1
|
Ruchika, Khan N, Dogra SS, Saneja A. The dawning era of oral thin films for nutraceutical delivery: From laboratory to clinic. Biotechnol Adv 2024; 73:108362. [PMID: 38615985 DOI: 10.1016/j.biotechadv.2024.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Oral thin films (OTFs) are innovative dosage forms that have gained tremendous attention for the delivery of nutraceuticals. They are ultra-thin, flexible sheets that can be easily placed on the tongue, sublingual or buccal mucosa (inner lining of the cheek). These thin films possess several advantages for nutraceutical delivery including ease of administration, rapid disintegration, fast absorption, rapid onset of action, bypass first-pass hepatic metabolism, accurate dosing, enhanced stability, portability, discreetness, dose flexibility and most importantly consumer acceptance. This review highlights the utilization OTFs for nutraceutical delivery, their composition, criteria for excipient selection, methods of development and quality-based design (QbD) approach to achieve quality product. We have also provided recent case studies representing OTFs as promising platform in delivery of nutraceuticals (plant extracts, bioactive molecules, vitamins, minerals and protein/peptides) and probiotics. Finally, we provided advancement in technologies, recent patents, market analysis, challenges and future perspectives associated with this unique dosage form.
Collapse
Affiliation(s)
- Ruchika
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nabab Khan
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shagun Sanjivv Dogra
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Ankit Saneja
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Koopaie M, Nassar DHMA, Shokrolahi M. Three-dimensional bioprinting of mucoadhesive scaffolds for the treatment of oral mucosal lesions; an in vitro study. 3D Print Med 2022; 8:30. [PMID: 36169760 PMCID: PMC9516826 DOI: 10.1186/s41205-022-00157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Chronic oral lesions could be a part of some diseases, including mucocutaneous diseases, immunobullous diseases, gastrointestinal diseases, and graft versus host diseases. Systemic steroids are an effective treatment, but they cause unfavorable and even severe systemic side effects. Discontinuation of systemic corticosteroids or other immunosuppressive drugs leads to relapse, confirming the importance of long-term corticosteroid use. The present study aims to fabricate a mucoadhesive scaffold using three-dimensional (3D) bioprinting for sustained drug delivery in oral mucosal lesions to address the clinical need for alternative treatment, especially for those who do not respond to routine therapy. Methods 3D bioprinting method was used for the fabrication of the scaffolds. Scaffolds were fabricated in three layers; adhesive/drug-containing, backing, and middle layers. For evaluation of the release profile of the drug, artificial saliva was used as the release medium. Mucoadhesive scaffolds were analyzed using a scanning electron microscope (SEM) and SEM surface reconstruction. The pH of mucoadhesive scaffolds and swelling efficacy were measured using a pH meter and Enslin dipositive, respectively. A microprocessor force gauge was used for the measurement of tensile strength. For the evaluation of the cytotoxicity, oral keratinocyte cells' survival rate was evaluated by the MTT method. Folding endurance tests were performed using a stable microsystem texture analyzer and analytic probe mini tensile grips. Results All scaffolds had the same drug release trend; An initial rapid explosive release during the first 12 h, followed by a gradual release. The scaffolds showed sustained drug release and continued until the fourth day. The pH of the surface of the scaffolds was 5.3–6.3, and the rate of swelling after 5 h was 28 ± 3.2%. The tensile strength of the scaffolds containing the drug was 7.8 ± 0.12 MPa. The scaffolds were non-irritant to the mucosa, and the folding endurance of the scaffolds was over three hundred times. Conclusion The scaffold fabricated using the 3D bioprinting method could be suitable for treating oral mucosal lesions.
Collapse
Affiliation(s)
- Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Duha Hayder Mohammad Ali Nassar
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, North Kargar St, P.O.BOX:14395 -433, Tehran, 14399-55991, Iran.
| | - Mahvash Shokrolahi
- New Technologies Research Center, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
3
|
Auffret M, Meuric V, Boyer E, Bonnaure-Mallet M, Vérin M. Oral Health Disorders in Parkinson's Disease: More than Meets the Eye. JOURNAL OF PARKINSONS DISEASE 2021; 11:1507-1535. [PMID: 34250950 PMCID: PMC8609694 DOI: 10.3233/jpd-212605] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite clinical evidence of poor oral health and hygiene in Parkinson’s disease (PD) patients, the mouth is often overlooked by both patients and the medical community, who generally focus on motor or psychiatric disorders considered more burdensome. Yet, oral health is in a two-way relationship with overall health—a weakened status triggering a decline in the quality of life. Here, we aim at giving a comprehensive overview of oral health disorders in PD, while identifying their etiologies and consequences. The physical (abnormal posture, muscle tone, tremor, and dyskinesia), behavioral (cognitive and neuropsychiatric disorders), and iatrogenic patterns associated with PD have an overall detrimental effect on patients’ oral health, putting them at risk for other disorders (infections, aspiration, pain, malnutrition), reducing their quality of life and increasing their isolation (anxiety, depression, communication issues). Interdisciplinary cooperation for prevention, management and follow-up strategies need to be implemented at an early stage to maintain and improve patients’ overall comfort and condition. Recommendations for practice, including (non-)pharmacological management strategies are discussed, with an emphasis on the neurologists’ role. Of interest, the oral cavity may become a valuable tool for diagnosis and prognosis in the near future (biomarkers). This overlooked but critical issue requires further attention and interdisciplinary research.
Collapse
Affiliation(s)
- Manon Auffret
- Behavior & Basal Ganglia Research Unit (EA 4712), University of Rennes 1, Rennes, France.,Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France
| | - Vincent Meuric
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Emile Boyer
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Martine Bonnaure-Mallet
- INSERM, INRAE, Université de Rennes 1, CHU de Rennes, Nutrition Metabolisms and Cancer, Rennes, France
| | - Marc Vérin
- Behavior & Basal Ganglia Research Unit (EA 4712), University of Rennes 1, Rennes, France.,Institut des Neurosciences Cliniques de Rennes (INCR), Rennes, France.,Movement Disorders Unit, Neurology Department, Pontchaillou University Hospital, Rennes, France
| |
Collapse
|
4
|
Patlolla VGR, Popovic N, Peter Holbrook W, Kristmundsdottir T, Gizurarson S. Effect of Doxycycline Microencapsulation on Buccal Films: Stability, Mucoadhesion and In Vitro Drug Release. Gels 2021; 7:gels7020051. [PMID: 33924744 PMCID: PMC8167737 DOI: 10.3390/gels7020051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 01/12/2023] Open
Abstract
The aim of this work was to stabilize doxycycline in mucoadhesive buccal films at room temperature (25 °C). Since doxycycline is susceptible to degradation such as oxidation and epimerization, tablets are currently the only formulation that can keep the drug fully stable at room temperature, while liquid formulations are limited to refrigerated conditions (4 °C). In this study, the aim was to make formulations containing subclinical (antibiotic) doxycycline concentration that can act as matrix metalloproteinase inhibitors (MMPI) and can be stored at temperatures such as 25 °C. Here, doxycycline was complexed with excipients using three techniques and entrapped into microparticles that were stored at 4 °C, 25 °C and 40 °C. Effect of addition of precomplexed doxycycline microparticles on films: stability mucoadhesion capacity, tensile strength, swelling index and in vitro release was studied. The complexation efficiency between drug-excipients, microparticles and films was studied using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Two of the films were found to be stable at 4 °C but the film containing microparticle composed of precomplexed doxycycline with β-cyclodextrin, MgCl2, sodium thiosulfate, HPMC and Eudragit® RS 12.5 was found to be stable at 25 °C until 26 weeks. The addition of microparticles to the films was found to reduce the mucoadhesive capacity, peak detachment force, tensile strength and elasticity, but improved the stability at room temperature.
Collapse
Affiliation(s)
- Venu Gopal Reddy Patlolla
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (V.G.R.P.); (N.P.); (T.K.)
- Faculty of Odontology, University of Iceland, Vatnsmýrarveg 16, 101 Reykjavík, Iceland;
| | - Nikolina Popovic
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (V.G.R.P.); (N.P.); (T.K.)
- Costco Pharmacy, Kauptúni 3, 210 Garðabær, Iceland
| | | | - Thordis Kristmundsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (V.G.R.P.); (N.P.); (T.K.)
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavik, Iceland; (V.G.R.P.); (N.P.); (T.K.)
- Pharmacy Department, College of Medicine, University of Malawi, Blantyre 3, Malawi
- Correspondence:
| |
Collapse
|
5
|
Mucoadhesion and Mechanical Assessment of Oral Films. Eur J Pharm Sci 2021; 159:105727. [DOI: 10.1016/j.ejps.2021.105727] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
|
6
|
Eleftheriadis GK, Monou PK, Bouropoulos N, Boetker J, Rantanen J, Jacobsen J, Vizirianakis IS, Fatouros DG. Fabrication of Mucoadhesive Buccal Films for Local Administration of Ketoprofen and Lidocaine Hydrochloride by Combining Fused Deposition Modeling and Inkjet Printing. J Pharm Sci 2020; 109:2757-2766. [PMID: 32497597 DOI: 10.1016/j.xphs.2020.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
In the area of developing oromucosal drug delivery systems, mucoadhesive buccal films are the most promising formulations for either systemic or local drug delivery. The current study presents the fabrication of buccal films, by combining fused deposition modeling (FDM) and inkjet printing. Hydroxypropyl methylcellulose-based films were fabricated via FDM, containing the non-steroidal anti-inflammatory drug ketoprofen. Unidirectional release properties were achieved, by incorporating an ethyl cellulose-based backing layer. The local anesthetic lidocaine hydrochloride, combined with the permeation enhancer l-menthol, was deposited onto the film by inkjet printing. Physicochemical analysis showed alterations in the characteristics of the films, and the mucoadhesive and mechanical properties were effectively modified, due to the ink deposition on the substrates. The in vitro release data of the active pharmaceutical compounds, as well as the permeation profiles across ex vivo porcine buccal mucosa and filter-grown TR146 cells of human buccal origin, were associated with the presence of the permeation enhancer and the backing layer. The lack of any toxicity of the fabricated films was demonstrated by the MTT viability assay. This proof-of-concept study provides an alternative formulation approach of mucoadhesive buccal films, intended for the treatment of local oromucosal diseases or systemic drug delivery.
Collapse
Affiliation(s)
- Georgios K Eleftheriadis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paraskevi Kyriaki Monou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Johan Boetker
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Silva Favacho HA, Oliveira do Couto R, Ferreira Duarte MP, Garofo Peixoto MP, Vianna Lopez RF, Pedrazzi V, Masetto de Gaitani C, de Freitas O. Synergy between surfactants and mucoadhesive polymers enhances the transbuccal permeation of local anesthetics from freeze-dried tablets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110373. [DOI: 10.1016/j.msec.2019.110373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/01/2019] [Accepted: 10/27/2019] [Indexed: 01/04/2023]
|
8
|
Yang J, Liu X, Fu Y, Song Y. Recent advances of microneedles for biomedical applications: drug delivery and beyond. Acta Pharm Sin B 2019; 9:469-483. [PMID: 31193810 PMCID: PMC6543086 DOI: 10.1016/j.apsb.2019.03.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/29/2019] [Accepted: 02/16/2019] [Indexed: 12/22/2022] Open
Abstract
The microneedle (MN), a highly efficient and versatile device, has attracted extensive scientific and industrial interests in the past decades due to prominent properties including painless penetration, low cost, excellent therapeutic efficacy, and relative safety. The robust microneedle enabling transdermal delivery has a paramount potential to create advanced functional devices with superior nature for biomedical applications. In this review, a great effort has been made to summarize the advance of microneedles including their materials and latest fabrication method, such as three-dimensional printing (3DP). Importantly, a variety of representative biomedical applications of microneedles such as disease treatment, immunobiological administration, disease diagnosis and cosmetic field, are highlighted in detail. At last, conclusions and future perspectives for development of advanced microneedles in biomedical fields have been discussed systematically. Taken together, as an emerging tool, microneedles have showed profound promise for biomedical applications.
Collapse
|
9
|
Madhav NVS, Ojha A, Jaiswal V. A smart approach for delivery of aripiprazole via oro-soft palatal mucosal route for improved therapeutic efficacy. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000317382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Formulation and evaluation of selected transmucosal dosage forms containing a double fixed-dose of acyclovir and ketoconazole. Eur J Pharm Sci 2018; 111:503-513. [DOI: 10.1016/j.ejps.2017.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 11/22/2022]
|
11
|
Fonseca-Santos B, Chorilli M. An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29525088 DOI: 10.1016/j.msec.2017.12.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to the ease of the administration, the oral cavity is an attractive site for the delivery of drugs. The main difficulty for administration via the buccal route is an effective physiological removal mechanism of the oral cavity that takes way the formulation from the buccal site and decreases the bioavailability of drugs. The use of mucoadhesive polymers in buccal drug delivery shows assessing buccal drug permeation and absorption, however some studies bring an in vivo performance. This review points to the use of polymers in the manufacture of drug delivery systems (hydrogels, films and tablets) and shows the results of their in vivo performance tests.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903 Araraquara, São Paulo, Brazil.
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, 14800-903 Araraquara, São Paulo, Brazil.
| |
Collapse
|
12
|
Prasad LK, LaFountaine JS, Keen JM, Williams RO, McGinity JW. Influence of process parameters on the preparation of pharmaceutical films by electrostatic powder deposition. Int J Pharm 2016; 515:94-103. [DOI: 10.1016/j.ijpharm.2016.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
|
13
|
Affiliation(s)
- S T Sonis
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Biomodels LLC, Boston, MA, USA
| |
Collapse
|
14
|
Prasad LK, McGinity JW, Williams RO. Electrostatic powder coating: Principles and pharmaceutical applications. Int J Pharm 2016; 505:289-302. [DOI: 10.1016/j.ijpharm.2016.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/04/2016] [Accepted: 04/10/2016] [Indexed: 11/26/2022]
|
15
|
Silva BMA, Borges AF, Silva C, Coelho JFJ, Simões S. Mucoadhesive oral films: The potential for unmet needs. Int J Pharm 2015; 494:537-51. [PMID: 26315122 DOI: 10.1016/j.ijpharm.2015.08.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/23/2015] [Accepted: 08/13/2015] [Indexed: 11/16/2022]
Abstract
Oral drug delivery is the most common route of drug administration. Nevertheless, there are some important limitations that reinforce the need for developing new drug delivery systems. Mucoadhesive oral films (MOF) are promising dosage forms that adhere to the oral mucosa and deliver the drug through it, which present several advantages. These include: bypassing the hepatic first pass effect, fast onset of action, ease of transportation and handling. The use of such dosage form is beneficial for drugs that have poor oral bioavailability and also for drugs that need to be rapidly absorbed. In spite of the known benefits, the number of marketed MOF is still quite small. This review explores the products under development and corresponding clinical trials in respect to their status, therapeutic indication, companies involved and technologies. In this way, it was possible to identify the preferred therapeutic indications, new research and market trends as well as future prospects of MOF. Moreover, it is reasonable to expect an increase in the number of products on the market due to their great potential to satisfy unmet medical needs.
Collapse
Affiliation(s)
- Branca M A Silva
- Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Ana Filipa Borges
- Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Cláudia Silva
- Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - Jorge F J Coelho
- CEMUC, Department of Chemical Engineering, University of Coimbra, Polo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Sérgio Simões
- Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
16
|
Potrč T, Baumgartner S, Roškar R, Planinšek O, Lavrič Z, Kristl J, Kocbek P. Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs. Eur J Pharm Sci 2015; 75:101-13. [PMID: 25910438 DOI: 10.1016/j.ejps.2015.04.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/03/2015] [Accepted: 04/05/2015] [Indexed: 11/15/2022]
Abstract
The number of poorly water-soluble drug candidates is rapidly increasing; this represents a major challenge for the pharmaceutical industry. As a consequence, novel formulation approaches are required. Furthermore, if such a drug candidate is intended for the therapy of a specific group of the population, such as geriatric or pediatric, the formulation challenge is even greater, with the need to produce a dosage form that is acceptable for specific patients. Therefore, the goal of our study was to explore electrospun polycaprolactone (PCL) nanofibers as a novel nanodelivery system adopted for the oromucosal administration of poorly water-soluble drugs. The nanofibers were evaluated in comparison with polymer films loaded with ibuprofen or carvedilol as the model drugs. Scanning electron microscopy revealed that the amount of incorporated drug affects the diameter and the morphology of the nanofibers. The average fiber diameter increased with a higher drug loading, whereas the morphology of the nanofibers was noticeably changed in the case of nanofibers with 50% and 60% ibuprofen. The incorporation of drugs into the electrospun PCL nanofibers was observed to reduce their crystallinity. Based on the morphology of the nanofibers and the films, and the differential scanning calorimetry results obtained in this study, it can be assumed that the drugs incorporated into the nanofibers were partially molecularly dispersed in the PCL matrix and partially in the form of dispersed nanocrystals. The incorporation of both model drugs into the PCL nanofibers significantly improved their dissolution rates. The PCL nanofibers released almost 100% of the incorporated ibuprofen in 4h, whereas only up to 77% of the incorporated carvedilol was released during the same time period, indicating the influence of the drug's properties, such as molecular weight and solubility, on its release from the PCL matrix. The obtained results clearly demonstrated the advantages of the new nanodelivery system compared to the drug-loaded polymer films that were used as the reference formulation. As a result, electrospinning was shown to be a very promising nanotechnology-based approach to the formulation of poorly water-soluble drugs in order to enhance their dissolution. In addition, the great potential of the produced drug-loaded PCL nanofiber mats for subsequent formulation as oromucosal drug delivery systems for children and the elderly was confirmed.
Collapse
Affiliation(s)
- Tanja Potrč
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Saša Baumgartner
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Odon Planinšek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Zoran Lavrič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Julijana Kristl
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Petra Kocbek
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Ganguly K, Chaturvedi K, More UA, Nadagouda MN, Aminabhavi TM. Polysaccharide-based micro/nanohydrogels for delivering macromolecular therapeutics. J Control Release 2014; 193:162-73. [DOI: 10.1016/j.jconrel.2014.05.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 01/01/2023]
|
18
|
Preparation of ibuprofen-loaded chitosan films for oral mucosal drug delivery using supercritical solution impregnation. Int J Pharm 2014; 473:434-41. [DOI: 10.1016/j.ijpharm.2014.07.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 11/22/2022]
|
19
|
Laffleur F, Bernkop-Schnürch A. Strategies for improving mucosal drug delivery. Nanomedicine (Lond) 2014; 8:2061-75. [PMID: 24279493 DOI: 10.2217/nnm.13.178] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Within this review we will provide a comprehensive understanding in order to improve existing strategies and to develop new systems to lower the barrier for improving mucosal drug delivery. Mucosal administration of drugs achieves a therapeutical effect as the permeation of significant amounts of a drug is permitted through the absorption membrane. The absorption membrane relies on the mucosal layer and the epithelial tissue. In order to overcome barriers, drug delivery systems have to exhibit various functions and features, such as mucoadhesive and protective activity, solubility improving, permeation and uptake enhancing, and drug release controlling properties. This review also aims to provide an insight of well-distinguished strategies to date, as well as provide a focus on the enhancement of membrane permeability. Furthermore, since the development and functions of drug delivery systems exert a high influence on the ability of drug permeation through membrane, these considerations will also be discussed in this review.
Collapse
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | | |
Collapse
|
20
|
|
21
|
Mucoadhesive intestinal devices for oral delivery of salmon calcitonin. J Control Release 2013; 172:753-62. [PMID: 24035976 DOI: 10.1016/j.jconrel.2013.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/24/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022]
Abstract
One of the major challenges faced by therapeutic polypeptides remains their invasive route of delivery. Oral administration offers a potential alternative to injections; however, this route cannot be currently used for peptides due to their limited stability in the stomach and poor permeation across the intestine. Here, we report mucoadhesive devices for oral delivery that are inspired by the design of transdermal patches and demonstrate their capabilities in vivo for salmon calcitonin (sCT). The mucoadhesive devices were prepared by compressing a polymeric matrix containing carbopol, pectin and sodium carboxymethylcellulose (1:1:2), and were coated on all sides but one with an impermeable and flexible ethyl cellulose (EC) backing layer. Devices were tested for in vitro dissolution, mucoadhesion to intestinal mucosa, enhancement of drug absorption in vitro (Caco-2 monolayer transport) and in vivo in rats. Devices showed steady drug release with ≈75% cumulative drug released in 5h. Devices also demonstrated strong mucoadhesion to porcine small intestine to withstand forces up to 100 times their own weight. sCT-loaded mucoadhesive devices exhibited delivery of sCT across Caco-2 monolayers and across the intestinal epithelium in vivo in rats. A ≈52-fold (pharmacokinetic) and ≈44-fold (pharmacological) enhancement of oral bioavailability was observed with mucoadhesive devices when compared to direct intestinal injections. Oral delivery of devices in enteric coated capsules resulted in significant bioavailability enhancement.
Collapse
|
22
|
Gilhotra RM, Ikram M, Srivastava S, Gilhotra N. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res 2013; 28:81-97. [PMID: 24683406 PMCID: PMC3968279 DOI: 10.7555/jbr.27.20120136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/03/2013] [Accepted: 03/04/2013] [Indexed: 11/23/2022] Open
Abstract
Mucoadhesion can be defined as a state in which two components, of which one is of biological origin, are held together for extended periods of time by the help of interfacial forces. Among the various transmucosal routes, buccal mucosa has excellent accessibility and relatively immobile mucosa, hence suitable for administration of retentive dosage form. The objective of this paper is to review the works done so far in the field of mucoadhesive buccal drug delivery systems (MBDDS), with a clinical perspective. Starting with a brief introduction of the mucoadhesive drug delivery systems, oral mucosa, and the theories of mucoadhesion, this article then proceeds to cover the works done so far in the field of MBDDS, categorizing them on the basis of ailments they are meant to cure. Additionally, we focus on the various patents, recent advancements, and challenges as well as the future prospects for mucoadhesive buccal drug delivery systems.
Collapse
Affiliation(s)
- Ritu M Gilhotra
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302025, India
| | - Mohd Ikram
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302025, India
| | - Sunny Srivastava
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302025, India
| | - Neeraj Gilhotra
- Faculty of Pharmacy, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
23
|
Kammona O, Kiparissides C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release 2012; 161:781-94. [PMID: 22659331 DOI: 10.1016/j.jconrel.2012.05.040] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 01/20/2023]
Abstract
This review highlights the recent developments in the area of nanocarrier-based mucosal delivery of therapeutic biomolecules and antigens. Macromolecular drugs have the unique power to tackle challenging diseases but their structure, physicochemical properties, stability, pharmacodynamics, and pharmacokinetics place stringent demands on the way they are delivered into the body (e.g., inability to cross mucosal surfaces and biological membranes). Carrier-based drug delivery systems can diminish the toxicity of therapeutic biomolecules, improve their bioavailability and make possible their administration via less-invasive routes (e.g., oral, nasal, pulmonary, etc.). Thus, the development of functionalized nanocarriers and nanoparticle-based microcarriers for the delivery of macromolecular drugs is considered an important scientific challenge and at the same time a business breakthrough for the biopharmaceutical industry. In order to be translated to the clinic the nanocarriers need to be biocompatible, biodegradable, stable in biological media, non-toxic and non-immunogenic, to exhibit mucoadhesive properties, to cross mucosal barriers and to protect their sensitive payload and deliver it to its target site in a controlled manner, thus increasing significantly its bioavailability and efficacy.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process Engineering Research Institute, Centre for Research and Technology Hellas, P.O. Box 60361, 57001 Thessaloniki, Greece
| | | |
Collapse
|
24
|
Satheesh Madhav NV, Semwal R, Semwal DK, Semwal RB. Recent trends in oral transmucosal drug delivery systems: an emphasis on the soft palatal route. Expert Opin Drug Deliv 2012; 9:629-47. [PMID: 22512535 DOI: 10.1517/17425247.2012.679260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The oral mucosa is an appropriate route for drug delivery systems, as it evades first-pass metabolism, enhances drug bioavailability and provides the means for rapid drug transport to the systematic circulation. This delivery system offers a more comfortable and convenient delivery route compared with the intravenous route. Although numerous drugs have been evaluated for oral mucosal delivery, few of them are available commercially. This is due to limitations such as the high costs associated with developing such drug delivery systems. AREAS COVERED The present review covers recent developments and applications of oral transmucosal drug delivery systems. More specifically, the review focuses on the suitability of the oral soft palatal site as a new route for drug delivery systems. EXPERT OPINION The novelistic oral soft palatal platform is a promising mucoadhesive site for delivering active pharmaceuticals, both systemically and locally, and it can also serve as a smart route for the targeting of drugs to the brain.
Collapse
|