1
|
Soleymani H, Ghorbani M, Sedghi M, Allahverdi A, Naderi-Manesh H. Microfluidics single-cell encapsulation reveals that poly-l-lysine-mediated stem cell adhesion to alginate microgels is crucial for cell-cell crosstalk and its self-renewal. Int J Biol Macromol 2024; 274:133418. [PMID: 38936577 DOI: 10.1016/j.ijbiomac.2024.133418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/08/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
Microfluidic cell encapsulation has provided a platform for studying the behavior of individual cells and has become a turning point in single-cell analysis during the last decade. The engineered microenvironment, along with protecting the immune response, has led to increasingly presenting the results of practical and pre-clinical studies with the goals of disease treatment, tissue engineering, intelligent control of stem cell differentiation, and regenerative medicine. However, the significance of cell-substrate interaction versus cell-cell communications in the microgel is still unclear. In this study, monodisperse alginate microgels were generated using a flow-focusing microfluidic device to determine how the cell microenvironment can control human bone marrow-derived mesenchymal stem cells (hBMSCs) viability, proliferation, and biomechanical features in single-cell droplets versus multi-cell droplets. Collected results show insufficient cell proliferation (234 % and 329 %) in both single- and multi-cell alginate microgels. Alginate hydrogels supplemented with poly-l-lysine (PLL) showed a better proliferation rate (514 % and 780 %) in a comparison of free alginate hydrogels. Cell stiffness data illustrate that hBMSCs cultured in alginate hydrogels have higher membrane flexibility and migration potency (Young's modulus equal to 1.06 kPa), whereas PLL introduces more binding sites for cell attachment and causes lower flexibility and migration potency (Young's modulus equal to 1.83 kPa). Considering that cell adhesion is the most important parameter in tissue engineering, in which cells do not run away from a 3D substrate, PLL enhances cell stiffness and guarantees cell attachments. In conclusion, cell attachment to PLL-mediated alginate hydrogels is crucial for cell viability and proliferation. It suggests that cell-cell signaling is good enough for stem cell viability, but cell-PLL attachment alongside cell-cell signaling is crucial for stem cell proliferation and self-renewal.
Collapse
Affiliation(s)
- Hossein Soleymani
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154 Tehran, Iran.
| | - Mohammad Ghorbani
- Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Mosslim Sedghi
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Abdollah Allahverdi
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154 Tehran, Iran.
| | - Hossein Naderi-Manesh
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154 Tehran, Iran; Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran.
| |
Collapse
|
2
|
Derakhshankhah H, Sajadimajd S, Jahanshahi F, Samsonchi Z, Karimi H, Hajizadeh-Saffar E, Jafari S, Razmi M, Sadegh Malvajerd S, Bahrami G, Razavi M, Izadi Z. Immunoengineering Biomaterials in Cell-Based Therapy for Type 1 Diabetes. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1053-1066. [PMID: 34696626 DOI: 10.1089/ten.teb.2021.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes (T1D) is caused by low insulin production and chronic hyperglycemia due to the destruction of pancreatic β-cells. Cell transplantation is an attractive alternative approach compared to insulin injection. However, cell therapy has been limited by major challenges including life-long requirements for immunosuppressive drugs in order to prevent host immune responses. Encapsulation of the transplanted cells can solve the problem of immune rejection, by providing a physical barrier between the transplanted cells and the recipient's immune cells. Despite current disputes in cell encapsulation approaches, thanks to recent advances in the fields of biomaterials and transplantation immunology, extensive effort has been dedicated to immunoengineering strategies in combination with encapsulation technologies to overcome the problem of the host's immune responses. The current review summarizes the most commonly used encapsulation and immunoengineering strategies combined with cell therapy which has been applied as a novel approach to improve cell replacement therapies for the management of T1D. Recent advances in the fields of biomaterial design, nanotechnology, as well as deeper knowledge about immune modulation had significantly improved cell encapsulation strategies. However, further progress requires the combined application of novel immunoengineering approaches and islet/ß-cell transplantation.
Collapse
Affiliation(s)
- Hossein Derakhshankhah
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | | | - Fatemeh Jahanshahi
- Iran University of Medical Sciences, 440827, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Zakieh Samsonchi
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Hassan Karimi
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Ensiyeh Hajizadeh-Saffar
- Royan Institute for Stem Cell Biology and Technology, 534061, Tehran, Iran (the Islamic Republic of);
| | - Samira Jafari
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | - Mahdieh Razmi
- University of Tehran Institute of Biochemistry and Biophysics, 441284, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Soroor Sadegh Malvajerd
- Tehran University of Medical Sciences, 48439, Tehran, Tehran, Iran (the Islamic Republic of);
| | - Gholamreza Bahrami
- Kermanshah University of Medical Sciences, 48464, Kermanshah, Kermanshah, Iran (the Islamic Republic of);
| | - Mehdi Razavi
- University of Central Florida, 6243, Orlando, Florida, United States;
| | - Zhila Izadi
- Kermanshah University of Medical Sciences, 48464, Kermanshah,Iran, Kermanshah, Iran (the Islamic Republic of), 6715847141;
| |
Collapse
|
3
|
Wang YL, Hu JJ. Sub-100-micron calcium-alginate microspheres: Preparation by nitrogen flow focusing, dependence of spherical shape on gas streams and a drug carrier using acetaminophen as a model drug. Carbohydr Polym 2021; 269:118262. [PMID: 34294295 DOI: 10.1016/j.carbpol.2021.118262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022]
Abstract
We developed a miniature gas-liquid coaxial flow device using glass capillaries, aiming to produce sub-100-μm Ca-alginate microspheres. Depending on collecting distance and the flow rates of nitrogen gas and alginate solution, however, Ca-alginate microparticles of different shapes were obtained. Spherical, monodisperse microparticles (microspheres) could only be obtained at certain gas flow rates and within a corresponding range of collecting distance. The result suggests that, for particles of this size, the gas flow rate and collecting distance are crucial for the formation of the spherical shape. We evaluated, as an example of its applications, the microsphere as a drug carrier using acetaminophen as a model drug. Large (~150 μm) and small (~70 μm) drug-loaded microspheres were prepared using two respective devices. Specifically, the drug-loaded microspheres were complexed with chitosan of different molecular weights. The dependence of in vitro drug release on the microsphere size and the chitosan molecular weight was examined. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Alginic acid sodium salt (PubChem CID: 5102882); Chitosan (PubChem CID: 71853); Calcium chloride (PubChem CID: 5284359); Sodium chloride (PubChem CID: 5234); Acetaminophen (PubChem CID: 1983); Polydimethylsiloxane (PubChem CID: 24771); n-Octadecyltrimethoxysilane (PubChem CID: 76486).
Collapse
Affiliation(s)
- Ying-Lin Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Jia Hu
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Orive G, Hernandez RM. Cell microencapsulation technologies for sustained drug delivery: Latest advances in efficacy and biosafety. J Control Release 2021; 335:619-636. [PMID: 34116135 DOI: 10.1016/j.jconrel.2021.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
The development of cell microencapsulation systems began several decades ago. However, today few systems have been tested in clinical trials. For this reason, in the last years, researchers have directed efforts towards trying to solve some of the key aspects that still limit efficacy and biosafety, the two major criteria that must be satisfied to reach the clinical practice. Regarding the efficacy, which is closely related to biocompatibility, substantial improvements have been made, such as the purification or chemical modification of the alginates that normally form the microspheres. Each of the components that make up the microcapsules has been carefully selected to avoid toxicities that can damage the encapsulated cells or generate an immune response leading to pericapsular fibrosis. As for the biosafety, researchers have developed biological circuits capable of actively responding to the needs of the patients to precisely and accurately release the demanded drug dose. Furthermore, the structure of the devices has been subject of study to adequately protect the encapsulated cells and prevent their spread in the body. The objective of this review is to describe the latest advances made by scientist to improve the efficacy and biosafety of cell microencapsulation systems for sustained drug delivery, also highlighting those points that still need to be optimized.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
5
|
Cinel VDP, Taketa TB, de Carvalho BG, de la Torre LG, de Mello LR, da Silva ER, Han SW. Microfluidic encapsulation of nanoparticles in alginate microgels gelled via competitive ligand exchange crosslinking. Biopolymers 2021; 112:e23432. [PMID: 33982812 DOI: 10.1002/bip.23432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023]
Abstract
Efficient delivery of nanometric vectors complexed with nanoparticles at a target tissue without spreading to other tissues is one of the main challenges in gene therapy. One means to overcome this problem is to confine such vectors within microgels that can be placed in a target tissue to be released slowly and locally. Herein, a conventional optical microscope coupled to a common smartphone was employed to monitor the microfluidic production of monodisperse alginate microgels containing nanoparticles as a model for the encapsulation of vectors. Alginate microgels (1.2%) exhibited an average diameter of 125 ± 3 μm, which decreased to 106 ± 5 μm after encapsulating 30 nm fluorescent nanoparticles. The encapsulation efficiency was 70.9 ± 18.9%. In a 0.1 M NaCl solution, 55 ± 5% and 92 ± 4.7% of nanoparticles were released in 30 minutes and 48 hours, respectively. Microgel topography assessment by atomic force microscopy revealed that incorporation of nanoparticles into the alginate matrix changes the scaffold's interfacial morphology and induces crystallization with the appearance of oriented domains. The high encapsulation rate of nanoparticles, alongside their continuous release of nanoparticles over time, makes these microgels and the production unit a valuable system for vector encapsulation for gene therapy research.
Collapse
Affiliation(s)
| | - Thiago Bezerra Taketa
- Department of Bioprocess and Materials Engineering, University of Campinas, Campinas, Brazil
| | | | | | | | | | - Sang Won Han
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Lyu Q, Peng L, Hong X, Fan T, Li J, Cui Y, Zhang H, Zhao J. Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials 2021; 270:120682. [PMID: 33529961 DOI: 10.1016/j.biomaterials.2021.120682] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Smart nano-micro platforms have been extensively applied for diverse biomedical applications, mostly focusing on cancer therapy. In comparison with conventional nanotechnology, the smart nano-micro matrix can exhibit specific response to exogenous or endogenous triggers, and thus can achieve multiple functions e.g. site-specific drug delivery, bio-imaging and detection of bio-molecules. These intriguing techniques have expanded into ophthalmology in recent years, yet few works have been summarized in this field. In this work, we provide the state-of-the-art of diverse nano-micro platforms based on both the conventional materials (e.g. natural or synthetic polymers, lipid nanomaterials, metal and metal oxide nanoparticles) and emerging nanomaterials (e.g. up-conversion nanoparticles, quantum dots and carbon materials) in ophthalmology, with some smart nano/micro platformers highlighted. The common ocular diseases studied in the field of nano-micro systems are firstly introduced, and their therapeutic method and the related drawback in clinic treatment are presented. The recent progress of different materials for diverse ocular applications is then demonstrated, with the representative nano- and micro-systems highlighted in detail. At last, an in-depth discussion on the clinical translation challenges faced in this field and the future direction are provided. This review would allow the researchers to design more smart nanomedicines in a more rational manner for specific ophthalmology applications.
Collapse
Affiliation(s)
- Qinghua Lyu
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ling Peng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Jingying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Zhao
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China.
| |
Collapse
|
7
|
Hajifathaliha F, Mahboubi A, Bolourchian N, Mohit E, Nematollahi L. Multilayer Alginate Microcapsules For Live Cell Microencapsulation; Is There Any Preference For Selecting Cationic Polymers? IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:173-182. [PMID: 34567154 PMCID: PMC8457712 DOI: 10.22037/ijpr.2020.114096.14660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since 1980 after introducing the concept of live cell encapsulation by Lim et al., this technology has received enormous attention. Several studies have been conducted to improve this technique; different polymers, either natural or synthetic, have been used as microcapsules` making materials and different substances as coating layers. Literature review leads us to the conclusion that alginate (Alg) multilayer microcapsules and, in particular, alginate-poly l-lysine (PLL)-alginate (APA) are the most used structures for live cell encapsulation. Although, disadvantages of PLL (e.g., weak mechanical strength and low biocompatibility) made researchers work on other cationic polymers to find an alternative. This review aims to discuss more popularly suggested cationic polymers such as poly l-ornithine (PLO), chitosan, etc. As alternatives for PLL and, more importantly, we want to take a closer look to see which one of these systems are closer to clinical applications.
Collapse
Affiliation(s)
- Fariba Hajifathaliha
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Mahboubi
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Noushin Bolourchian
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Hariyadi DM, Islam N. Current Status of Alginate in Drug Delivery. Adv Pharmacol Pharm Sci 2020; 2020:8886095. [PMID: 32832902 PMCID: PMC7428837 DOI: 10.1155/2020/8886095] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Alginate is one of the natural polymers that are often used in drug- and protein-delivery systems. The use of alginate can provide several advantages including ease of preparation, biocompatibility, biodegradability, and nontoxicity. It can be applied to various routes of drug administration including targeted or localized drug-delivery systems. The development of alginates as a selected polymer in various delivery systems can be adjusted depending on the challenges that must be overcome by drug or proteins or the system itself. The increased effectiveness and safety of sodium alginate in the drug- or protein-delivery system are evidenced by changing the physicochemical characteristics of the drug or proteins. In this review, various routes of alginate-based drug or protein delivery, the effectivity of alginate in the stem cells, and cell encapsulation have been discussed. The recent advances in the in vivo alginate-based drug-delivery systems as well as their toxicities have also been reviewed.
Collapse
Affiliation(s)
- Dewi Melani Hariyadi
- Pharmaceutics Department, Faculty of Pharmacy, Airlangga University, Nanizar Zaman Joenoes Building, Jl. Mulyorejo Campus C, Surabaya 60115, Indonesia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Santos-Vizcaino E, Orive G, Pedraz JL, Hernandez RM. Clinical Applications of Cell Encapsulation Technology. Methods Mol Biol 2020; 2100:473-491. [PMID: 31939144 DOI: 10.1007/978-1-0716-0215-7_32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell encapsulation comprises immunoisolation three-dimensional systems for housing therapeutic cells that secrete bioactive compounds de novo and in a sustained manner. This allows transplantation of multiple allo- or xenogeneic cells without the aid of immunosuppressant drugs. Recent advances in the field have provided improvements to these cell-based drug delivery systems, which have gained the attention of the scientific community and inspired many biotechnological companies to develop their own product candidates. From micro- to macroencapsulation devices, this chapter describes some of the most important approaches that are being currently tested in late-stage clinical trials and are likely to reach the market as future game changers. Most studies involve the treatment of diabetes, eye disorders, and diseases of the central nervous system. However, many other pathologies are also amenable to benefit from this technology. Latest advances to overcome major pending challenges related to biosafety and efficacy are also discussed.
Collapse
Affiliation(s)
- Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain.,BTI Biotechnology Institute, Vitoria, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain. .,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
10
|
Orive G, Santos-Vizcaino E, Pedraz JL, Hernandez RM, Vela Ramirez JE, Dolatshahi-Pirouz A, Khademhosseini A, Peppas NA, Emerich DF. 3D cell-laden polymers to release bioactive products in the eye. Prog Retin Eye Res 2019; 68:67-82. [PMID: 30342088 DOI: 10.1016/j.preteyeres.2018.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022]
|
11
|
Smith KE, Johnson RC, Papas KK. Update on cellular encapsulation. Xenotransplantation 2018; 25:e12399. [DOI: 10.1111/xen.12399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Kate E. Smith
- Department of Physiological Sciences; University of Arizona; Tucson AZ USA
- Department of Surgery; University of Arizona; Tucson AZ USA
| | | | | |
Collapse
|
12
|
Gonzalez-Pujana A, Santos E, Orive G, Pedraz JL, Hernandez RM. Cell microencapsulation technology: Current vision of its therapeutic potential through the administration routes. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Ramos PE, Cerqueira MA, Teixeira JA, Vicente AA. Physiological protection of probiotic microcapsules by coatings. Crit Rev Food Sci Nutr 2017; 58:1864-1877. [DOI: 10.1080/10408398.2017.1289148] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Philippe E. Ramos
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, Braga Portugal
| | - José A. Teixeira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - António A. Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
14
|
Zanjani MAK, Ehsani MR, Ghiassi Tarzi B, Sharifan A. PromotingLactobacillus caseiandBifidobacterium adolescentissurvival by microencapsulation with different starches and chitosan and poly L-lysine coatings in ice cream. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13318] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Mohammad Reza Ehsani
- Department of Food Science and Technology; Science and Research Branch, Islamic Azad University; Tehran Iran
| | - Babak Ghiassi Tarzi
- Department of Food Science and Technology; Science and Research Branch, Islamic Azad University; Tehran Iran
| | - Anousheh Sharifan
- Department of Food Science and Technology; Science and Research Branch, Islamic Azad University; Tehran Iran
| |
Collapse
|
15
|
Saenz del Burgo L, Ciriza J, Acarregui A, Gurruchaga H, Blanco FJ, Orive G, Hernández RM, Pedraz JL. Hybrid Alginate–Protein-Coated Graphene Oxide Microcapsules Enhance the Functionality of Erythropoietin Secreting C2C12 Myoblasts. Mol Pharm 2017; 14:885-898. [DOI: 10.1021/acs.molpharmaceut.6b01078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Laura Saenz del Burgo
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jesús Ciriza
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Argia Acarregui
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Haritz Gurruchaga
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Francisco Javier Blanco
- INIBIC-Hospital Universitario La Coruña, 15006, La Coruña, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), La
Coruña, Spain
| | - Gorka Orive
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa María Hernández
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group,
Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| |
Collapse
|
16
|
Wong FSY, Tsang KK, Lo ACY. Delivery of therapeutics to posterior eye segment: cell-encapsulating systems. Neural Regen Res 2017; 12:576-577. [PMID: 28553333 PMCID: PMC5436351 DOI: 10.4103/1673-5374.205093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Francisca S Y Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ken K Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
17
|
Wong FSY, Wong CCH, Chan BP, Lo ACY. Sustained Delivery of Bioactive GDNF from Collagen and Alginate-Based Cell-Encapsulating Gel Promoted Photoreceptor Survival in an Inherited Retinal Degeneration Model. PLoS One 2016; 11:e0159342. [PMID: 27441692 PMCID: PMC4956057 DOI: 10.1371/journal.pone.0159342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/30/2016] [Indexed: 11/29/2022] Open
Abstract
Encapsulated-cell therapy (ECT) is an attractive approach for continuously delivering freshly synthesized therapeutics to treat sight-threatening posterior eye diseases, circumventing repeated invasive intravitreal injections and improving local drug availability clinically. Composite collagen-alginate (CAC) scaffold contains an interpenetrating network that integrates the physical and biological merits of its constituents, including biocompatibility, mild gelling properties and availability. However, CAC ECT properties and performance in the eye are not well-understood. Previously, we reported a cultured 3D CAC system that supported the growth of GDNF-secreting HEK293 cells with sustainable GDNF delivery. Here, the system was further developed into an intravitreally injectable gel with 1x104 or 2x105 cells encapsulated in 2mg/ml type I collagen and 1% alginate. Gels with lower alginate concentration yielded higher initial cell viability but faster spheroid formation while increasing initial cell density encouraged cell growth. Continuous GDNF delivery was detected in culture and in healthy rat eyes for at least 14 days. The gels were well-tolerated with no host tissue attachment and contained living cell colonies. Most importantly, gel-implanted in dystrophic Royal College of Surgeons rat eyes for 28 days retained photoreceptors while those containing higher initial cell number yielded better photoreceptor survival. CAC ECT gels offers flexible system design and is a potential treatment option for posterior eye diseases.
Collapse
Affiliation(s)
- Francisca S. Y. Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Calvin C. H. Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Barbara P. Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
18
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Cell encapsulation: technical and clinical advances. Trends Pharmacol Sci 2015; 36:537-46. [DOI: 10.1016/j.tips.2015.05.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/18/2023]
|
20
|
Gañán-Calvo A, Castro-Hernández E, Flores-Mosquera M, Martín-Banderas L. Massive, Generic, and Controlled Microencapsulation by Flow Focusing: Some Physicochemical Aspects and New Applications. J Flow Chem 2015. [DOI: 10.1556/jfc-d-14-00022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Qian D, Bai B, Yan G, Zhang S, Liu Q, Chen Y, Tan X, Zeng Y. Construction of doxycycline-mediated BMP-2 transgene combining with APA microcapsules for bone repair. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:270-6. [PMID: 25092431 DOI: 10.3109/21691401.2014.942458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dongyang Qian
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Bo Bai
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Guangbin Yan
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Shujiang Zhang
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Qi Liu
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Yi Chen
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Xiaobo Tan
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Yanjun Zeng
- b Biomechanics & Medical Information Institute, Beijing University of Technology , Beijing , P. R. China
| |
Collapse
|
22
|
Attia N, Santos E, Abdelmouty H, Arafa S, Zohdy N, Hernández RM, Orive G, Pedraz JL. Behaviour and ultrastructure of human bone marrow-derived mesenchymal stem cells immobilised in alginate-poly-l-lysine-alginate microcapsules. J Microencapsul 2014; 31:579-89. [PMID: 24766209 DOI: 10.3109/02652048.2014.898706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT Human bone marrow mesenchymal stem cells (hBM-MSCs) show a great promise for the treatment of a variety of diseases. Despite the previous trials to encapsulate hBM-MSCs in alginate-poly-l-lysine-alginate (APA) systems, the various changes that follow immobilisation have not been ascertained yet. OBJECTIVE Determine the various consequences derived from entrapment on cell behaviour, putting special emphasis on the ultrastructure. METHODS hBM-MSCs were immobilised in APA microcapsules to further characterise their viability, metabolic activity, proliferation, VEGF-secretability, and morphology. RESULTS The VEGF produced by monolayer hBM-MSCs increased significantly 1 d post-encapsulation, and was maintained for at least 4 weeks. TEM imaging of cells revealed well preserved ultrastructure indicating protein synthesis and high metabolic activity. CONCLUSION Although APA microencapsulation did not support 100% of fully viable hBM-MSCs for long-term cultures, it was conceived to enhance both VEGF secretion and metabolic activity while not losing their stemness characteristics.
Collapse
Affiliation(s)
- Noha Attia
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University , Alexandria , Egypt
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Orive G, Santos E, Pedraz J, Hernández R. Application of cell encapsulation for controlled delivery of biological therapeutics. Adv Drug Deliv Rev 2014; 67-68:3-14. [PMID: 23886766 DOI: 10.1016/j.addr.2013.07.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/26/2013] [Accepted: 07/12/2013] [Indexed: 01/12/2023]
Abstract
Cell microencapsulation technology is likely to have an increasingly important role in new approaches rather than the classical and pioneering organ replacement. Apart from becoming a tool for protein and morphogen release and long-term drug delivery, it is becoming a new three-dimensional platform for stem cell research. Recent progress in the field has resulted in biodegradable scaffolds that are able to retain and release the cell content in different anatomical locations. Additional advances include the use biomimetic scaffolds that provide greater control over material-cell interactions and the development of more precise encapsulated cell-tracking systems. This review summarises the state of the art of cell microencapsulation and discusses the main directions and challenges of this field towards the controlled delivery of biological therapeutics.
Collapse
|
24
|
Gañán-Calvo A, Montanero J, Martín-Banderas L, Flores-Mosquera M. Building functional materials for health care and pharmacy from microfluidic principles and Flow Focusing. Adv Drug Deliv Rev 2013; 65:1447-69. [PMID: 23954401 DOI: 10.1016/j.addr.2013.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 08/02/2013] [Accepted: 08/02/2013] [Indexed: 12/11/2022]
Abstract
In this review, we aim at establishing a relationship between the fundamentals of the microfluidics technologies used in the Pharmacy field, and the achievements accomplished by those technologies. We describe the main methods for manufacturing micrometer drops, bubbles, and capsules, as well as the corresponding underlying physical mechanisms. In this regard, the review is intended to show non-specialist readers the dynamical processes which determine the success of microfluidics techniques. Flow focusing (FF) is a droplet-based method widely used to produce different types of fluid entities on a continuous basis by applying an extensional co-flow. We take this technique as an example to illustrate how microfluidics technologies for drug delivery are progressing from a deep understanding of the physics of fluids involved. Specifically, we describe the limitations of FF, and review novel methods which enhance its stability and robustness. In the last part of this paper, we review some of the accomplishments of microfluidics when it comes to drug manufacturing and delivery. Special attention is paid to the production of the microencapsulated form because this fluidic structure gathers the main functionalities sought for in Pharmacy. We also show how FF has been adapted to satisfy an ample variety of pharmaceutical requirements to date.
Collapse
|
25
|
Therapeutic cell encapsulation: Ten steps towards clinical translation. J Control Release 2013; 170:1-14. [DOI: 10.1016/j.jconrel.2013.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/05/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022]
|
26
|
Abstract
Cell microencapsulation is based on the immobilization of cells for continuous release of therapeutics. This approach has been tested in the treatment of many diseases and several clinical trials have been performed. Factors such as the choice of cells to be encapsulated, the biomaterial used, and the procedure for carrying out the capsules are important issues when implementing this technology.This book chapter makes a comprehensive description of alginate, the most frequently employed biomaterial, passing by its structure, the extraction and treatment, and finishing with the process of gelation. It also describes the various modifications that can be carried out to allow the interaction between the alginate and the integrin receptors of encapsulated cells. The main microencapsulation technologies are presented as well as how 100 μm alginate-Poly-L-Lysine-alginate microcapsules can be fabricated with Flow-focusing technology.
Collapse
Affiliation(s)
- Pello Sánchez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, Vitoria-Gasteiz, Spain
| | | | | | | |
Collapse
|
27
|
Santos E, Larzabal L, Calvo A, Orive G, Pedraz JL, Hernández RM. Inactivation of encapsulated cells and their therapeutic effects by means of TGL triple-fusion reporter/biosafety gene. Biomaterials 2013; 34:1442-51. [DOI: 10.1016/j.biomaterials.2012.10.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
|
28
|
Abstract
The synergy of some promising advances in the fields of cell therapy and biomaterials together with improvements in the fabrication of more refined and tailored microcapsules for drug delivery have triggered the progress of cell encapsulation technology. Cell microencapsulation involves immobilizing the transplanted cells within a biocompatible scaffold surrounded by a membrane in attempt to isolate the cells from the host immune attack and enhance or prolong their function in vivo. This technology represents one strategy which aims to overcome the present difficulties related to local and systemic controlled release of drugs and growth factors as well as to organ graft rejection and thus the requirements for use of immunomodulatory protocols or immunosuppressive drugs. This chapter gives an overview of the current situation of cell encapsulation technology as a controlled drug delivery system, and the essential requirements of the technology, some of the therapeutic applications, the challenges, and the future directions under investigation are highlighted.
Collapse
|
29
|
Gomez-Mauricio RG, Acarregui A, Sánchez-Margallo FM, Crisóstomo V, Gallo I, Hernández RM, Pedraz JL, Orive G, Martín-Cancho MF. A preliminary approach to the repair of myocardial infarction using adipose tissue-derived stem cells encapsulated in magnetic resonance-labelled alginate microspheres in a porcine model. Eur J Pharm Biopharm 2012; 84:29-39. [PMID: 23266493 DOI: 10.1016/j.ejpb.2012.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 11/16/2012] [Accepted: 11/27/2012] [Indexed: 01/18/2023]
Abstract
Adipose tissue-derived stem cells (ASCs) have properties of self-renewal, pluripotency and high proliferative capability that make them useful for the treatment of cardiac ventricular function following ischaemic injury. However, their therapeutic use is limited due to the low retention of the cells at the targeted site. To address this issue, we developed semipermeable membrane microcapsules labelled with Endorem (magnetocapsules) that provide mechanical and immunological immune protection to the cells while maintaining internal cell microenvironment. In addition, the particles allow tracking the presence and migration of injected cells in vivo by Magnetic Resonance Imaging (MRI). Results indicate that after 21 days in culture, the cells encapsulated in the magnetocapsules showed similar viabilities than cells encapsulated in conventional microcapsules. MRI confirmed a gradual loss of the intensity of the iron oxide label in the non-encapsulated Endorem labelled cells, while magnetocapsules were detected throughout the study period, suggesting that cell retention in the myocardium is improved when cells are enclosed within the magnetocapsules. To further evaluate treatment's effect on global cardiac function, MRI determination of infarct size and left ventricular ejection fraction (LVEF) was performed. In vivo results showed no statistically significant differences in heart rate and cardiac output between treatment groups. In conclusion, cells enclosed within magnetocapsules have shown suitable viability and have been detected in vivo throughout the study period. Further studies will evaluate whether increasing cell loading with the particles may help to improve the therapeutic results.
Collapse
|
30
|
Acarregui A, Murua A, Pedraz JL, Orive G, Hernández RM. A Perspective on Bioactive Cell Microencapsulation. BioDrugs 2012; 26:283-301. [DOI: 10.1007/bf03261887] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|