1
|
Lew B, Kim IY, Choi H, Kim K. Sustained exenatide delivery via intracapsular microspheres for improved survival and function of microencapsulated porcine islets. Drug Deliv Transl Res 2018; 8:857-862. [DOI: 10.1007/s13346-018-0484-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Molecular shielding of porcine islets by tissue-adhesive chitosan-catechol for enhancement of in-vitro stability. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Lee M, Kim MJ, Oh J, Piao C, Park YW, Lee DY. Gene delivery to pancreatic islets for effective transplantation in diabetic animal. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Pathak S, Regmi S, Gupta B, Poudel BK, Pham TT, Kim JR, Park PH, Yong CS, Kim JO, Bae YK, Kim SK, Jeong JH. Hybrid Congregation of Islet Single Cells and Curcumin-Loaded Polymeric Microspheres as an Interventional Strategy to Overcome Apoptosis Associated with Pancreatic Islets Transplantation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25702-25713. [PMID: 27666317 DOI: 10.1021/acsami.6b07897] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hypoxic or near-anoxic conditions that occur in the core of transplanted islets induce necrosis and apoptosis during the early stages after transplantation, primarily due to loss of vascularization during the isolation process. Moreover, secretion of various cytokines from pancreatic islets is detrimental to the viability of islet cells in vitro. In this study, we aimed to protect pancreatic islet cells against apoptosis by establishing a method for in situ delivery of curcumin to the pancreatic islets. Self-assembled heterospheroids composed of pancreatic islet cells and curcumin-loaded polymeric microspheres were prepared by the three-dimensional cell culture technique. Release of curcumin in the microenvironment of pancreatic islets promoted survival of the islets. In hypoxic culture conditions, which mimic the in vivo conditions after transplantation, viability of the islets was significantly improved, as indicated by a decreased expression of pro-apoptotic protein and an increased expression of anti-apoptotic protein. Additionally, oxidative stress-induced cell death was suppressed. Thus, unlike co-transplantation of pancreatic islets and free microspheres, which provided a wide distribution of microspheres throughout the transplanted area, the heterospheroid transplantation resulted in colocalization of pancreatic islet cells and microspheres, thereby exerting beneficial effects on the cells.
Collapse
Affiliation(s)
- Shiva Pathak
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Shobha Regmi
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Biki Gupta
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Bijay K Poudel
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology and Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University , Daegu 42415, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine , Daegu 42415, Republic of Korea
| | - Sang Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF) , Daegu 41061, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University , Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
5
|
Jeong JH, Yook S, Byun Y. Dose optimization of tacrolimus for improving survival time of PEGylated islets in a rat-to-mouse xenograft model. Macromol Res 2016. [DOI: 10.1007/s13233-016-4110-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Combination strategy of multi-layered surface camouflage using hyperbranched polyethylene glycol and immunosuppressive drugs for the prevention of immune reactions against transplanted porcine islets. Biomaterials 2016; 84:144-156. [PMID: 26828680 DOI: 10.1016/j.biomaterials.2016.01.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/31/2015] [Accepted: 01/15/2016] [Indexed: 11/22/2022]
Abstract
This study suggests a novel method of stabilizing fragile porcine islets to prevent the dissociation after isolation and reducing immune cell invasion in a combination therapy of 'surface camouflaging' and immunosuppressive drugs (FK506, Rapamycin, MR-1, anti-CD19 mAb, and Clodrosome(®)) to effectively alleviate overall immune reactions against xenotransplanted porcine islets. The surface camouflage of pancreatic islets using biocompatible materials improved stabilization of pancreatic islet and prevented the infiltration of immune cells. Firstly, the surface of porcine islets was camouflaged by SH-6-arm-PEG-lipid and gelatin-catechol (artificial extracellular matrix) in order to stabilize the fragile isolated islets. Secondly, three different PEG layers (6-arm-PEG-SH, 6-arm-PEG-catechol, and linear PEG-SH) were chemically conjugated onto the surface of the stabilized porcine islets. Both artificial extracellular matrix (artificial ECM) and PEGylation effectively covered the surface of porcine islets without increasing the size of the whole islet. In addition, the viability and functionality of the islets were not affected by this multi-layer surface modification. The multi-layer modification significantly reduced the attachment of human serum albumin, fibronectin, and immunoglobulin G in comparison to the control collagen surface. The combination effect of multi-layer PEGylation and cocktailed immunosuppressive drugs on the survival time of the transplanted islets was assessed in a xenogeneic porcine-to-mouse model. The median survival time (MST) of 'artificial ECM + PEGylation' group was 4-fold increased compared to that of control group. In addition, the MST of 'artificial ECM + PEGylation + drug' group was 2.16-fold increased, compared to the 'control + drug' group. In conclusion, we proposed a novel porcine islet transplantation protocol using surface multi-layer modification and cocktailed immunosuppressive drugs, for stabilization and immunoprotection against xenogeneic immune reactions.
Collapse
|
7
|
Improvement of beta cell function in intraportal transplantation of islet cell cluster using secretion signal peptide-linked exendin-4 gene. Macromol Res 2014. [DOI: 10.1007/s13233-014-2120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Hlavaty KA, Gibly RF, Zhang X, Rives CB, Graham JG, Lowe WL, Luo X, Shea LD. Enhancing human islet transplantation by localized release of trophic factors from PLG scaffolds. Am J Transplant 2014; 14:1523-32. [PMID: 24909237 PMCID: PMC4232190 DOI: 10.1111/ajt.12742] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 02/18/2014] [Accepted: 03/12/2014] [Indexed: 01/25/2023]
Abstract
Islet transplantation represents a potential cure for type 1 diabetes, yet the clinical approach of intrahepatic delivery is limited by the microenvironment. Microporous scaffolds enable extrahepatic transplantation, and the microenvironment can be designed to enhance islet engraftment and function. We investigated localized trophic factor delivery in a xenogeneic human islet to mouse model of islet transplantation. Double emulsion microspheres containing exendin-4 (Ex4) or insulin-like growth factor-1 (IGF-1) were incorporated into a layered scaffold design consisting of porous outer layers for islet transplantation and a center layer for sustained factor release. Protein encapsulation and release were dependent on both the polymer concentration and the identity of the protein. Proteins retained bioactivity upon release from scaffolds in vitro. A minimal human islet mass transplanted on Ex4-releasing scaffolds demonstrated significant improvement and prolongation of graft function relative to blank scaffolds carrying no protein, and the release profile significantly impacted the duration over which the graft functioned. Ex4-releasing scaffolds enabled better glycemic control in animals subjected to an intraperitoneal glucose tolerance test. Scaffolds releasing IGF-1 lowered blood glucose levels, yet the reduction was insufficient to achieve euglycemia. Ex4-delivering scaffolds provide an extrahepatic transplantation site for modulating the islet microenvironment to enhance islet function posttransplant.
Collapse
Affiliation(s)
- K. A. Hlavaty
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Department of Biomedical Engineering, Northwestern University, Evanston, IL
| | - R. F. Gibly
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Integrated Graduate Program, Northwestern University, Chicago, IL
| | - X. Zhang
- Department of Surgery, Division of Transplantation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - C. B. Rives
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - J. G. Graham
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Integrated Graduate Program, Northwestern University, Chicago, IL
| | - W. L. Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - X. Luo
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - L. D. Shea
- The Institute for BioNanotechnology in Medicine (IBNAM), Northwestern University, Chicago, IL
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL
- The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL
| |
Collapse
|
9
|
Hypoxia as a target for tissue specific gene therapy. J Control Release 2013; 172:484-94. [DOI: 10.1016/j.jconrel.2013.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/13/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
|
10
|
Park JB, Jeong JH, Lee M, Lee DY, Byun Y. Xenotransplantation of exendin-4 gene transduced pancreatic islets using multi-component (alginate, poly-L-lysine, and polyethylene glycol) microcapsules for the treatment of type 1 diabetes mellitus. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:2045-57. [DOI: 10.1080/09205063.2013.823071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jun-Beom Park
- Graduate School of Convergence Science and Technology, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, 151742, South Korea
| | - Jee-Heon Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151742, South Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 133791, South Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, 133791, South Korea
| | - Youngro Byun
- Graduate School of Convergence Science and Technology, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, 151742, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151742, South Korea
| |
Collapse
|
11
|
Park K. Functional enhancement of transplanted islets by Extendin-4. J Control Release 2012; 159:311. [DOI: 10.1016/j.jconrel.2012.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 06/04/2011] [Indexed: 10/28/2022]
|