1
|
Bose S, Dahat Y, Kumar D, Haldar S, Das SK. A membrane targeted multifunctional cationic nanoparticle conjugated fusogenic nanoemulsion (CFusoN): induced membrane depolarization and lipid solubilization to accelerate the killing of Staphylococcus aureus. MATERIALS HORIZONS 2024; 11:661-679. [PMID: 37830433 DOI: 10.1039/d3mh01102j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Bacterial infections caused by Staphylococcus aureus are one of the growing concerns for human health care management globally. Antibiotic-associated adverse effects and the emergence of bacterial resistant strains necessitate the development of an alternative yet effective approach. Nanoemulsion-based therapy has emerged as a potential therapeutic strategy to combat bacterial infestation. Herein, we designed a cationic metal nanoparticle-conjugated fusogenic nanoemulsion (CFusoN) as a lipid solubilizing nanovesicle for the effective treatment of S. aureus infection with a killing efficiency of 99.999%. The cationic nanoparticle-conjugated nanoemulsion (viz. NECNP) (24.4 ± 2.9 mV) electrostatically bound with the negatively charged bacterial cell membrane (-10.2 ± 3.7 mV) causing alteration of the bacterial surface charge. The fluorometric and flow cytometry studies confirmed the bacterial membrane depolarization and altered cell membrane permeability leading to cell death. The atomic force microscopic studies further demonstrated the damage of the cellular ultrastructure, while the transmission electron microscopic image and membrane lipid solubilization analysis depicted the solubilization of the bacterial membrane lipid bilayer along with the leakage of the intracellular contents. The cell membrane fatty acid analysis revealed that the methyl esters of palmitic acid, stearic acid and octadecadienoic acid isomers were solubilized after the treatment of S. aureus with CFusoN. The bactericidal killing efficiency of CFusoN is proposed to occur through the synergistic efficacy of the targeted attachment of CNP to the bacterial cells along with the lipid solubilization property of NE. Interestingly, NECNP didn't elicit any in vitro hemolytic activity or cytotoxicity against red blood cells (RBCs) and L929 fibroblast cells, respectively, at its bactericidal concentration. Furthermore, a porcine skin wound infection model exhibited the enhanced wound cleansing potency of CFusoN in comparison to the commercially available wound cleansers. The obtained antibacterial activity, biocompatibility and skin wound disinfection efficacy of the NECNP demonstrated the formulation of a cell targeted CFusoN as a promising translatable strategy to combat bacterial infection.
Collapse
Affiliation(s)
- Somashree Bose
- Infectious Diseases and Immunology Division, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yogita Dahat
- Organic and Medicinal Chemistry, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Deepak Kumar
- Organic and Medicinal Chemistry, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Saikat Haldar
- Agrotechnology and Rural Development Division (ARDD), CSIR-North East Institute of Science and Technology (NEIST), NH37, Pulibor, Jorhat, Assam 785006, India
| | - Sujoy K Das
- Infectious Diseases and Immunology Division, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Ahmed S, Nadeem M, Hussain I, Fatima S, Anwar S, Rizvi MA, Hassan MI, Tabish M. Preparation of nanoformulation of 5-fluorouracil to improve anticancer efficacy: integrated spectroscopic, docking, and MD simulation approaches. J Biomol Struct Dyn 2023; 42:12523-12536. [PMID: 37850451 DOI: 10.1080/07391102.2023.2270704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 10/19/2023]
Abstract
Nanoformulations (NFs) can be used as a novel drug delivery system to treat all cancer types. One of the major drawbacks of conventional anticancer drugs is that they have poor specificity and higher toxicity towards normal cells. 5-fluorouracil (5-FU) is a well-studied anticancer drug that has a significant role in various cancers, specifically colorectal cancer therapy. This study was performed to determine the functional groups, particle size, surface charge, heterogeneity, and stability of the NF. The NFs of 5-FU were prepared through the ultrasonication technique by increasing the surfactant (Tween-80) concentrations. Among all three NFs, nanoformulated 5-FU (n5-FU) showed the most effective particle size (10.72 nm) with a zeta potential of (-4.57 mV). The cytotoxicity and apoptosis profiles confirmed that n5-FU enhanced the anticancer effect of the pure drug in HCT-116 cells, as evident from MTT assay, fluorescence microscopy, and FACS analysis. In HCT-116 cells, the IC50 values of pure and n5-FU were obtained as 41.3 μM and 18.8 μM, respectively, indicating that n5-FU was more effective against the cancer cell line. The cellular uptake study was performed to check the intake of NF in cancer cells. However, the microtubule-affinity regulating kinase-4 (MARK-4), a cancer-target protein, was purified to study the inhibition and interaction studies. The inhibition assay confirmed the inhibitory potential of 5-FU against MARK-4 protein. the multi-spectroscopic, molecular docking and MD simulation studies were performed to analyse the conformational changes, binding studies, intermolecular interactions, and stability of MARK-4 protein upon binding 5-FU. This demonstrates that NF can enhance the effectiveness of anticancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Masood Nadeem
- Department of Biosciences, Jamia Milia Islamia, New Delhi, India
| | - Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| | - Saleha Anwar
- Center for Interdisciplinary Research in Basic Sciences, Jamia Milia Islamia, New Delhi, India
| | | | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Milia Islamia, New Delhi, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
3
|
Wang D, Su Y, Chen K. Fast Dynamics of Difluprednate in Micelles or Swollen-Micelles Revealed by 19F Nuclear Magnetic Resonance Spin Relaxation Rates. J Phys Chem Lett 2023; 14:4837-4841. [PMID: 37193655 DOI: 10.1021/acs.jpclett.3c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Knowledge of molecular rotational dynamics is critical to interpret solution nuclear magnetic resonance (NMR) spectroscopy. The observation of sharp solute NMR signals in micelles contradicted the surfactant viscosity effects noted in the Stokes-Einstein-Debye (SED) equation. Herein, the 19F spin relaxation rates of difluprednate (DFPN) drug dissolved in polysorbate-80 (PS-80) micelles and castor oil swollen micelles (s-micelle) were measured and adequately fit using an isotropic diffusion model based spectral density function. Despite the high viscosity of PS-80 and castor oil, the fitting results revealed fast 4 and 12 ns dynamics of DFPN in both micelle globules. The observation of the fast ns motion in the viscous surfactant/oil micelle phase demonstrated motion decoupling between solute molecules inside micelles and the micelle itself in an aqueous solution. These observations support the role of intermolecular interaction in governing the rotational dynamics of small molecules, versus the viscosity of the solvent molecules as defined in the SED equation.
Collapse
Affiliation(s)
- Deyun Wang
- Division of Liquid Based Products II, Office of Lifecycle Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
4
|
Advances of microemulsion and its applications for improved oil recovery. Adv Colloid Interface Sci 2022; 299:102527. [PMID: 34607652 DOI: 10.1016/j.cis.2021.102527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/20/2022]
Abstract
Microemulsion, because of its excellent interfacial tension reduction and solubilization properties, has wide range of applications in the petroleum industry, especially in improved oil recovery (IOR). Herein, the concept, types and formation mechanism of microemulsion were primarily introduced. Then, the preparation and characterization methods were illustrated. Additionally, several effect factors were elaborated specifically based on the composition of microemulsion. Finally, the application of microemulsion in IOR was addressed, including IOR mechanism analysis based on sweep efficiency and displacement efficiency, injection method (microemulsion flooding, in-situ microemulsion formation) and field tests. Furthermore, the current challenges and prospects of microemulsion on IOR were analyzed.
Collapse
|
5
|
Kadukkattil Ramanunny A, Singh SK, Wadhwa S, Gulati M, Kapoor B, Khursheed R, Kuppusamy G, Dua K, Dureja H, Chellappan DK, Jha NK, Gupta PK, Vishwas S. Overcoming hydrolytic degradation challenges in topical delivery: non-aqueous nano-emulsions. Expert Opin Drug Deliv 2021; 19:23-45. [PMID: 34913772 DOI: 10.1080/17425247.2022.2019218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Non-aqueous nano-emulsions (NANEs) are colloidal lipid-based dispersions with nano-sized droplets formed by mixing two immiscible phases, none of which happens to be an aqueous phase. Their ability to incorporate water and oxygen sensitive drugs without any susceptibility to degradation makes them the optimum dosage form for such candidates. In NANEs, polar liquids or polyols replace the aqueous phase while surfactants remain same as used in conventional emulsions. They are a part of the nano-emulsion family albeit with substantial difference in composition and application. AREAS COVERED The present review provides a brief insight into the strategies of loading water-sensitive drugs into NANEs. Further advancement in these anhydrous systems with the use of solid particulate surfactants in the form of Pickering emulsions is also discussed. EXPERT OPINION NANEs offer a unique platform for delivering water-sensitive drugs by loading them in anhydrous formulation. The biggest advantage of NANEs vis-à-vis the other nano-cargos is that they can also be prepared without using equipment-intensive techniques. However, the use of NANEs in drug delivery is quite limited. Looking at the small number of studies available in this direction, a need for further research in this field is required to explore this delivery system further.
Collapse
Affiliation(s)
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India.,Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (Set), Sharda University, Greater Noida, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
6
|
Elmeligy S, Hathout RM, Khalifa SA, El-Seedi HR, Farag MA. Pharmaceutical manipulation of citrus flavonoids towards improvement of its bioavailability and stability. A mini review and a meta-analysis study. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Sautina NV, Rybakova AI, Blokhin DS, Klochkov VV, Galyametdinov YG. Effect of Intermolecular Interactions in a Water/AOT/Isopropyl Myristate System on the Release of Biologically Active Substances. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Bide Y, Fashapoyeh MA, Shokrollahzadeh S. Structural investigation and application of Tween 80-choline chloride self-assemblies as osmotic agent for water desalination. Sci Rep 2021; 11:17068. [PMID: 34426591 PMCID: PMC8382744 DOI: 10.1038/s41598-021-96199-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
Forward osmosis (FO) process has been extensively considered as a potential technology that could minimize the problems of traditional water desalination processes. Finding an appropriate osmotic agent is an important concern in the FO process. For the first time, a nonionic surfactant-based draw solution was introduced using self-assemblies of Tween 80 and choline chloride. The addition of choline chloride to Tween 80 led to micelles formation with an average diameter of 11.03 nm. The 1H NMR spectra exhibited that all groups of Tween 80 were interacted with choline chloride by hydrogen bond and Van der Waals’ force. The influence of adding choline chloride to Tween 80 and the micellization on its osmotic activity was investigated. Despite the less activity of single components, the average water flux of 14.29 L m‒2 h‒1 was obtained using 0.15 M of Tween 80-choline chloride self-assembly as draw solution in the FO process with DI water feed solution. Moreover, various concentrations of NaCl aqueous solutions were examined as feed solution. This report proposed a possible preparation of nonionic surfactant-based draw solutions using choline chloride additive with enhanced osmotic activities that can establish an innovative field of study in water desalination by the FO process.
Collapse
Affiliation(s)
- Yasamin Bide
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box: 15815-3538, Tehran, Iran
| | - Marzieh Arab Fashapoyeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box: 15815-3538, Tehran, Iran
| | - Soheila Shokrollahzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box: 15815-3538, Tehran, Iran.
| |
Collapse
|
9
|
Yang H, Liang J, Lin C, Zhu Y, Yan J, Zhang W, Pang J, Yang W, Yang F, Wang L. Effect of Dihydropyridine Enrichment in the Microstructure of the Palisade Layer on the Stability of Fat Nano-emulsions. J Pharm Sci 2021; 110:3648-3658. [PMID: 34303675 DOI: 10.1016/j.xphs.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/08/2022]
Abstract
Relationship between the stability of fat nano-emulsions and the incorporated drug at the molecular level are rarely known. Herein, fat nano-emulsions containing dihydropyridine drugs were prepared and the microstructure of their palisade layers were investigated.The prepared 1.0 mg/mL nimodipine nano-emulsion was found to contain 65.50% drug in the palisade layer. The increasing drug concentration led to a decrease-increase-decrease trend in centrifugal stability constant, particle size and proton nuclear magnetic resonance (1H NMR) signal intensity of the lecithin trimethyl ammonium group in the nimodipine and felodipine nano-emulsions. The 1H NMR spectra of test solutions including nano-emulsions suggest that increasing drugs penetrated into the palisade layer, resulting in the lecithin arrangement from loose to tight, and then from monolayer to bilayer. Nimodipine and felodipine nano-emulsions showed two valley values at concentrations of 0.15 and 0.75 mg/mL, and 0.30 and 0.90 mg/mL respectively, which indicated that the nano-emulsion has two more stable states corresponding to the tightly arranged mono- and bi-palisade layer. These two concentrations are positively correlated with lipophilicity of nimodipine and felodipine. Further, nimodipine liposomes were prepared to validate the effect of drugs on the arrangement of lecithin in the palisade layer. 1H NMR characterizations of the liposomes showed a similar profile to that of nano-emulsions. These results demonstrated that the increasing drug concentration could cause a rearrangement of lecithin in the palisade layer, thus affecting emulsion stability.
Collapse
Affiliation(s)
- Haonan Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jiawei Liang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Cuicui Lin
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Yu Zhu
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jiaqi Yan
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Wenfang Zhang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Jiali Pang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China
| | - Wei Yang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Fan Yang
- The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Department of Pharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Laiyou Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China; Department of Clinical Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080,Guangdong, China.
| |
Collapse
|
10
|
Doyen C, Larquet E, Coureux PD, Frances O, Herman F, Sablé S, Burnouf JP, Sizun C, Lescop E. Nuclear Magnetic Resonance Spectroscopy: A Multifaceted Toolbox to Probe Structure, Dynamics, Interactions, and Real-Time In Situ Release Kinetics in Peptide-Liposome Formulations. Mol Pharm 2021; 18:2521-2539. [PMID: 34151567 DOI: 10.1021/acs.molpharmaceut.1c00037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Liposomal formulations represent attractive biocompatible and tunable drug delivery systems for peptide drugs. Among the tools to analyze their physicochemical properties, nuclear magnetic resonance (NMR) spectroscopy, despite being an obligatory technique to characterize molecular structure and dynamics in chemistry as well as in structural biology, yet appears to be rather sparsely used to study drug-liposome formulations. In this work, we exploited several facets of liquid-state NMR spectroscopy to characterize liposomal delivery systems for the apelin-derived K14P peptide and K14P modified by Nα-fatty acylation. Various liposome compositions and preparation modes were analyzed. Using NMR, in combination with cryo-electron microscopy and dynamic light scattering, we determined structural, dynamic, and self-association properties of these peptides in solution and probed their interactions with liposomes. Using 31P and 1H NMR, we characterized membrane fluidity and thermotropic phase transitions in empty and loaded liposomes. Based on diffusion and 1H NMR experiments, we localized and quantified peptides with respect to the interior/exterior of liposomes and changes over time and upon thermal treatments. Finally, we assessed the release kinetics of several solutes and compared various formulations. Taken together, this work shows that NMR has the potential to assist the design of peptide/liposome systems and more generally drug delivery systems.
Collapse
Affiliation(s)
- Camille Doyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France.,Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée (LPMC), Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Oriane Frances
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | | | - Serge Sablé
- Sanofi, 13 Quai Jules Guesde, 94403 Vitry sur Seine, France
| | | | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| |
Collapse
|
11
|
Ossama M, Hathout RM, Attia DA, Mortada ND. Augmented cytotoxicity using the physical adsorption of Poloxamer 188 on allicin-loaded gelatin nanoparticles. J Pharm Pharmacol 2021; 73:664-672. [PMID: 33772296 DOI: 10.1093/jpp/rgab006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The aim of this work was to study the effect of the physically adsorbed Poloxamer 188 coating polymer on the cytotoxic activity of allicin-loaded gelatin nanoparticles. METHODS The double desolvation method was utilised to prepare the nanoparticles which were characterised for particle size (PS), polydispersity index (PDI) and zeta potential and visualised using transmission electron microscopy. The coating density of the used polymer was determined using 1H-nuclear magnetic resonance (1H-NMR); 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to evaluate the cytotoxicity on HepG-2 cell lines. KEY FINDINGS The particles were spherical possessing a PS of 714 ± 25.21 nm and a PDI of 0.663 ± 0.143. These results together with the 1H-NMR results analysis confirmed the efficient coating of Poloxamer 188. The coating of particles rendered them more cytotoxic, scoring an IC50 of 6.736 µm (2-folds lower than the uncoated counter parts and 4-folds lesser than the allicin solution), and apt for cancer-targeting. Moreover, the prepared nanoparticles were stable to gamma-sterilisation and to a storage of 12 months. CONCLUSIONS Augmented cytotoxicity on HepG-2 cell lines was obtained using the physical adsorption of an abundant and relatively cheap material, Poloxamer 188, on allicin-loaded gelatin nanoparticles.
Collapse
Affiliation(s)
- Muhammed Ossama
- Department of Pharmaceutics and Industrial Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics and Industrial Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Uniting Electroceutical and Cosmeceutical Interventions in Combating Coronavirus Using Ԑ-Poly-l-Lysine. Sci Pharm 2020. [DOI: 10.3390/scipharm89010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Combating the COVID-19 pandemic warrants the exploitation of all the available tools and implies a major focus on both the biological and the physical properties of the causing virus (SARS-CoV2). We hereby introduce a new prophylaxis hypothesis by decreasing the viral load in the body entrances such as the nose and the mouth using pharmaceutical and cosmeceutical preparations that incorporate viral electrostatic repulsive nanofibers fabricated from an abundant marine-derived or a fermentation product polymer; Ԑ-poly-l-lysine was prepared using the electrospinning technique.
Collapse
|
13
|
Hathout RM, Abdelhamid SG, El-Housseiny GS, Metwally AA. Comparing cefotaxime and ceftriaxone in combating meningitis through nose-to-brain delivery using bio/chemoinformatics tools. Sci Rep 2020; 10:21250. [PMID: 33277611 PMCID: PMC7718871 DOI: 10.1038/s41598-020-78327-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Bio/chemoinformatics tools can be deployed to compare antimicrobial agents aiming to select an efficient nose-to-brain formulation targeting the meningitis disease by utilizing the differences in the main structural, topological and electronic descriptors of the drugs. Cefotaxime and ceftriaxone were compared at the formulation level (by comparing the loading in gelatin and tripalmitin matrices as bases for the formation of nanoparticulate systems), at the biopharmaceutical level (through the interaction with mucin and the P-gp efflux pumps) and at the therapeutic level (through studying the interaction with S. pneumoniae bacterial receptors). GROMACS v4.6.5 software package was used to carry-out all-atom molecular dynamics simulations. Higher affinity of ceftriaxone was observed compared to cefotaxime on the investigated biopharmaceutical and therapeutic macromolecules. Both drugs showed successful docking on mucin, P-gp efflux pump and S. pneumoniae PBP1a and 2b; but ceftriaxone showed higher affinity to the P-gp efflux pump proteins and higher docking on mucin. Ceftriaxone showed less out-of-matrix diffusion and higher entrapment on the gelatin and the tripalmitin matrices. Accordingly, Ceftriaxone gelatin nanospheres or tripalmitin solid lipid nanoparticles may pose a more feasible and efficient nose-to-brain formulation targeting the meningitis disease compared to the cefotaxime counterparts.
Collapse
Affiliation(s)
- Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt.
| | | | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdelkader A Metwally
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
14
|
Nasser N, Hathout RM, Abd-Allah H, Sammour OA. Enhancement of oral bioavailability of drugs using lipid-based carriers: a meta-analysis study. Drug Dev Ind Pharm 2020; 46:2105-2110. [PMID: 33185482 DOI: 10.1080/03639045.2020.1851245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cancer is the disease of this era. Its therapy is moving through ups and downs not only due to poor effectiveness of many treating drugs, but also due to the serious side effects always evolving. In an attempt to overcome this problem, many systems, including lipid-based carriers, have been exploited for their oral delivery. Throughout this study, the meta-analysis tool was used to combine data from different studies and extract evidences that lipid-based carriers enhance the oral bioavailability. Consequently, increasing the efficiency and the reduction in side effects of drugs would follow. Accordingly, the usual parameter to indicate the bioavailability; the area under effect curve (AUC) was used where the lipid carriers have proven their superiority over conventional formulations. Interestingly, by comparing microemulsion/self-microemulsifying system (SMEDDS) versus liposomes/pro-liposomes as subgroups of the meta-analysis study, insignificant differences were recorded between them.
Collapse
Affiliation(s)
- Nayera Nasser
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
15
|
Rostamabadi H, Falsafi SR, Assadpour E, Jafari SM. Evaluating the structural properties of bioactive‐loaded nanocarriers with modern analytical tools. Compr Rev Food Sci Food Saf 2020; 19:3266-3322. [DOI: 10.1111/1541-4337.12653] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hadis Rostamabadi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Seid Reza Falsafi
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
16
|
Aswathanarayan JB, Vittal RR. Nanoemulsions and Their Potential Applications in Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00095] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Microstructural transitions in β-carotene loaded nonionic microemulsions upon aqueous phase dilution. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Parikh KJ, Sawant KK. Comparative Study for Optimization of Pharmaceutical Self-Emulsifying Pre-concentrate by Design of Experiment and Artificial Neural Network. AAPS PharmSciTech 2018; 19:3311-3321. [PMID: 30218266 DOI: 10.1208/s12249-018-1173-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/31/2018] [Indexed: 11/30/2022] Open
Abstract
The present investigation aimed to optimize the critical parameters affecting the globule size of self-emulsifying drug delivery system. Based on preliminary screening, three critical parameters, viz., amount of oil, surfactant, and co-surfactant were found to affect the globule size. I-optimal mixture design and Artificial Neural Network (ANN) were used to optimize the formulation with respect to minimum globule size. Comparative study was carried out to identify which optimization technique gave better predictability for the selected output parameter. R-value and MSE values were taken into consideration for comparison of both techniques. Using Response Surface Methodology-based I-optimal mixture design approach, the R2 value was found to be 0.9867, whereas with ANN technique, it was found to be 0.99548. The predicted size for the optimized batch by I-optimal design was 122.377 nm, whereas by ANN, it was 119.6783 nm against the actual obtained size of 118.2 ± 2.3 nm. This analysis indicated superior predictability of output for given input variables by ANN as compared to model-dependent DoE I-optimal design approach.
Collapse
|
19
|
Awad TS, Asker D, Romsted LS. Evidence of coexisting microemulsion droplets in oil-in-water emulsions revealed by 2D DOSY 1H NMR. J Colloid Interface Sci 2018; 514:83-92. [DOI: 10.1016/j.jcis.2017.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
|
20
|
Butt U, ElShaer A, Snyder LAS, Al-Kinani AA, Le Gresley A, Alany RG. Fatty Acid Based Microemulsions to Combat Ophthalmia Neonatorum Caused by Neisseria gonorrhoeae and Staphylococcus aureus. NANOMATERIALS 2018; 8:nano8010051. [PMID: 29351260 PMCID: PMC5791138 DOI: 10.3390/nano8010051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
Abstract
The bacterial species Neisseria gonorrhoeae (N. gonorrhoeae) and Staphylococcus aureus (S. aureus) are amongst the main microorganisms that cause ophthalmia neonatorum. The current treatment involves the use of various antibiotics such as ciprofloxacin, cephalosporin, ceftriaxone and cefotaxime. However, this treatment strategy is becoming more ineffective due to the antibiotic resistance in N. gonorrhoeae. The current study explores the potential use of fatty acid based microemulsions (ME) to prevent N. gonorrhoeae and S. aureus infections in new-borns' eyes without harmful side effects such as corneal or conjunctiva irritation. Pseudo-ternary phase diagrams were constructed to evaluate microemulsion regions and six different α-linolenic acid based microemulsions were prepared. The prepared formulations were characterized for α-linolenic acid content, size, transparency, zeta potential, Polarized light Microscopy, antimicrobial activity and ex vivo ocular toxicity. The mean droplet size of the ME formulations was in the range of 190.4 to 350.5 nm and polydispersity index (PDI) values were in the range of 0.102 to 0.561. All formulations were found stable upon storage for at least 8 weeks. In addition, self-diffusion coefficients determined by nuclear magnetic resonance (NMR) reflected that the diffusability of water increased at higher than 30% w/w water, while that of fatty acids and surfactants was in reverse. The antimicrobial efficacy of microemulsions was determined against N. gonorrhoeae and S. aureus. It was concluded that all microemulsions have strong antimicrobial effects against N. gonorrhoeae and S. aureus. Finally, bovine corneal opacity permeability (BCOP) and hen's egg chorioallantoic (HET-CAM) tests results showed that all microemulsion formulations were not strong ocular irritants.
Collapse
Affiliation(s)
- Ummara Butt
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
| | - Amr ElShaer
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK.
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
| | - Adam Le Gresley
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK.
- School of Pharmacy, University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
21
|
Koneva A, Safonova E, Kondrakhina P, Vovk M, Lezov A, Chernyshev YS, Smirnova N. Effect of water content on structural and phase behavior of water-in-oil (n-decane) microemulsion system stabilized by mixed nonionic surfactants SPAN 80/TWEEN 80. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Safwat S, Ishak RA, Hathout RM, Mortada ND. Statins anticancer targeted delivery systems: re-purposing an old molecule. ACTA ACUST UNITED AC 2017; 69:613-624. [PMID: 28271498 DOI: 10.1111/jphp.12707] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/12/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Exploring the use of statins as anticancer agents and exploiting different drug delivery systems in targeting these molecules to cancerous sites. Literature review was performed to investigate the use of statins in cancer treatment in one hand, and the different pharmaceutical approaches to deliver and target these drugs to their site of action. KEY FINDINGS Statins were used for decades as antihypercholestrolemic drugs but recently have been proven potential for broad anticancer activities. The incorporation of statins in nanoparticulate drug delivery systems not only augmented the cytotoxicity of statins but also overcame the resistance of cancerous cells against the traditional chemotherapeutic agents. Statins-loaded nanoparticles could be easily tampered to target the cancerous cells and consequently minimal drug amount could be utilized. SUMMARY This review reconnoitered the different endeavors to incorporate statins in various nanoparticles and summarized the successful effects in targeting cancerous cells and reducing their proliferation without the side effects of commonly used chemotherapeutic agents.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
23
|
Deng LL, Taxipalati M, Que F, Zhang H. Physical characterization and antioxidant activity of thymol solubilized Tween 80 micelles. Sci Rep 2016; 6:38160. [PMID: 27905567 PMCID: PMC5131288 DOI: 10.1038/srep38160] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/04/2016] [Indexed: 12/25/2022] Open
Abstract
Attempts were made to solubilize thymol in Tween 80 micelle to study the solubilization mechanism of thymol and the effect of solubilization on its antioxidant activity. The maximum solubilized concentration of thymol in a 2.0% (w/v) Tween 80 micelle solution is 0.2 wt%. There was no significant difference in Z-average diameter between the empty micelles and thymol solubilized micelles. 1H NMR spectra indicated that 3-H and 4-H on the benzene ring of thymol interacted with the ester group between the hydrophilic head group and the hydrophobic tail group of Tween 80 by Van der Waals’ force. Ferric reducing antioxidant potential (FRAP) and cupric ion reducing antioxidant capacity (CUPRAC) assays showed that the reducing antioxidant activity of free thymol did not change after solubilized in Tween 80 micelles. Compared to free thymol, the solubilized thymol showed higher activities to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydroxyl radicals. The present study suggested a possible preparation of thymol-carrying micelles with enhanced antioxidant activities that could be applied in food beverages.
Collapse
Affiliation(s)
- Ling-Li Deng
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Maierhaba Taxipalati
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.,Turpan Vocational and Technical College, Turpan 838000, China
| | - Fei Que
- Department of Applied Engineering, Zhejiang Economic and Trade Polytechinc, Hangzhou 310018, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Patel N, Nakrani H, Raval M, Sheth N. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv 2016; 23:3712-3723. [DOI: 10.1080/10717544.2016.1223225] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Nirav Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Happy Nakrani
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Mihir Raval
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | - Navin Sheth
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|
25
|
Safwat S, Hathout RM, Ishak RA, Mortada ND. Augmented simvastatin cytotoxicity using optimized lipid nanocapsules: a potential for breast cancer treatment. J Liposome Res 2016; 27:1-10. [DOI: 10.3109/08982104.2015.1137313] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania A. Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nahed D. Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Hoffman RE, Darmon E, Aserin A, Garti N. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of microemulsions. Part 2 – Anionic and nonionic dilutable microemulsions. J Colloid Interface Sci 2016; 463:358-66. [DOI: 10.1016/j.jcis.2014.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
27
|
Hoffman RE, Darmon E, Aserin A, Garti N. High accuracy NMR chemical shift corrected for bulk magnetization as a tool for structural elucidation of dilutable microemulsions. Part 1 – Proof of concept. J Colloid Interface Sci 2016; 463:349-57. [DOI: 10.1016/j.jcis.2014.06.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/30/2022]
|
28
|
Mehanny M, Hathout RM, Geneidi AS, Mansour S. Exploring the use of nanocarrier systems to deliver the magical molecule; Curcumin and its derivatives. J Control Release 2016; 225:1-30. [PMID: 26778694 DOI: 10.1016/j.jconrel.2016.01.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Curcumin and its derivatives; curcuminoids have been proven as potential remedies in different diseases. However, their delivery carries several challenges owing to their poor aqueous solubility, photodegradation, chemical instability, poor bioavailability and rapid metabolism. This review explores and criticizes the numerous attempts that were adopted through the years to entrap/encapsulate this valuable drug in nanocarriers aiming to reach its most appropriate and successful delivery system.
Collapse
Affiliation(s)
- Mina Mehanny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt.
| |
Collapse
|
29
|
Metwally AA, Hathout RM. Replacing microemulsion formulations experimental solubility studies with in-silico methods comprising molecular dynamics and docking experiments. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Lidich N, Wachtel EJ, Aserin A, Garti N. Water-dilutable microemulsions for transepithelial ocular delivery of riboflavin phosphate. J Colloid Interface Sci 2015; 463:342-8. [PMID: 26614391 DOI: 10.1016/j.jcis.2015.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
Riboflavin phosphate (RFP) is an essential compound in the treatment of keratoconus - a degenerative, non-inflammatory disease of the cornea. Currently, the quantitative and efficient transport of riboflavin to the cornea is possible after mechanical removal of the epithelium. To avoid surgical intervention, it is therefore important to develop a method for quantitatively transporting riboflavin across the intact epithelium. In the present study, an RFP-loaded microemulsion was prepared, which could potentially function as an ocular drug delivery system crossing the eye epithelium. The specially designed water-dilutable microemulsion was based on a mixture of nonionic surfactants. Propylene glycol and glycerol acted as cosurfactant and cosolvent assisting in the solubilization of the RFP. The glycerol-rich water-free concentrate consisted of direct micelles for which glycerol served as the hydrophilic phase. In formulations with up to 40wt% water, the hydrophilic surfactant headgroups and glycerol strongly bind water molecules (DSC and SD-NMR). Above 60wt% water, globular, O/W nanodroplets, ∼14nm in diameter, are formed (SAXS, cryo-TEM, and SD-NMR). The structure of microemulsions loaded with 0.14-4.25wt% RFP (0.29-8.89mmol per 100g formulation) is not significantly influenced by the presence of the RFP. However, in the microemulsions containing 10-80wt% water, the mobility of RFP in the microemulsion is constrained by strong interactions with the surfactants and cosurfactant, and therefore free transport of the molecule can be achieved only upon higher (>80wt%) water dilutions.
Collapse
Affiliation(s)
- Nina Lidich
- The Casali Center for Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Ellen J Wachtel
- Faculty of Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Abraham Aserin
- The Casali Center for Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Nissim Garti
- The Casali Center for Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
31
|
Hathout RM, Woodman TJ. NMR diffusion-ordered spectroscopy can explain differences in skin penetration enhancement between microemulsion formulations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1389-90. [DOI: 10.1016/j.nano.2014.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/15/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
32
|
López-Cebral R, Martín-Pastor M, Seijo B, Sanchez A. Progress in the characterization of bio-functionalized nanoparticles using NMR methods and their applications as MRI contrast agents. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 79:1-13. [PMID: 24815362 DOI: 10.1016/j.pnmrs.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 05/22/2023]
Abstract
Significant progress has been made over the last three decades in the field of NMR, a technique which has proven to have a variety of applications in many scientific disciplines, including nanotechnology. Herein we describe how NMR enables the characterization of nanosystems at different stages of their formation and modification (raw materials, bare or functionalized nanosystems), even making it possible to study in vivo nanoparticle interactions, thereby importantly contributing to nanoparticle design and subsequent optimization. Furthermore, the unique characteristics of nanosystems can open up new prospects for site-targeted, more specific contrast agents, contributing to the development of certain nuclear magnetic resonance applications such as MRI.
Collapse
Affiliation(s)
- Rita López-Cebral
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain
| | - Manuel Martín-Pastor
- Nuclear Magnetic Resonance Unit, RIADT, University of Santiago de Compostela (USC), Campus Vida, 15706 Santiago de Compostela, Spain
| | - Begoña Seijo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain; Molecular ImageGroup, IDIS, Santiago de Compostela University Hospital Complex (CHUS), A Choupana, 15706 Santiago de Compostela, Spain
| | - Alejandro Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain; Molecular ImageGroup, IDIS, Santiago de Compostela University Hospital Complex (CHUS), A Choupana, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
33
|
Hathout RM. Using principal component analysis in studying the transdermal delivery of a lipophilic drug from soft nano-colloidal carriers to develop a quantitative composition effect permeability relationship. Pharm Dev Technol 2013; 19:598-604. [PMID: 23879693 DOI: 10.3109/10837450.2013.813544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of principal component analysis is to reduce the dimensionality of the data while retaining its variation. Obtaining a vector component representing the most important variation amongst the data and summarizing the factors are usually needed to achieve a new descriptor for the system. This can be used to elaborate certain properties related to the components used in formulating drug delivery systems. To this end, it is possible to develop what exclusively can be called quantitative composition effect permeability relationship. In this study, fundamental features of the Fourier transform infrared spectroscopy together with the degree of saturation of a model drug, testosterone hormone, were used as initial dimensions and their extent of change were utilized as original variables to generate a correlation matrix. The principal component (PC) with the largest eigen value was selected for regression analysis to provide a quantitative model relating the effects of different compositions with the enhanced penetration of the model lipophilic drug from microemulsions. A strong correlation (r = 0.90) was obtained between the main PC derived data and the observed permeability coefficient results which warrants the use of this analyzing method in optimizing different drug delivery systems.
Collapse
Affiliation(s)
- Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University , Cairo , Egypt
| |
Collapse
|
34
|
Hathout RM, Nasr M. Transdermal delivery of betahistine hydrochloride using microemulsions: physical characterization, biophysical assessment, confocal imaging and permeation studies. Colloids Surf B Biointerfaces 2013; 110:254-60. [PMID: 23732802 DOI: 10.1016/j.colsurfb.2013.05.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 11/17/2022]
Abstract
Transdermal delivery of betahistine hydrochloride encapsulated in various ethyl oleate, Capryol 90(®), Transcutol(®) and water microemulsion formulations was studied. Two different kinds of phase diagrams were constructed for the investigated microemulsion system. Pseudoplastic flow that is preferable for skin delivery was recorded for the investigated microemulsions. A balanced and bicontinuous microemulsion formulation was suggested and showed the highest permeation flux (0.50±0.030mgcm(-2)h(-1)). The effect of the investigated microemulsions on the skin electrical resistance was used to explain the high permeation fluxes obtained. Confocal laser scanning microscopy was used to confirm the permeation enhancement and to reveal the penetration pathways. The results obtained suggest that the proposed microemulsion system highlighted in the current work can serve as a promising alternative delivery means for betahistine hydrochloride.
Collapse
Affiliation(s)
- Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | | |
Collapse
|