and stay there for a sufficient time to cause the beneficial effects. AIM This work aimed to evaluate the antioxidant action of formulations with phenolic compounds as well as to comprehend the skin retention profile of these actives. METHODS The antioxidant potential was recognized with isolated phenolic acids (gallic, caffeic, and ferulic acid) or in combinations, using different in vitro methods (DPPH ABTS , FRAP , β-carotene/linoleic acid system and ORAC). The skin retention study was performed through in vitro assay with Franz's diffusion cell associating, or not, the cathodic iontophoresis. RESULTS Gallic acid showed the greatest antioxidant activity and was selected for a study of skin permeation following gel application to porcine skin, with or without cathodic iontophoresis. Gallic acid retention in deeper skin layers was promoted by iontophoresis, and increased skin antioxidant activity was detected after only 20 min of iontophoresis. The present study demonstrated the importance of polymeric gelling agents for optimizing the antioxidant activity. CONCLUSION The cathodic iontophoresis represents a promising strategy to promote a target action of antioxidants in the skin.
Collapse
Affiliation(s)
| | | | - Priscilla Siqueira Melo
- Biochemistry Department, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, Brazil
| | | | - Severino Matias Alencar
- Biochemistry Department, Luiz de Queiroz College of Agriculture, University of São Paulo - USP, Piracicaba, Brazil
| | | | - Gislaine Ricci Leonardi
- Medicine Department, Federal University of São Paulo, São Paulo, Brazil.,Faculty of Pharmaceutical Science, State University of Campinas, UNICAMP, Campinas, Brazil
| |
Collapse
|
6
|
Lee BC, Pangeni R, Na J, Koo KT, Park JW. Preparation and in vivo evaluation of a highly skin- and nail-permeable efinaconazole topical formulation for enhanced treatment of onychomycosis. Drug Deliv 2019; 26:1167-1177. [PMID: 31738083 PMCID: PMC6882438 DOI: 10.1080/10717544.2019.1687612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/31/2022] Open
Abstract
Onychomycosis is a progressive fungal infection of the nails that involves the deeper nail layer and nail bed. It is important to maintain sufficient drug concentration in the diseased tissues after topical application. In this study, a stable topical delivery system for efinaconazole (EFN) was designed to enhance absorption potential through the skin and nail plate by incorporating ethanol, diethylene glycol monoethyl ether (Transcutol P) and isopropyl myristate, and cyclomethicone into the topical solution as a delivery vehicle, permeation enhancers, and a wetting agent, respectively. In addition, the stability of EFN in the formulation was significantly improved by adding butylated hydroxytoluene, diethylenetriamine pentaacetic acid, and citric acid as an antioxidant, chelating agent, and pH-adjusting agent, respectively, without discoloration. The optimum EFN formulation (EFN-K) showed 1.46-fold greater human skin permeation than that of the reference control (commercial 10% EFN topical solution). Furthermore, after a 24-hour incubation, the amount of infiltrated EFN from EFN-K in the human nail plate was 4.11-fold greater than that of the reference control, resulting in an 89.7% increase in nail flux at 7 days after treatment. EFN-K significantly accelerated structural recovery of the keratin layer in a Trichophyton mentagrophytes-infected guinea pig onychomycosis model, decreasing the mean viable fungal cell count by 54.3% compared to the vehicle-treated group after once-daily treatment for 4 weeks. Thus, the accelerated skin and nail penetration effect of EFN-K is expected to achieve good patient compliance, and improve the complete cure rate of onychomycosis.
Collapse
Affiliation(s)
- Byung Chul Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| | - Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jungtae Na
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| | - Kyo-Tan Koo
- BioBelief Co., Ltd., Seoul, Republic of Korea
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
7
|
Batory M, Wołowiec-Korecka E, Rotsztejn H. The effect of various primers improving adhesiveness of gel polish hybrids on pH, TOWL and overall nail plates condition. J Cosmet Dermatol 2019; 18:1529-1538. [PMID: 30628153 DOI: 10.1111/jocd.12854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Hybrid manicure is now a popular method of nail care and nail art, which is associated with its durability. Unfortunately, it has an adverse effect on pH, TOWL and overall nail plates condition and has not been investigated in detail so far. AIMS The aim of this study was to compare the pH and TOWL of the hand nails after using different primers. The effect of application time, breaks between applications and the method of curing and removal on those parameters and overall nail plates condition were evaluated. PATIENTS/METHODS An evaluation survey was conducted among 116 women. pH and TOWL measurements of the nail plate in 35 women were taken using the Courage & Khazaka. Clinical photos were made using the Fotomedicus system. RESULTS The measured pH values of the nail plate in the test group with gel polish hybrid on the nails were from 5.50 to 6.65, while after removal of the gel polish hybrid, the values ranged from 5.63 to 6.68. TOWL of the nail plate covered with gel polish hybrid ranged from 2.9 to 33.2 g/m2 /h, whereas after removal of hybrids-from 1.9 to 45.7 g/m2 /h. CONCLUSION Different forms of acid-free primers maintain a lower pH of the nail plate covered with a gel polish hybrid, while the acidic primer maintains higher values of the nail plate pH. The significant decrease in the nail plate TOWL following the application of gel polish hybrid indicates a reduced loss of water from the surface of the nail to the atmosphere.
Collapse
Affiliation(s)
- Mirella Batory
- Faculty of Pharmacy, Department of Cosmetology and Aesthetic Dermatology, Medical University of Lodz, Lodz, Poland
| | | | - Helena Rotsztejn
- Faculty of Pharmacy, Department of Cosmetology and Aesthetic Dermatology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Batory M, Namieciński P, Rotsztejn H. Evaluation of structural damage and pH of nail plates of hands after applying different methods of decorating. Int J Dermatol 2018; 58:311-318. [PMID: 30246242 DOI: 10.1111/ijd.14198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The purpose of this study was to evaluate the effect of nail polish, gel polish hybrid, gel nail, and acrylic nail powder and the removal of these formulas on the nail plates properties, particularly the influence of different coatings on morphology and pH. METHODS The morphology and structure of nail plates were analyzed with use of scanning electron microscopy. The pH values of the nail plates of hands were measured using the system Courage & Khazaka. RESULTS The analysis of morphology and structure of the surface of nail plates showed distinct changes caused by decorative coatings. The most common ones include fragility and splitting of the nails. The pH value measured in the whole group ranged from 5.21 to 7.00. CONCLUSIONS The methods used to prepare nails for decoration and all methods of removing the applied preparations damage the healthy nail plates. The most common changes are brittleness and nail splitting. The nail polish remover causes less damage than acetone, and the use of a nail drill machine and nail file causes the greatest destruction of nail plates. The biggest effect on the pH change has the gel polish hybrid, gel nail, and acrylic nail powder, causing the pH value of nail plates to rise above 6.0, whereas after the application of the nail polish, the pH of the plates was on average 5.8 which is closest to the normal value, assumed as physiological.
Collapse
Affiliation(s)
- Mirella Batory
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Piotr Namieciński
- Department of Operational Research, Faculty of Economics and Sociology, University of Lodz, Lodz, Poland
| | - Helena Rotsztejn
- Department of Cosmetology and Aesthetic Dermatology, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Voriconazole-loaded nanostructured lipid carriers (NLC) for drug delivery in deeper regions of the nail plate. Int J Pharm 2017; 531:292-298. [PMID: 28859937 DOI: 10.1016/j.ijpharm.2017.08.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/23/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022]
Abstract
Voriconazole-loaded nanostructured lipid carriers (VOR-NLC) were developed and drug penetration evaluated in porcine hooves in vitro. Synergistic effect of urea (Ur), selected among other known chemical enhancers according to hoof hydration potential, was also evaluated. VOR-NLC presented a high encapsulation efficiency (74.52±2.13%), approximate mean diameter of 230nm and were positively charged (+27.32±2.74mV). Stability studies indicated they were stable under refrigeration (4±2°C) for up to 150days. SEM images revealed hooves treated with VOR-NLC and VOR-NLC-Ur suffered a disturbance on the surface depicting high roughness and porosity. Permeation data showed a substantial VOR amount retained in superficial hooves sections independent of the formulation used (2.42±0.26; 2.52±0.36 and 2.41±0.60μg/cm2 for unloaded VOR, VOR-NLC and VOR-NLC-Ur, respectively, p>0.05). Still, successive extractions, revealed the amount of VOR retained in deeper regions was significantly higher when VOR-NLC or VOR-NLC-Ur was used (0.17±0.04, 0.47±0.14 and 0.36±0.07μg/cm2 for unloaded VOR, VOR-NLC and VOR-NLC-Ur, respectively, p<0.05). Such results indicate NLC are promising formulations for the management of onychomycosis. Further studies in diseased nail plates are necessary.
Collapse
|
10
|
Baswan S, Kasting GB, Li SK, Wickett R, Adams B, Eurich S, Schamper R. Understanding the formidable nail barrier: A review of the nail microstructure, composition and diseases. Mycoses 2017; 60:284-295. [PMID: 28098391 DOI: 10.1111/myc.12592] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 11/25/2016] [Indexed: 01/27/2023]
Abstract
The topical treatment of nail fungal infections has been a focal point of nail research in the past few decades as it offers a much safer and focused alternative to conventional oral therapy. Although the current focus remains on exploring the ways of enhancing permeation through the formidable nail barrier, the understanding of the nail microstructure and composition is far from complete. This article reviews our current understanding of the nail microstructure, composition and diseases. A few of the parameters affecting the nail permeability and potential causes of the recurrence of fungal nail infection are also discussed.
Collapse
Affiliation(s)
- Sudhir Baswan
- James L. Winkle College of Pharmacy, The University of Cincinnati Academic Health Center, Cincinnati, OH, USA.,Amway Corporation, Ada, MI, USA
| | - Gerald B Kasting
- James L. Winkle College of Pharmacy, The University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - S Kevin Li
- James L. Winkle College of Pharmacy, The University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Randy Wickett
- James L. Winkle College of Pharmacy, The University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Brian Adams
- Department of Dermatology, College of Medicine, The University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | | | | |
Collapse
|
11
|
Thatai P, Sapra B. Structural and component mining of nails using bioengineering techniques. Int J Cosmet Sci 2016; 39:225-240. [PMID: 27709625 DOI: 10.1111/ics.12371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/01/2016] [Indexed: 11/29/2022]
Abstract
The human nail is one of the challenging membranes for the scientists to target and to improve the clinical efficacy of ungual formulations. The understanding of nail physiology, impact of hydration on its properties and presence of trace elements in nails as biomarkers has been explored by various researchers in clinical studies. Despite the importance of biophysical techniques for the assessment of structure and physiology of nail, minimum literature analyses biophysical, biochemical and bioanalytical approaches. However, nowadays scientists in bioengineering field are keen in developing non-invasive, reliable and reproducible techniques for the assessment of different anatomical and functional parameters of nails for testing of ungual products.
Collapse
Affiliation(s)
- P Thatai
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - B Sapra
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
12
|
Yellepeddi VK, Palakurthi S. Recent Advances in Topical Ocular Drug Delivery. J Ocul Pharmacol Ther 2016; 32:67-82. [DOI: 10.1089/jop.2015.0047] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Venkata Kashyap Yellepeddi
- College of Pharmacy, Roseman University of Health Sciences, South Jordan, Utah
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Srinath Palakurthi
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas
| |
Collapse
|
13
|
Joshi M, Sharma V, Pathak K. Nail psoriasis: An updated review of clinical reports on therapy and formulation aspects for topical delivery. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Abstract
Topical therapy is at the forefront in treating nail ailments (especially onychomycosis and nail psoriasis) due to its local effects, which circumvents systemic adverse events, improves patient compliance and reduces treatment cost. However, the success of topical therapy has been hindered due to poor penetration of topical therapeutics across densely keratinized nail plate barrier. For effective topical therapy across nail plate, ungual drug permeation must be enhanced. Present review is designed to provide an insight into prime aspects of transungual drug delivery viz. nail structure and physiology, various onychopathies, techniques of nail permeation enhancement and in vitro models for trans-nail drug permeation studies. Updated list of drug molecules studied across the nail plate and key commercial products have been furnished with sufficient depth. Patents pertinent to, and current clinical status of transungual drug delivery have also been comprehensively reviewed. This is the first systematic critique encompassing the detailed aspects of transungual drug delivery. In our opinion, transungual drug delivery is a promising avenue for researchers to develop novel formulations, augmenting pharmaceutical industries to commercialize the products for nail disorders.
Collapse
Affiliation(s)
- Manish V Saner
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, North Maharshtra University , Maharashtra , India
| | | | | |
Collapse
|
15
|
Souza JG, Dias K, Pereira TA, Bernardi DS, Lopez RFV. Topical delivery of ocular therapeutics: carrier systems and physical methods. ACTA ACUST UNITED AC 2013; 66:507-30. [PMID: 24635555 DOI: 10.1111/jphp.12132] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/23/2013] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The basic concepts, major mechanisms, technological developments and advantages of the topical application of lipid-based systems (microemulsions, nanoemulsions, liposomes and solid lipid nanoparticles), polymeric systems (hydrogels, contact lenses, polymeric nanoparticles and dendrimers) and physical methods (iontophoresis and sonophoresis) will be reviewed. KEY FINDINGS Although very convenient for patients, topical administration of conventional drug formulations for the treatment of eye diseases requires high drug doses, frequent administration and rarely provides high drug bioavailability. Thus, strategies to improve the efficacy of topical treatments have been extensively investigated. In general, the majority of the successful delivery systems are present on the ocular surface over an extended period of time, and these systems typically improve drug bioavailability in the anterior chamber whereas the physical methods facilitate drug penetration over a very short period of time through ocular barriers, such as the cornea and sclera. SUMMARY Although in the early stages, the combination of these delivery systems with physical methods would appear to be a promising tool to decrease the dose and frequency of administration; thereby, patient compliance and treatment efficacy will be improved.
Collapse
Affiliation(s)
- Joel G Souza
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Benzeval I, Bowen CR, Guy RH, Delgado-Charro MB. Effects of Iontophoresis, Hydration, and Permeation Enhancers on Human Nail Plate: Infrared and Impedance Spectroscopy Assessment. Pharm Res 2013; 30:1652-62. [DOI: 10.1007/s11095-013-1010-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/11/2013] [Indexed: 01/24/2023]
|
18
|
Nair AB, Singh K, Shinu P, Harsha S, Al-Dhubiab BE. A comprehensive study to evaluate the effect of constant low voltage iontophoresis on transungual delivery. Drug Dev Ind Pharm 2012; 39:807-15. [PMID: 23057692 DOI: 10.3109/03639045.2012.722106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Treatment of nail diseases by topical drug delivery continues to draw much attention in the recent days. This study aims to systematically investigate the effect of constant voltage iontophoresis in the transungual drug delivery, using ciclopirox as a model drug. Preliminary permeation studies were carried out by applying constant voltage (6 V for 24 h) using a gel formulation across the human nail plate in a Franz diffusion cell. Different protocols have been studied to authenticate the potential of the proposed technique. Antifungal studies were carried out to assess the pharmacodynamic effect of drug depot formed in the nail plate. Initial studies revealed that application of constant voltage iontophoresis enhanced the permeation by an order of magnitude (p = 0.019) and delivered significant amount of drug into the deeper nail layers. Noticeably higher permeation was observed during the active phase in on-off studies. Excellent correlation was observed in permeation (r(2) = 0.98) and drug load (r(2) = 0.97) with the increase in applied voltage (3-12 V), indicating that the current technique is predictable. The data observed suggest that any further increase in voltage could eventually lead to increase in the permeation and drug load, as the saturation level is very distant. Furthermore, the enhancement in permeation with the applied voltage (3-12 V) was found to be 6-20 folds, compared to the passive process. Results of step up and step down studies substantiated the viability of the current technique. Zone of inhibition measured during the antifungal studies demonstrated that the drug molecules loaded into the nail plate by low voltage iontophoresis is active and releases over an extended period of time (~32 days). Given the excellent results, the current technique could be used as an effective approach for the delivery of antimycotics, which would localize the drug at the infection site and potentially offer higher patient compliance.
Collapse
Affiliation(s)
- Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, KSA.
| | | | | | | | | |
Collapse
|
19
|
Assessment of Iontophoretic and Passive Ungual Penetration by Laser Scanning Confocal Microscopy. Pharm Res 2012; 29:3464-74. [DOI: 10.1007/s11095-012-0841-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/13/2012] [Indexed: 12/28/2022]
|
20
|
Abstract
INTRODUCTION Topical drug delivery to treat nail diseases such as onychomycosis and psoriasis is receiving increasing attention. Topical nail delivery is challenged by the complicated structure of the nail and the low permeability of most drugs across the nail plate. Considerable effort has been directed at developing methods to promote drug permeation across the nail plate. Iontophoresis efficiently enhances molecular transport across the skin and the eye and is now being tested for its potential in ungual delivery. AREAS COVERED This review covers the basic mechanisms of transport (electro-osmosis and -migration) and their relative contribution to nail iontophoresis as well as the key factors governing nail permselectivity and ionic transport numbers. Methodological issues concerning research in this area are summarized. The data available in vivo on nail iontophoresis of terbinafine specifically are reviewed in separate sections. EXPERT OPINION Our understanding of nail iontophoresis has improved considerably since 2007; most decisively, the feasibility of nail iontophoresis in vivo has been clearly demonstrated. Future work is required to establish the adequate implementation of the technique so that its clinical efficacy to treat onychomycosis and nail psoriasis can be unequivocally determined.
Collapse
|
21
|
Smith KA, Hao J, Li SK. Effects of organic solvents on the barrier properties of human nail. J Pharm Sci 2011; 100:4244-57. [PMID: 21607952 DOI: 10.1002/jps.22590] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/25/2011] [Accepted: 04/08/2011] [Indexed: 11/10/2022]
Abstract
The effects of organic solvent systems on nail hydration and permeability have not been well studied. The objectives of the present study were to investigate the effects of binary aqueous organic solvent systems of ethanol (EtOH), propylene glycol (PPG), and polyethylene glycol 400 (PEG) on the barrier properties of nail plates. (3) H-water, (14) C-urea, and (14) C-tetraethylammonium ions were the probes in the nail uptake and transport experiments to study the effect(s) of organic solvents on nail hydration and permeability. Gravimetric studies were also performed as a secondary method to study nail hydration and the reversibility of the nail after organic solvent treatments. Both ungual uptake and transport were directly related to the concentration of the organic solvent in the binary systems. Partitioning of the probes into and transport across the nail decreased with an increase in the organic solvent concentration. These changes corresponded to the changes in solution viscosity and the barrier properties of the nail. In general, the effects for PPG and PEG were more pronounced than those for EtOH. Practically, these results suggest that organic solvents in formulations can increase nail barrier resistivity.
Collapse
Affiliation(s)
- Kelly A Smith
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio 45267.
| | | | | |
Collapse
|
22
|
Nair AB, Vaka SRK, Murthy SN. Transungual delivery of terbinafine by iontophoresis in onychomycotic nails. Drug Dev Ind Pharm 2011; 37:1253-8. [PMID: 21457120 DOI: 10.3109/03639045.2011.568946] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Trans-nail permeability is limited due to the innate nature of the nail plate and the recent investigations indicated the potential of iontophoresis in enhancing the transungual drug delivery in normal nails. However, the onychomycotic nails differ from the normal nails with respect to the anatomical and biological features. The current study investigated the effect of iontophoresis (0.5 mA/cm(2) for 1 h) on the transungual delivery of terbinafine in onychomycotic finger and toe nails. The presence of fungi in the onychomycotic nails was diagnosed by potassium hydroxide (KOH) microscopy. Passive and iontophoretic delivery of terbinafine across the infected nail was studied in Franz diffusion cell. Further, the release profile of terbinafine from the drug-loaded nails was investigated by agar diffusion method. KOH microscopy confirmed the presence of fungi in all the nails used. The amount of drug permeated across the nail plate was enhanced significantly during iontophoresis over passive delivery, that is, by 21-fold in case of finger and 37-fold in case of toe nails. Further, the total drug load in the onychomycotic nail was enhanced by ~12-fold (in both finger and toe nails) due to iontophoresis. Release of terbinafine from the iontophoresis-loaded nails into agar plates exhibited two phases, a rapid phase followed by a steady release, which extended >2 months. This study concluded that the drug delivery in onychomycotic nails did not differ significantly when compared with normal nails, although the extent of drug permeation and drug load differs between finger and toe nails.
Collapse
Affiliation(s)
- Anroop B Nair
- M.M. College of Pharmacy, M.M. University, Ambala, India
| | | | | |
Collapse
|
23
|
Dutet J, Delgado-Charro MB. Electroosmotic transport of mannitol across human nail during constant current iontophoresis. J Pharm Pharmacol 2010; 62:721-9. [DOI: 10.1211/jpp.62.06.0008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Dutet J, Delgado-Charro MB. Transungual iontophoresis of lithium and sodium: Effect of pH and co-ion competition on cationic transport numbers. J Control Release 2010; 144:168-74. [DOI: 10.1016/j.jconrel.2010.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/01/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
|
25
|
Abstract
The present study investigated the effects of pH on nail permeability and the transport of ions such as sodium (Na) and chloride (Cl) ions endogenous to nail and hydronium and hydroxide ions present at low and high pH, which might compete with drug transport across hydrated nail plate during iontophoresis. Nail hydration and passive transport of water across the nail at pH 1-13 were assessed. Subsequently, passive and iontophoretic transport experiments were conducted using (22)Na and (36)Cl ions under various pH conditions. Nail hydration was independent of pH under moderate pH conditions and increased significantly under extreme pH conditions (pH >11). Likewise, nail permeability for water was pH independent at pH 1-10 and an order of magnitude higher at pH 13. The results of passive and iontophoretic transport of Na and Cl ions are consistent with the permselective property of nail. Interestingly, extremely acidic conditions (e.g., pH 1) altered nail permselectivity with the effect lasting several days at the higher pH conditions. Hydronium and hydroxide ion competition in iontophoretic transport was generally negligible at pH 3-11 was significant at the extreme pH conditions studied.
Collapse
Affiliation(s)
- Kelly A Smith
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, 3225 Eden Ave., 136 HPB, Cincinnati, Ohio 45267, USA
| | | | | |
Collapse
|