1
|
Xu R, Du A, Deng X, Du W, Zhang K, Li J, Lu Y, Wei X, Yang Q, Tang H. tsRNA-GlyGCC promotes colorectal cancer progression and 5-FU resistance by regulating SPIB. J Exp Clin Cancer Res 2024; 43:230. [PMID: 39153969 PMCID: PMC11330149 DOI: 10.1186/s13046-024-03132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/18/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND tRNA-derived small RNAs (tsRNAs) are newly discovered non-coding RNA, which are generated from tRNAs and are reported to participate in several biological processes in diseases, especially cancer; however, the mechanism of tsRNA involvement in colorectal cancer (CRC) and 5-fluorouracil (5-FU) is still unclear. METHODS RNA sequencing was performed to identify differential expression of tsRNAs in CRC tissues. CCK8, colony formation, transwell assays, and tumor sphere assays were used to investigate the role of tsRNA-GlyGCC in 5-FU resistance in CRC. TargetScan and miRanda were used to identify the target genes of tsRNA-GlyGCC. Biotin pull-down, RNA pull-down, luciferase assay, ChIP, and western blotting were used to explore the underlying molecular mechanisms of action of tsRNA-GlyGCC. The MeRIP assay was used to investigate the N(7)-methylguanosine RNA modification of tsRNA-GlyGCC. RESULTS In this study, we uncovered the feature of tsRNAs in human CRC tissues and confirmed a specific 5' half tRNA, 5'tiRNA-Gly-GCC (tsRNA-GlyGCC), which is upregulated in CRC tissues and modulated by METTL1-mediated N(7)-methylguanosine tRNA modification. In vitro and in vivo experiments revealed the oncogenic role of tsRNA-GlyGCC in 5-FU drug resistance in CRC. Remarkably, our results showed that tsRNA-GlyGCC modulated the JAK1/STAT6 signaling pathway by targeting SPIB. Poly (β-amino esters) were synthesized to assist the delivery of 5-FU and tsRNA-GlyGCC inhibitor, which effectively inhibited tumor growth and enhanced CRC sensitive to 5-FU without obvious adverse effects in subcutaneous tumor. CONCLUSIONS Our study revealed a specific tsRNA-GlyGCC-engaged pathway in CRC progression. Targeting tsRNA-GlyGCC in combination with 5-FU may provide a promising nanotherapeutic strategy for the treatment of 5-FU-resistance CRC.
Collapse
Affiliation(s)
- Rong Xu
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, Hunan, 415000, China
| | - Ashuai Du
- Department of Infectious Diseases, Guizhou Provincial people's Hospital, Guiyang, Guizhou, 550002, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University (The first people's hospital of Changde city), Changde, Hunan, 415000, China
| | - Kaiying Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan, 415000, China
| | - Yingxue Lu
- Department of Infectious Diseases, Guizhou Provincial people's Hospital, Guiyang, Guizhou, 550002, China
| | - Xiaoli Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
| | - Qinglong Yang
- Department of General Surgery, Guizhou Provincial people's Hospital, Guiyang, Guizhou, 550002, China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
2
|
Ooi YJ, Huang C, Lau K, Chew SY, Park JG, Chan-Park MB. Nontoxic, Biodegradable Hyperbranched Poly(β-amino ester)s for Efficient siRNA Delivery and Gene Silencing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14093-14112. [PMID: 38449351 DOI: 10.1021/acsami.3c10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
RNA interference (RNAi)-mediated gene silencing is a promising therapeutic approach to treat various diseases, but safe and efficient delivery remains a major challenge to its clinical application. Non-viral gene vectors, such as poly(β-amino esters) (pBAEs), have emerged as a potential candidate due to their biodegradability, low toxicity profile, ease of synthesis, and high gene transfection efficiency for both DNA and siRNA delivery. However, achieving significant gene silencing using pBAEs often requires a large amount of polymer carrier (with polymer/siRNA weight ratio >100) or high siRNA dose (>100 nM), which might potentially exacerbate toxicity concerns during delivery. To overcome these barriers, we designed and optimized a series of hyperbranched pBAEs capable of efficiently condensing siRNA and achieving excellent silencing efficiency at a lower polymer/siRNA weight ratio (w/w) and siRNA dose. Through modulation of monomer combinations and branching density, we identified the top-performing hyperbranched pBAEs, named as h(A2B3)-1, which possess good siRNA condensation ability, low cytotoxicity, and high cellular uptake efficiency. Compared with Lipofectamine 2000, h(A2B3)-1 achieved lower cytotoxicity and higher siRNA silencing efficiency in HeLa cells at a polymer/siRNA weight ratio of 30 and 30 nM siRNA dose. Notably, h(A2B3)-1 enhanced the gene uptake in primary neural cells and effectively silenced the target gene in hard-to-transfect primary cortical neurons and oligodendrocyte progenitor cells, with gene knockdown efficiencies of 34.8 and 53.4% respectively. By incorporating a bioreducible disulfide compartment into the polymer backbone, the cytocompatibility of the h(A2B3)-1 was greatly enhanced while maintaining their good transfection efficiency. Together, the low cytotoxicity and high siRNA transfection efficiency of hyperbranched h(A2B3)-1 in this study demonstrated their great potential as a non-viral gene vector for efficient siRNA delivery and RNAi-mediated gene silencing. This provides valuable insight into the future development of safe and efficient non-viral siRNA delivery systems as well as their translation into clinical applications.
Collapse
Affiliation(s)
- Ying Jie Ooi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Chongquan Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Neuroscience@NTU, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 637459, Singapore
| | - Kieran Lau
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Sing Yian Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jong Gu Park
- Welgene Inc, 693, Namcheon-ro, Namcheon-myeon, Gyeongsan-si, Gyeongsangbuk-do 38695, Republic of Korea
| | - Mary B Chan-Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
3
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
4
|
Friesen JJ, Blakney AK. Trends in the synthetic polymer delivery of RNA. J Gene Med 2024; 26:e3672. [PMID: 38380796 DOI: 10.1002/jgm.3672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/27/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Ribonucleic acid (RNA) has emerged as one of the most promising therapeutic payloads in the field of gene therapy. There are many unique types of RNA that allow for a range of applications including vaccination, protein replacement therapy, autoimmune disease treatment, gene knockdown and gene editing. However, RNA triggers the host immune system, is vulnerable to degradation and has a low proclivity to enter cells spontaneously. Therefore, a delivery vehicle is required to facilitate the protection and uptake of RNA therapeutics into the desired host cells. Lipid nanoparticles have emerged as one of the only clinically approved vehicles for genetic payloads, including in the COVID-19 messenger RNA vaccines. While lipid nanoparticles have distinct advantages, they also have drawbacks, including strong immune stimulation, complex manufacturing and formulation heterogeneity. In contrast, synthetic polymers are a widely studied group of gene delivery vehicles and boast distinct advantages, including biocompatibility, tunability, inexpensiveness, simple formulation and ease of modification. Some classes of polymers enhance efficient transfection efficiency, and lead to lower stimulation of the host immune system, making them more viable candidates for non-vaccine-related applications of RNA medicines. This review aims to identify the most promising classes of synthetic polymers, summarize recent research aimed at moving them into the clinic and postulate the future steps required for unlocking their full potential.
Collapse
Affiliation(s)
- Josh J Friesen
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| | - Anna K Blakney
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Zhang R, Nie T, Fang Y, Huang H, Wu J. Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules 2021; 23:1-19. [PMID: 34874705 DOI: 10.1021/acs.biomac.1c01210] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioresponsive polymers have been widely used in drug delivery because of their degradability. For example, poly(disulfide)s with repeating disulfide bonds in the main chain have attracted considerable research attention. The characteristics of the disulfide bonds, including their dynamic and reversible properties and their responsiveness to stimuli such as reductants, light, heat, and mechanical force, make them ideal platforms for on-demand drug delivery. This review introduces the synthesis methods and applications of poly(disulfide)s. Furthermore, the synthesis methods of poly(disulfide)s are classified on the basis of the monomers used: oxidative step-growth polymerization with dithiols, ring-opening polymerization with cyclic disulfides, and polymerization with linear disulfides. In addition, recent advances in poly(disulfide)s for the delivery of small-molecule or biomacromolecular drugs are discussed. Quantum-dot-loaded poly(disulfide) delivery systems for imaging are also included. This review provides an overview of the various design strategies employed in the construction of poly(disulfide) platforms to inspire new applications in the field of drug delivery.
Collapse
Affiliation(s)
- Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Nie
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
6
|
Jiang X, Abedi K, Shi J. Polymeric nanoparticles for RNA delivery. REFERENCE MODULE IN MATERIALS SCIENCE AND MATERIALS ENGINEERING 2021. [PMCID: PMC8568333 DOI: 10.1016/b978-0-12-822425-0.00017-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As exemplified by recent clinical approval of RNA drugs including the latest COVID-19 mRNA vaccines, RNA therapy has demonstrated great promise as an emerging medicine. Central to the success of RNA therapy is the delivery of RNA molecules into the right cells at the right location. While the clinical success of nanotechnology in RNA therapy has been limited to lipid-based nanoparticles currently, polymers, due to their tunability and robustness, have also evolved as a class of promising material for the delivery of various therapeutics including RNAs. This article overviews different types of polymers used in RNA delivery and the methods for the formulation of polymeric nanoparticles and highlights recent progress of polymeric nanoparticle-based RNA therapy.
Collapse
|
7
|
Rabiee N, Ahmadi S, Arab Z, Bagherzadeh M, Safarkhani M, Nasseri B, Rabiee M, Tahriri M, Webster TJ, Tayebi L. Aptamer Hybrid Nanocomplexes as Targeting Components for Antibiotic/Gene Delivery Systems and Diagnostics: A Review. Int J Nanomedicine 2020; 15:4237-4256. [PMID: 32606675 PMCID: PMC7314593 DOI: 10.2147/ijn.s248736] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting approach for cancer treatment in the decades ahead to meet our growing societal needs.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Arab
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | | | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Behzad Nasseri
- Chemical Engineering Department and Bioengineering Division, Hacettepe University, Beytepe, Ankara06800, Turkey
- Chemical Engineering and Applied Chemistry Department, Atilim University, Ankara, Turkey
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI53233, USA
| |
Collapse
|
8
|
Xiao W, Zhang W, Huang H, Xie Y, Zhang Y, Guo X, Jin C, Liao X, Yao S, Chen G, Song X. Cancer Targeted Gene Therapy for Inhibition of Melanoma Lung Metastasis with eIF3i shRNA Loaded Liposomes. Mol Pharm 2019; 17:229-238. [PMID: 31765158 DOI: 10.1021/acs.molpharmaceut.9b00943] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation factors 3i (eIF3i) is a proto-oncogene that is overexpressed in various tumors, reducing its expression by eIF3i shRNA is a promising strategy to inhibit tumor growth or metastasis. Tumor cell is the target of eIF3i shRNA so that tumor-site accumulation could be important for fulfilling its therapeutic effect. Thus, the iRGD modified liposome (R-LP) was rationally synthesized to enhance the antitumor effect by active targeted delivery of eIF3i shRNA to B16F10 melanoma cells. R-LP encapsulating eIF3i shRNA gene (R-LP/sheIF3i) were prepared by a film dispersion method. The transfection experiment proves that R-LP could effectively transfect B16F10 cells. R-LP/sheIF3i notably restrained the migration, invasion, and adhesion of melanoma cells in vitro. In a mouse model of lung metastasis, R-LP/sheIF3i administered by intravenous injection suppressed pulmonary metastasis of melanoma by dramatically downregulated eIF3i expression and subsequently inhibiting tumor neovascularization and tumor cells proliferation in vivo. Our results provide a basis for tumor cells targeting strategies to reduce the expression of eIF3i by RNAi in the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Wen Xiao
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Weiyi Zhang
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Hai Huang
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Yafei Xie
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Yi Zhang
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Xia Guo
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Chaohui Jin
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Xuelian Liao
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Shaohua Yao
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Guo Chen
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| | - Xiangrong Song
- State Key Laboratory of Biotherapy/Geriatrics and Cancer Center, West China Hospital and Collaborative Innovation Center for Biotherapy , Sichuan University , Chengdu , 610041 , China
| |
Collapse
|
9
|
Cordeiro RA, Serra A, Coelho JF, Faneca H. Poly(β-amino ester)-based gene delivery systems: From discovery to therapeutic applications. J Control Release 2019; 310:155-187. [DOI: 10.1016/j.jconrel.2019.08.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
|
10
|
Acharya R. The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109928. [PMID: 31500065 DOI: 10.1016/j.msec.2019.109928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
The recent trend of gene therapy is using short hairpin RNA conjugated with different types of nanoparticles. shRNAs have a significant role in gene silencing and have a promising role in treating several genetic and infectious diseases. There are several drawbacks of delivering bare shRNA in the blood as they are fragile in nature and readily degradable. To overcome this problem shRNAs can be conjugated with nanoparticles for a safe deliver. In this article several nanoparticles are mentioned which play significant role in delivery of this payload. On one hand they protect the shRNA from degradation on the other they help to penetrate this large molecule in to the cell. Some of these nanoconjugates are in clinical trials and have a promising role in treatment of diseases.
Collapse
Affiliation(s)
- Rituparna Acharya
- School of Bio-science and Engineering, Jadavpur University, 188, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
11
|
Bingol HB, Demir Duman F, Yagci Acar H, Yagci MB, Avci D. Redox-responsive phosphonate-functionalized poly(β-amino ester) gels and cryogels. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Wang F, Huang Q, Wang Y, Zhang W, Lin R, Yu Y, Shen Y, Cui H, Guo S. Rational design of multimodal therapeutic nanosystems for effective inhibition of tumor growth and metastasis. Acta Biomater 2018; 77:240-254. [PMID: 30012354 DOI: 10.1016/j.actbio.2018.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022]
Abstract
Simultaneous inhibition of both tumor growth and metastasis is the key to treating metastatic cancer, yet the development of effective drug delivery systems represents a great challenge since multimodal therapeutic agents must be rationally combined to overcome the biological mechanisms underpinning tumor cell proliferation and invasion. In this context, we report a hybrid therapeutic nanoscale platform that incorporates an anti-proliferative drug, doxorubicin (DOX), and an anti-NF-κB agent, p65-shRNA, for effective treatment of metastatic breast cancer. In our design, we first conjugated DOX via an acid-labile linker onto gold nanorods that were pre-modified with the tumor targeting peptide RGD and a positively charged, disulfide cross-linked short polyethylenimines (DSPEI), and then incorporated shRNA through electrostatic complexation with DSPEI. We show that this "all in one" nanotherapeutic system (RDG/shRNA@DOX) can be effectively internalized through RGD-mediated endocytosis, followed by stimuli-responsive intracellular co-release of DOX and shRNA. Our in vitro experiments suggest that this multimodal system can significantly inhibit cell proliferation, angiogenesis, and invasion of metastatic MDA-MB-435 cancer cells. Systemic administration of RDG/shRNA@DOX into a metastatic mouse model led to enhanced tumor accumulation, and, most importantly, significant inhibition of in situ tumor growth and almost complete suppression of tumor metastasis. We believe this hybrid multimodal nanotherapeutic system provides important insight into the rational design of therapeutic systems for the effective treatment of metastatic carcinoma. STATEMENT OF SIGNIFICANCE The key to successfully treat metastatic cancer is the simultaneous inhibition of both tumor growth and metastasis. This represents a great challenge for the design of drug delivery systems since multimodal therapeutic agents must be rationally combined to overcome the respective biological mechanisms underpinning tumor cell proliferation and invasion. Toward this end, we developed a hybrid nanomedicine platform that incorporates an anti-proliferative drug, doxorubicin (DOX), and an anti-NF-κB agent, p65-shRNA, for effective treatment of metastatic breast cancer. We showed that this multimodal system (RDG/shRNA@DOX) enhanced tumor accumulation, led to prolonged circulation, and most importantly, significant inhibition of in situ tumor growth and almost complete suppression of tumor metastasis. We believe this hybrid multimodal nanotherapeutic system provides significant insight into the rational design of therapeutic systems for the effective treatment of metastatic cancer.
Collapse
Affiliation(s)
- Feihu Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, United States
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Yun Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wenjun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, United States
| | - Yanna Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yuanyuan Shen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, United States; Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| | - Shengrong Guo
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
13
|
Shin H, Park SJ, Yim Y, Kim J, Choi C, Won C, Min DH. Recent Advances in RNA Therapeutics and RNA Delivery Systems Based on Nanoparticles. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800065] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hojeong Shin
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Se-Jin Park
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Yeajee Yim
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Jungho Kim
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Chulwon Choi
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| | - Dal-Hee Min
- Center for RNA Research; Institute for Basic Science; Seoul National University; Seoul 08826 Republic of Korea
- Department of Chemistry; Seoul National University; Seoul 08826 Republic of Korea
- Institute of Biotherapeutics Convergence Technology; Lemonex Inc.; Seoul 08826 Republic of Korea
| |
Collapse
|
14
|
Lv T, Li Z, Xu L, Zhang Y, Chen H, Gao Y. Chloroquine in combination with aptamer-modified nanocomplexes for tumor vessel normalization and efficient erlotinib/Survivin shRNA co-delivery to overcome drug resistance in EGFR-mutated non-small cell lung cancer. Acta Biomater 2018; 76:257-274. [PMID: 29960010 DOI: 10.1016/j.actbio.2018.06.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/23/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
Abstract
Although novel molecular targeted drugs have been recognized as an effective therapy for non-small cell lung cancer (NSCLC) harboring epidermal growth factor receptor (EGFR) activating mutations, their efficacy fails to meet the expectation due to the acquired resistance in tumors. Up-regulation of the anti-apoptotic protein Survivin was shown to contribute to the resistance to EGFR tyrosine kinase inhibitors (TKI) in EGFR mutation-positive NSCLC. However, the unorganized tumor blood vessels impeded drug penetration into tumor tissue. The resulting insufficient intracellular drug/gene delivery in drug-resistant cancer cells remarkably weakened the drug efficacy in NSCLC. In this work, a multi-functional drug delivery system AP/ES was developed by using anti-EGFR aptamer (Apt)-modified polyamidoamine to co-deliver erlotinib and Survivin-shRNA. Chloroquine (CQ) was used in combination with AP/ES to normalize tumor vessels for sufficient drug/gene delivery to overcome drug resistance in NSCLC cells. The obtained AP/ES possessed desired physicochemical properties, good biostability, controlled drug release profiles, and strong selectivity to EGFR-mutated NSCLC mediated by Apt. CQ not only enhanced endosomal escape ability of AP/ES for efficient gene transfection to inhibit Survivin, but also showed strong vessel-normalization ability to improve tumor microcirculation, which further promoted drug delivery and enhanced drug efficacy in erlotinib-resistant NSCLC cells. Our innovative gene/drug co-delivery system in combination with CQ showed a promising outcome in fighting against erlotinib resistance both in vitro and in vivo. This work indicates that normalization of tumor vessels could help intracellular erlotinib/Survivin-shRNA delivery and the down-regulation of Survivin could act synergistically with erlotinib for reversal of erlotinib resistance in EGFR mutation-positive NSCLC. STATEMENT OF SIGNIFICANCE NSCLC patients who benefited from EGFR-TKIs inevitably developed acquired resistance. Previous research focused on synthesis of new generation of molecular targeted drugs that could irreversibly inhibit EGFR with a particular gene mutation to overcome drug resistance. However, they failed to inhibit EGFR with other gene mutations. Activation of bypass signaling pathway and the changes of tumor microenvironment are identified as two of the mechanisms of acquired resistance to EGFR-TKIs. We therefore constructed multifunctional gene/drug co-delivery nanocomplexes AP/ES co-formulated with chloroquine that could target the both two mechanisms. We found that chloroquine not only enhanced endosomal escape ability of AP/ES for efficient gene transfection to inhibit Survivin, but also showed strong vessel-normalization ability to improve tumor microcirculation, which further promoted drug delivery into tumor tissue and enhanced drug efficacy in erlotinib-resistant NSCLC.
Collapse
|
15
|
Curtin CM, Castaño IM, O'Brien FJ. Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer. Adv Healthc Mater 2018; 7. [PMID: 29068566 DOI: 10.1002/adhm.201700695] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/21/2017] [Indexed: 12/17/2022]
Abstract
microRNA-based therapies are an advantageous strategy with applications in both regenerative medicine (RM) and cancer treatments. microRNAs (miRNAs) are an evolutionary conserved class of small RNA molecules that modulate up to one third of the human nonprotein coding genome. Thus, synthetic miRNA activators and inhibitors hold immense potential to finely balance gene expression and reestablish tissue health. Ongoing industry-sponsored clinical trials inspire a new miRNA therapeutics era, but progress largely relies on the development of safe and efficient delivery systems. The emerging application of biomaterial scaffolds for this purpose offers spatiotemporal control and circumvents biological and mechanical barriers that impede successful miRNA delivery. The nascent research in scaffold-mediated miRNA therapies translates know-how learnt from studies in antitumoral and genetic disorders as well as work on plasmid (p)DNA/siRNA delivery to expand the miRNA therapies arena. In this progress report, the state of the art methods of regulating miRNAs are reviewed. Relevant miRNA delivery vectors and scaffold systems applied to-date for RM and cancer treatment applications are discussed, as well as the challenges involved in their design. Overall, this progress report demonstrates the opportunity that exists for the application of miRNA-activated scaffolds in the future of RM and cancer treatments.
Collapse
Affiliation(s)
- Caroline M. Curtin
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland (RCSI); 123 St. Stephens Green Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| |
Collapse
|
16
|
Zhang J, Zheng Y, Xie X, Wang L, Su Z, Wang Y, Leong KW, Chen M. Cleavable Multifunctional Targeting Mixed Micelles with Sequential pH-Triggered TAT Peptide Activation for Improved Antihepatocellular Carcinoma Efficacy. Mol Pharm 2017; 14:3644-3659. [PMID: 28994600 DOI: 10.1021/acs.molpharmaceut.7b00404] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although tumor-targeting nanovehicles for hepatocellular carcinoma (HCC) chemotherapy have attracted great research and clinic interest, the poor cancer penetration, inefficient cellular uptake, and slow intracellular drug release greatly compromise their therapeutic outcomes. In this work, a multifunctional mixed micellar system, consisting of glycyrrhetinic acid (GA) for specific liver-targeting, trans-activator of transcription (TAT) peptide for potent cell penetration, and pH-sensitive poly(β-amino ester) polymers for acidic-triggered drug release, was developed to provide HCC-targeting delivery and pH-triggered release of doxorubicin (DOX). These micelles were hypothesized to efficaciously accumulate in HCC site by the guide of GA ligands, enter into cancer cells facilitated by the activated TAT peptide on the micellar surface, and finally rapidly release DOX in cytoplasm. To demonstrate this design, DOX was initially loaded in micelles modified with both GA and TAT (DOX/GA@TAT-M) with high drug loading efficiency and pH-sensitive drug release profiles. The HCC-targeting cellular uptake and synergetic anticancer efficacy were tested, indicating DOX/GA@TAT-M could be specifically and effectively internalized into HCC cells by the effect of GA targeting and TAT penetrating with enhanced cytotoxicity. In addition, the prolonged circulation time and enhanced accumulation in tumor facilitated its potent tumor growth inhibition activity in vivo. These results demonstrated that the cleavable multifunctional mixed micelles with tumor targeting, controlled TAT peptide activation, and sequential pH-sensitive drug release could be an efficient strategy for HCC treatment.
Collapse
Affiliation(s)
- Jinming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao 999078, China
| | - Yifeng Zheng
- College of Chinese Medicines, Guangzhou University of Chinese Medicine , Guangzhou 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University , Guangzhou 510275, China
| | - Lan Wang
- College of Chinese Medicines, Guangzhou University of Chinese Medicine , Guangzhou 510006, China
| | - Ziren Su
- College of Chinese Medicines, Guangzhou University of Chinese Medicine , Guangzhou 510006, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao 999078, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University , New York, New York 10027, United States
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao 999078, China
| |
Collapse
|
17
|
Small nanosized poly(vinyl benzyl trimethylammonium chloride) based polyplexes for siRNA delivery. Int J Pharm 2017; 525:388-396. [DOI: 10.1016/j.ijpharm.2017.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 02/02/2023]
|
18
|
Taghavi S, Nia AH, Abnous K, Ramezani M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int J Pharm 2017; 516:301-312. [PMID: 27840158 DOI: 10.1016/j.ijpharm.2016.11.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/05/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022]
Abstract
In this project, synergistic cancer cell death was achieved by a targeted delivery system comprising Bcl-xL-specific shRNA and a very low DOX content, which simultaneously activated an intrinsic apoptotic pathway. A modified branched polyethylenimine (PEI 10kDa) was grafted through polyethylene glycol (PEG) linker to carboxylated single-walled carbon nanotubes (SWCNT) to serve as a vehicle for shRNA delivery. The SWNT-PEG-PEI conjugate was covalently attached to AS1411 aptamer as the nucleolin ligand to target the co-delivery system to the tumor cells overexpressing nucleolin receptors on their surface. The final vehicle was eventually obtained after intercalation of DOX with pBcl-xL shRNA-SWCNT-PEG-10-10%PEI-Apt. Cell viability assay, GFP expression and transfection experiment against L929 (-nucleolin) and AGS (+nucleolin) cells illustrated that the tested targeted delivery system inhibited the growth of nucleolin-abundant gastric cancer cells with strong cell selectivity. Subsequently, we illustrated that the combination treatment of the selected shRNAs and DOX had excellent tumoricidal efficacy as verified by MTT assay. Furthermore, very low concentration of DOX, approximately 58-fold lower than its IC50 concentration, was used which could mitigate toxic side effects of DOX. Overall, our work revealed that combination of shRNA-mediated gene-silencing strategy with chemotherapeutic agents constitutes a valuable and safe approach for antitumor activity.
Collapse
Affiliation(s)
- Sahar Taghavi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Hashem Nia
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Begum AA, Moyle PM, Toth I. Investigation of bombesin peptide as a targeting ligand for the gastrin releasing peptide (GRP) receptor. Bioorg Med Chem 2016; 24:5834-5841. [DOI: 10.1016/j.bmc.2016.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/29/2022]
|
20
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surf B Biointerfaces 2015; 140:28-39. [PMID: 26731195 DOI: 10.1016/j.colsurfb.2015.12.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/06/2015] [Accepted: 12/13/2015] [Indexed: 02/04/2023]
Abstract
In this study, single-walled carbon nanotubes (SWCNTs) were covalently attached to poly(ethylene glycol) (PEG) and polyethylenimine (PEI) 10 kDa, or its derivatives, to fabricate efficient carriers for gene delivery. PEI 10 kDa was modified by alkylcarboxylation of its primary amines with a series of ω-bromo-alkylcarboxylic acids to provide a range of vectors with increased lipophilicity. PEI 10 kDa or its alkylcarboxylate derivatives were conjugated to SWCNT-PEG to develop vectors possessing effective DNA condensation ability which can interact with cell membrane via both nano-needle mechanism and electrostatic interactions produced by SWCNT and PEI, respectively. The results demonstrated that SWCNT-PEG-PEI and SWCNT-PEG-derivatives of PEI could condense DNA into particle size less than 150 nm with positive surface charges between 6.3-30.8 mV. To improve the antitumor efficacy, we developed a targeted gene delivery system using a 5 TR1 aptamer. The most efficient vector, which was prepared by attachment of SWCNT-PEG to modified PEI 10 kDa with 10-bromodecanoic acid (10%), showed 8.5-10 folds enhancement in transfection activity at C/P ratio 6 as compared to the gold standard PEI 25 kDa at C/P ratio of 0.8. We also showed that the selected polyplex could efficiently and selectively transfer plasmid shRNA to MUC1 positive cells.
Collapse
|
22
|
Efficient RNA delivery by integrin-targeted glutathione responsive polyethyleneimine capped gold nanorods. Acta Biomater 2015; 23:136-146. [PMID: 26026304 DOI: 10.1016/j.actbio.2015.05.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/29/2015] [Accepted: 05/22/2015] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) mediated gene silencing holds significant promises in gene therapy. A major obstacle to efficient RNAi is the systemic delivery of the therapeutic RNAs into the cytoplasmon without being trapped in intracellular endo-/lyso-somes. Herein we report the development of a PEGylated, RGD peptide modified, and disulfide cross-linked short polyethylenimines (DSPEIs) functionalized gold nanorod (RDG) for targeted small hairpin (sh)RNA delivery. The RDG effectively condensed shRNAs into stable nanoparticles, allowing for highly specific targeting of model human brain cancer cells (U-87 MG-GFP) via the αvβ3 integrins-mediated endocytosis. The combined effects of endosomal escape (via the proton-sponge effect of the PEIs) and efficient cleavage of the disulfide-cross-linked DSPEIs by the high intracellular glutathione content triggered rapid cytoplasma shRNAs release resulting in excellent RNAi efficiency and low cytotoxicity. Furthermore, the high stability and prolonged blood circulation afforded by PEGylation allowed for highly effective, targeted tumor accumulation and internalization of the carriers, resulting in outstanding intra-tumor gene silencing efficiency in U-87 MG-GFP tumor bearing BALB/c mice. Combining the capabilities of both passive and active targeting, intracellular glutathione-triggered "off-on" release and endosomal escape, the RDG nanocarrier developed herein appears to be a highly promising non-viral vector for efficient RNAi.
Collapse
|
23
|
Jones CH, Chen M, Gollakota A, Ravikrishnan A, Zhang G, Lin S, Tan M, Cheng C, Lin H, Pfeifer BA. Structure-Function Assessment of Mannosylated Poly(β-amino esters) upon Targeted Antigen Presenting Cell Gene Delivery. Biomacromolecules 2015; 16:1534-41. [PMID: 25848953 PMCID: PMC9898688 DOI: 10.1021/acs.biomac.5b00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antigen presenting cell (APC) gene delivery is a promising avenue for modulating immunological outcomes toward a desired state. Recently, our group developed a delivery methodology to elicit targeted and elevated levels of APC-mediated gene delivery. During these initial studies, we observed APC-specific structure-function relationships with the vectors used during gene delivery that differ from current non-APC cell lines, thus, emphasizing a need to re-evaluate vector-associated parameters in the context of APC gene transfer. Thus, we describe the synthesis and characterization of a second-generation mannosylated poly(β-amino ester) library stratified by molecular weight. To better understand the APC-specific structure-function relationships governing polymeric gene delivery, the library was systematically characterized by (1) polymer molecular weight, (2) relative mannose content, (3) polyplex biophysical properties, and (4) gene delivery efficacy. In this library, polymers with the lowest molecular weight and highest relative mannose content possessed gene delivery transfection efficiencies as good as or better than commercial controls. Among this group, the most effective polymers formed the smallest polymer-plasmid DNA complexes (∼300 nm) with moderate charge densities (<10 mV). This convergence in polymer structure and polyplex biophysical properties suggests a unique mode of action and provides a framework within which future APC-targeting polymers can be designed.
Collapse
|
24
|
Song Y, Zhang T, Song X, Zhang L, Zhang C, Xing J, Liang XJ. Polycations with excellent gene transfection ability based on PVP-g-PDMAEMA with random coil and micelle structures as non-viral gene vectors. J Mater Chem B 2015; 3:911-918. [DOI: 10.1039/c4tb01754d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PVP-g-PDMAEMA formed random coils in water and PVP-g-PDMAEMA-b-PMMA self-assembled into spherical core–shell micelles. Both displayed excellent pDNA compacting abilities at an extremely low N/P ratio, with PVP-g-PDMAEMA-b-PMMA also showing excellent gear transfection efficiency.
Collapse
Affiliation(s)
- Yuhua Song
- Department of Polymer Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Tingbin Zhang
- Department of Polymer Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Xiaoyan Song
- College of Material Science and Engineering
- Tianjin Polytechnic University
- Tianjin
- China
| | - Ling Zhang
- Department of Polymer Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Chunqiu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology of China
- Beijing
- China
| | - Jinfeng Xing
- Department of Polymer Science and Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology of China
- Beijing
- China
| |
Collapse
|
25
|
Efficient, dual-stimuli responsive cytosolic gene delivery using a RGD modified disulfide-linked polyethylenimine functionalized gold nanorod. J Control Release 2014; 196:37-51. [DOI: 10.1016/j.jconrel.2014.09.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 12/16/2022]
|
26
|
Bian J, Hao Y, He J, Zhang W, Zhang M, Ni P. Synthesis and characterization of a biodegradable ABC triblock terpolymer as co-delivery carrier of doxorubicin and DNA. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiao Bian
- College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University; Suzhou 215123 People's Republic of China
| | - Ying Hao
- College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University; Suzhou 215123 People's Republic of China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University; Suzhou 215123 People's Republic of China
| | - Wenling Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University; Suzhou 215123 People's Republic of China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University; Suzhou 215123 People's Republic of China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University; Suzhou 215123 People's Republic of China
| |
Collapse
|
27
|
Li J, Oupický D. Effect of biodegradability on CXCR4 antagonism, transfection efficacy and antimetastatic activity of polymeric Plerixafor. Biomaterials 2014; 35:5572-9. [PMID: 24726746 DOI: 10.1016/j.biomaterials.2014.03.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/18/2014] [Indexed: 02/02/2023]
Abstract
Chemokine receptor CXCR4 and its sole ligand SDF-1 are key players in regulating cancer cell invasion and metastasis. Plerixafor (AMD3100) is a small-molecule CXCR4 antagonist that prevents binding of SDF-1 to CXCR4 and has potential in prevention of cancer metastasis. This study investigates the influence of biodegradability of a recently reported polymeric Plerixafor (PAMD) on CXCR4 antagonism, antimetastatic activity, and transfection efficacy of PAMD polyplexes with plasmid DNA. We show that PAMD exhibits CXCR4 antagonism and inhibition of cancer cell invasion in vitro regardless of its biodegradability. Biodegradable PAMD showed considerably enhanced transfection efficiency and decreased cytotoxicity when compared with the non-degradable PAMD. Despite similar CXCR4 antagonism in vitro, only biodegradable PAMD displayed antimetastatic activity in experimental lung metastasis model in vivo.
Collapse
Affiliation(s)
- Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
28
|
Shen J, Sun H, Meng Q, Yin Q, Zhang Z, Yu H, Li Y. Simultaneous inhibition of tumor growth and angiogenesis for resistant hepatocellular carcinoma by co-delivery of sorafenib and survivin small hairpin RNA. Mol Pharm 2014; 11:3342-51. [PMID: 24495194 DOI: 10.1021/mp4006408] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of multidrug resistance (MDR) in human hepatocellular carcinoma (HCC) is one of the major obstacles for successful chemotherapy of HCC. Co-delivery of sorafenib (SF) and survivin shRNA (shSur) was postulated to achieve synergistic effects in reversing MDR, suppressing tumor growth and angiogenesis. For this purpose, in this work, SF and shSur co-loaded pluronic P85-polyethyleneimine/d-α-tocopheryl polyethylene glycol 1000 succinate nanocomplexes (SSNs) were first designed and developed for the treatment of drug resistant HCC. The experimental results showed that SSNs could achieve effective cellular internalization and shSur transfection efficiency, induce significant downregulation of the survivin protein, and cause remarkable cell arrest and cell apoptosis. The tube formulation assay demonstrated that SSNs completely disrupted the enclosed capillary networks formed by human microvascular endothelial cells. The in vivo antitumor efficacy showed that SSNs were superior to that of other treatments on drug resistant hepatocellular tumor models. Therefore, it could be an efficient strategy to co-deliver SF and shSur for therapy of drug resistant HCC.
Collapse
Affiliation(s)
- Jianan Shen
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Devulapally R, Paulmurugan R. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:40-60. [PMID: 23996830 PMCID: PMC3865230 DOI: 10.1002/wnan.1242] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
Abstract
Advances in nanotechnology have provided powerful and efficient tools in the development of cancer diagnosis and therapy. There are numerous nanocarriers that are currently approved for clinical use in cancer therapy. In recent years, biodegradable polymer nanoparticles have attracted a considerable attention for their ability to function as a possible carrier for target-specific delivery of various drugs, genes, proteins, peptides, vaccines, and other biomolecules in humans without much toxicity. This review will specifically focus on the recent advances in polymer-based nanocarriers for various drugs and small silencing RNA's loading and delivery to treat different types of cancer.
Collapse
Affiliation(s)
- Rammohan Devulapally
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94304, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94304, USA
| |
Collapse
|
30
|
Kozielski KL, Tzeng SY, Green JJ. A bioreducible linear poly(β-amino ester) for siRNA delivery. Chem Commun (Camb) 2013; 49:5319-21. [PMID: 23646347 DOI: 10.1039/c3cc40718g] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Described here is the synthesis and characterization of a novel, bioreducible linear poly(β-amino ester) designed to condense siRNA into nanoparticles and efficiently release it upon entering the cytoplasm. Delivery of siRNA using this polymer achieved near-complete knockdown of a fluorescent marker gene in primary human glioblastoma cells with no cytotoxicity.
Collapse
Affiliation(s)
- Kristen L Kozielski
- Department of Biomedical Engineering, the Institute for Nanobiotechnology, and the Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, 400 N. Broadway/Smith Building Room 5017, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
31
|
Shen J, Meng Q, Sui H, Yin Q, Zhang Z, Yu H, Li Y. iRGD conjugated TPGS mediates codelivery of paclitaxel and survivin shRNA for the reversal of lung cancer resistance. Mol Pharm 2013; 11:2579-91. [PMID: 24236909 DOI: 10.1021/mp400576f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multidrug resistance (MDR) is one of the major obstacles in tumor treatment. Herein, we reported an active targeting strategy with peptide-mediated nanoparticles deep into tumor parenchyma, which iRGD conjugated d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) mediated codelivery of paclitaxel (PTX) and survivin shRNA (shSur) for the reversal of lung cancer resistance. Pluronic P85-polyethyleneimine/TPGS complex nanoparticles incorporated with iRGD-TPGS conjugate codelivering PTX and shSur systems (iPTPNs) could induce effective cellular uptake, RNAi effects, and cytotoxicity on A549 and A549/T cells. In particular, iPTPNs showed superiority in biodistribution, survivin expression, tumor apoptosis, and antitumor efficacy by simultaneously exerting an enhanced permeability and retention (EPR) effect and iRGD mediated active targeting effects. iPTPNs significantly enhanced the accumulation of PTX and shSur, down-regulated survivin expression, and induced cell apoptosis in tumor tissue. The in vivo antitumor efficacy showed the tumor volume of iPTPNs group (10 mg/kg) was only 12.7% of the Taxol group. Therefore, the iRGD mediated PTX and shSur codelivery system could be a very powerful approach for the reversal and therapy of lung cancer resistance.
Collapse
Affiliation(s)
- Jianan Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Meng Q, Yin Q, Li Y. Nanocarriers for siRNA delivery to overcome cancer multidrug resistance. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-6030-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Xiao J, Duan X, Yin Q, Miao Z, Yu H, Chen C, Zhang Z, Wang J, Li Y. The inhibition of metastasis and growth of breast cancer by blocking the NF-κB signaling pathway using bioreducible PEI-based/p65 shRNA complex nanoparticles. Biomaterials 2013; 34:5381-90. [PMID: 23591394 DOI: 10.1016/j.biomaterials.2013.03.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/27/2013] [Indexed: 12/22/2022]
Abstract
Metastasis is one of the greatest challenges in cancer treatment. In this study, a bioreducible polymer, Tween 85-s-s-polyethyleneimine 2K (TSP), was synthesized and used as a non-viral gene vector for p65 shRNA to block NF-κB signaling pathway, thereby inhibiting the growth and metastasis of breast cancer. The TSP/p65 shRNA complex nanoparticles (TSNs) could significantly down-regulate p65 expression in breast cancer cells due to the rapid degradation of TSP with prompt shRNA release, and consequently not only inhibit cell proliferation and invasion, but also induce cell apoptosis and disrupt the tube formation. Most importantly, TSNs showed high accumulation in tumor and almost completely inhibited the growth and metastasis of the breast cancer xenograft in nude mice induced by MDA-MB-435 cells. All these results indicated the promising of TSP as a non-viral gene vector to knock down p65 expression and inhibit the growth and metastasis of breast cancer.
Collapse
Affiliation(s)
- Jisheng Xiao
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Shen J, Sun H, Xu P, Yin Q, Zhang Z, Wang S, Yu H, Li Y. Simultaneous inhibition of metastasis and growth of breast cancer by co-delivery of twist shRNA and paclitaxel using pluronic P85-PEI/TPGS complex nanoparticles. Biomaterials 2013; 34:1581-90. [DOI: 10.1016/j.biomaterials.2012.10.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/23/2012] [Indexed: 12/21/2022]
|
35
|
Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials 2012; 33:8613-24. [DOI: 10.1016/j.biomaterials.2012.08.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 08/01/2012] [Indexed: 12/13/2022]
|
36
|
Duan X, Xiao J, Yin Q, Zhang Z, Mao S, Li Y. Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride) with low molecular weight polyethylenimine for efficient gene delivery. Int J Nanomedicine 2012; 7:4961-72. [PMID: 23028224 PMCID: PMC3446863 DOI: 10.2147/ijn.s32069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background and methods A new amphiphilic comb-shaped copolymer (SP) was synthesized by conjugating poly(styrene-co-maleic anhydride) with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclear magnetic resonance, and gel permeation chromatography were used to characterize the graft copolymer. Results The buffering capability of SP was similar to that of polyethyleneimine within the endosomal pH range. The copolymer could condense DNA effectively to form complexes with a positive charge (13–30 mV) and a small particle size (130–200 nm) at N/P ratios between 5 and 20, and protect DNA from degradation by DNase I. In addition, SP showed much lower cytotoxicity than polyethyleneimine 25,000. Importantly, the gene transfection activity and cellular uptake of SP-DNA complexes were all markedly higher than that of complexes of polyethyleneimine 25,000 and DNA in MCF-7 and MCF-7/ADR cell lines. Conclusion This work highlights the promise of SP as a safe and efficient synthetic vector for DNA delivery.
Collapse
Affiliation(s)
- Xiaopin Duan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
37
|
Yin Q, Shen J, Chen L, Zhang Z, Gu W, Li Y. Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly(β-amino esters). Biomaterials 2012; 33:6495-506. [DOI: 10.1016/j.biomaterials.2012.05.039] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/17/2012] [Indexed: 01/01/2023]
|
38
|
Zhang Y, Satterlee A, Huang L. In vivo gene delivery by nonviral vectors: overcoming hurdles? Mol Ther 2012; 20:1298-304. [PMID: 22525514 DOI: 10.1038/mt.2012.79] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The promise of cancer gene therapeutics is hampered by difficulties in the in vivo delivery to the targeted tumor cells, and systemic delivery remains to be the biggest challenge to be overcome. Here, we concentrate on systemic in vivo gene delivery for cancer therapy using nonviral vectors. In this review, we summarize the existing delivery barriers together with the requirements and strategies to overcome these problems. We will also introduce the current progress in the design of nonviral vectors, and briefly discuss their safety issues.
Collapse
Affiliation(s)
- Yuan Zhang
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7571, USA
| | | | | |
Collapse
|
39
|
|