1
|
Nejabat M, Samie A, Khojastehnezhad A, Hadizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM, Siaj M. Stimuli-Responsive Covalent Organic Frameworks for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51837-51859. [PMID: 39163539 DOI: 10.1021/acsami.4c07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.g., hypoxia, acidic pH, high levels of glutathione, and overexpressed hydrogen peroxide) or extrinsic stimulus of laser light bring about more precise and selective treatments. Among them, nanostructures of covalent organic frameworks (COFs) have drawn great interest in biomedical fields during recent years. Possessing large surface area, high porosity, structural stability, and customizable architecture, these biocompatible porous crystalline polymers properly translate to promising platforms for drug delivery and induction of combination therapies. With the focus on stimuli-responsive characteristics of nanoscale COFs, this study aims to propose an overview of their potentiality in cancer treatment on the basis of chemotherapy alone or in combination with sonodynamic, chemodynamic, photodynamic, and photothermal therapies.
Collapse
Affiliation(s)
- Masoud Nejabat
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Ali Samie
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
2
|
Bartkowski M, Zhou Y, Nabil Amin Mustafa M, Eustace AJ, Giordani S. CARBON DOTS: Bioimaging and Anticancer Drug Delivery. Chemistry 2024; 30:e202303982. [PMID: 38205882 DOI: 10.1002/chem.202303982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Cancer, responsible for approximately 10 million lives annually, urgently requires innovative treatments, as well as solutions to mitigate the limitations of traditional chemotherapy, such as long-term adverse side effects and multidrug resistance. This review focuses on Carbon Dots (CDs), an emergent class of nanoparticles (NPs) with remarkable physicochemical and biological properties, and their burgeoning applications in bioimaging and as nanocarriers in drug delivery systems for cancer treatment. The review initiates with an overview of NPs as nanocarriers, followed by an in-depth look into the biological barriers that could affect their distribution, from barriers to administration, to intracellular trafficking. It further explores CDs' synthesis, including both bottom-up and top-down approaches, and their notable biocompatibility, supported by a selection of in vitro, in vivo, and ex vivo studies. Special attention is given to CDs' role in bioimaging, highlighting their optical properties. The discussion extends to their emerging significance as drug carriers, particularly in the delivery of doxorubicin and other anticancer agents, underscoring recent advancements and challenges in this field. Finally, we showcase examples of other promising bioapplications of CDs, emergent owing to the NPs flexible design. As research on CDs evolves, we envisage key challenges, as well as the potential of CD-based systems in bioimaging and cancer therapy.
Collapse
Affiliation(s)
- Michał Bartkowski
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| | - Yingru Zhou
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | | | | | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
3
|
Hu Q, Zhang Y, Mukerabigwi JF, Wang H, Cao Y. Polymer Conjugate as the New Promising Drug Delivery System for Combination Therapy against Cancer. Curr Top Med Chem 2024; 24:1101-1119. [PMID: 39005059 DOI: 10.2174/0115680266280603240321064308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 07/16/2024]
Abstract
This review highlights the advantages of combination therapy using polymer conjugates as drug delivery systems for cancer treatment. In this review, the specific structures and materials of polymer conjugates, as well as the different types of combination chemotherapy strategies, are discussed. Specific targeting strategies, such as monoclonal antibody therapy and small molecule ligands, are also explored. Additionally, self-assembled polymer micelles and overcoming multidrug resistance are described as potential strategies for combination therapy. The assessment of combinational therapeutic efficacy and the challenges associated with polymer conjugates are also addressed. The future outlook aims to overcome these challenges and improve the effectiveness of drug delivery systems for combination therapy. The conclusion emphasizes the potential of polymer conjugates in combination therapy while acknowledging the need for further research and development in this field.
Collapse
Affiliation(s)
- Qiang Hu
- Key Laboratory of Pesticide & Chemical Biology (Ministry of Education), National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yuannian Zhang
- Key Laboratory of Pesticide & Chemical Biology (Ministry of Education), National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Jean Felix Mukerabigwi
- Department of Chemistry, University of Rwanda, College of Science and Technology, Po. Box: 3900, Kigali, Rwanda
| | - Haili Wang
- Key Laboratory of Pesticide & Chemical Biology (Ministry of Education), National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yu Cao
- Key Laboratory of Pesticide & Chemical Biology (Ministry of Education), National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education), College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
4
|
Zhong T, Yu J, Pan Y, Zhang N, Qi Y, Huang Y. Recent Advances of Platinum-Based Anticancer Complexes in Combinational Multimodal Therapy. Adv Healthc Mater 2023; 12:e2300253. [PMID: 37097737 DOI: 10.1002/adhm.202300253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/19/2023] [Indexed: 04/26/2023]
Abstract
Platinum drugs with manifest therapeutic effects are widely used, but their systemic toxicity and the drug resistance acquired by cancer cells limit their clinical applications. Thus, the exploration on appropriate methods and strategies to overcome the limitations of traditional platinum drugs becomes extremely necessary. Combination therapy of platinum drugs can inhibit tumor growth and metastasis in an additive or synergistic manner, and can potentially reduce the systemic toxicity of platinum drugs and overcome platinum-resistance. This review summarizes the various modalities and current progress in platinum-based combination therapy. The synthetic strategies and therapeutic effects of some platinum-based anticancer complexes in the combination of platinum drugs with gene editing, ROS-based therapy, thermal therapy, immunotherapy, biological modelling, photoactivation, supramolecular self-assembly and imaging modality are briefly described. Their potential challenges and prospects are also discussed. It is hoped that this review will inspire researchers to have more ideas for the future development of highly effective platinum-based anti-cancer complexes.
Collapse
Affiliation(s)
- Tianyuan Zhong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Jie Yu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Ning Zhang
- The Second Affiliated Hospital of Harbin Medical University, Department of Orthopedics, Harbin, 150000, China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
- Key Laboratory of Sustainable Advanced Functional Materials of Jilin Province, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
5
|
Yerpude ST, Potbhare AK, Bhilkar P, Rai AR, Singh RP, Abdala AA, Adhikari R, Sharma R, Chaudhary RG. Biomedical,clinical and environmental applications of platinum-based nanohybrids: An updated review. ENVIRONMENTAL RESEARCH 2023; 231:116148. [PMID: 37211181 DOI: 10.1016/j.envres.2023.116148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Platinum nanoparticles (Pt NPs) have numerous applications in various sectors, including pharmacology, nanomedicine, cancer therapy, radiotherapy, biotechnology and environment mitigation like removal of toxic metals from wastewater, photocatalytic degradation of toxic compounds, adsorption, and water splitting. The multifaceted applications of Pt NPs because of their ultra-fine structures, large surface area, tuned porosity, coordination-binding, and excellent physiochemical properties. The various types of nanohybrids (NHs) of Pt NPs can be fabricated by doping with different metal/metal oxide/polymer-based materials. There are several methods to synthesize platinum-based NHs, but biological processes are admirable because of green, economical, sustainable, and non-toxic. Due to the robust physicochemical and biological characteristics of platinum NPs, they are widely employed as nanocatalyst, antioxidant, antipathogenic, and anticancer agents. Indeed, Pt-based NHs are the subject of keen interest and substantial research area for biomedical and clinical applications. Hence, this review systematically studies antimicrobial, biological, and environmental applications of platinum and platinum-based NHs, predominantly for treating cancer and photo-thermal therapy. Applications of Pt NPs in nanomedicine and nano-diagnosis are also highlighted. Pt NPs-related nanotoxicity and the potential and opportunity for future nano-therapeutics based on Pt NPs are also discussed.
Collapse
Affiliation(s)
- Sachin T Yerpude
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Pavan Bhilkar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Alok R Rai
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Raghvendra P Singh
- Department of Research & Development, Azoth Biotech Pvt. Ltd., Noida, 201306, India.
| | - Ahmed A Abdala
- Chemical Engineering Program, Texas A and M University at Qatar POB, 23784, Doha, Qatar.
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India.
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| |
Collapse
|
6
|
Zhang H, Xue Q, Zhou Z, He N, Li S, Zhao C. Co-delivery of doxorubicin and hydroxychloroquine via chitosan/alginate nanoparticles for blocking autophagy and enhancing chemotherapy in breast cancer therapy. Front Pharmacol 2023; 14:1176232. [PMID: 37229260 PMCID: PMC10203398 DOI: 10.3389/fphar.2023.1176232] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide, and the standard treatment is chemotherapy or radiotherapy after surgery. In order to reduce the side effects of chemotherapy, various nanoparticles (NPs) have been discovered and synthesized, which has become a promising treatment for BC. In this study, a co-delivery nanodelivery drug system (Co-NDDS) was designed and synthesized with 2,3-dimercaptosuccinic acid (DMSA) coated Fe3O4 NPs as core encapsulated into chitosan/alginate nanoparticles (CANPs) shell, doxorubicin (DOX) and hydroxychloroquine (HCQ) as loading drugs. Smaller NPs carrying DOX (FeAC-DOX NPs) were loaded into larger NPs containing HCQ (FeAC-DOX@PC-HCQ NPs) by ionic gelation and emulsifying solvent volatilization methods. The physicochemical properties of this Co-NDDS were characterised, followed by in vitro studies of the anticancer effects and mechanisms using two different BC cell lines, MCF-7 cells and MDA-MB-231 cells. The results indicated that the Co-NDDS showcases exemplary physicochemical qualities and encapsulation capacity, facilitating accurate intracellular release through pH-sensitive attributes. Importantly, NPs can significantly increase the in vitro cytotoxicity of co-administered drugs and effectively inhibit the autophagy level of tumour cells. The Co-NDDS constructed in this study provides a promising strategy for the treatment of BC.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qingwen Xue
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zihan Zhou
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
- Sino Genomics Technology Co., Ltd, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Cheng Zhao
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Shen F, Tao D, Peng R, He Y, Liu Z, Ji J, Feng L. Immunogenic nanomedicine based on GSH-responsive nanoscale covalent organic polymers for chemo-sonodynamic therapy. Biomaterials 2022; 283:121428. [DOI: 10.1016/j.biomaterials.2022.121428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
|
8
|
Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer. Nat Commun 2021; 12:4310. [PMID: 34262026 PMCID: PMC8280231 DOI: 10.1038/s41467-021-24564-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with primary and bone metastatic breast cancer have significantly reduced survival and life quality. Due to the poor drug delivery efficiency of anti-metastasis therapy and the limited response rate of immunotherapy for breast cancer, effective treatment remains a formidable challenge. In this work, engineered macrophages (Oxa(IV)@ZnPc@M) carrying nanomedicine containing oxaliplatin prodrug and photosensitizer are designed as near-infrared (NIR) light-activated drug vectors, aiming to achieve enhanced chemo/photo/immunotherapy of primary and bone metastatic tumors. Oxa(IV)@ZnPc@M exhibits an anti-tumor M1 phenotype polarization and can efficiently home to primary and bone metastatic tumors. Additionally, therapeutics inside Oxa(IV)@ZnPc@M undergo NIR triggered release, which can kill primary tumors via combined chemo-photodynamic therapy and induce immunogenic cell death simultaneously. Oxa(IV)@ZnPc@M combined with anti-PD-L1 can eliminate primary and bone metastatic tumors, activate tumor-specific antitumor immune response, and improve overall survival with limited systemic toxicity. Therefore, this all-in-one macrophage provides a treatment platform for effective therapy of primary and bone metastatic tumors.
Collapse
|
9
|
Alpaslan D, Ersen Dudu T, Aktas N. Evaluation of poly(agar-co-glycerol-co-castor oil) organo-hydrogel as a controlled release system carrier support material. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03777-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Xie P, Wang Y, Wei D, Zhang L, Zhang B, Xiao H, Song H, Mao X. Nanoparticle-based drug delivery systems with platinum drugs for overcoming cancer drug resistance. J Mater Chem B 2021; 9:5173-5194. [PMID: 34116565 DOI: 10.1039/d1tb00753j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum drugs are commonly used in cancer therapy, but their therapeutic outcomes have been significantly compromised by the drug resistance of cancer cells. To this end, intensive efforts have been made to develop nanoparticle-based drug delivery systems for platinum drugs, due to their multifunctionality in delivering drugs, in modulating the tumor microenvironment, and in integrating additional genes, proteins, and small molecules to overcome chemoresistance in cancers. To facilitate the clinical application of these promising nanoparticle-based platinum drug delivery systems, this paper summarizes the common mechanisms for chemoresistance towards platinum drugs, the advantages of nanoparticles in drug delivery, and recent strategies of nanoparticle-based platinum drug delivery. Furthermore, we discuss how to design delivery platforms more effectively to overcome chemoresistance in cancers, thereby improving the efficacy of platinum-based chemotherapy.
Collapse
Affiliation(s)
- Peng Xie
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. and Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Lingpu Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bin Zhang
- XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| | - Xinzhan Mao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
11
|
Developing poly(Agar-co-Glycerol-co-Thyme Oil) based organo-hydrogels for the controlled drug release applications. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Pangeni R, Subedi L, Jha SK, Kweon S, Kang SH, Chang KY, Choi JU, Byun Y, Park JW. Improvements in the Oral Absorption and Anticancer Efficacy of an Oxaliplatin-Loaded Solid Formulation: Pharmacokinetic Properties in Rats and Nonhuman Primates and the Effects of Oral Metronomic Dosing on Colorectal Cancer. Int J Nanomedicine 2020; 15:7719-7743. [PMID: 33116497 PMCID: PMC7555381 DOI: 10.2147/ijn.s267424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The anticancer efficacy of orally administered chemotherapeutics is often constrained by low intestinal membrane permeability and oral bioavailability. In this context, we designed a solid oral formulation of oxaliplatin (OP), a third-generation cisplatin analog, to improve oral bioavailability and investigate its application in metronomic chemotherapy. Methods An ion-pairing complex of OP with a permeation enhancer, Nα-deoxycholyl-l-lysyl-methylester (DLM), was successfully prepared and then mixed with dispersing agents (including poloxamer 188 and Labrasol) to form the solid, amorphous oral formulation OP/DLM (OP/DLM-SF; hereafter, ODSF). Results The optimized powder formulation was sized in the nanoscale range (133±1.47 nm). The effective permeability of OP increased by 12.4-fold after ionic complex formation with DLM and was further increased by 24.0-fold after incorporation into ODSF. ODSF exhibited respective increases of 128% and 1010% in apparent permeability across a Caco-2 monolayer, compared to OP/DLM and OP. Furthermore, inhibition of bile acid transporters by actinomycin D and caveola-mediated uptake by brefeldin in Caco-2 cell monolayers reduced the apparent permeability values of ODSF by 58.4% and 51.1%, respectively, suggesting predominant roles for bile acid transporters and caveola-mediated transport in intestinal absorption of ODSF. In addition, macropinocytosis and paracellular and transcellular passive transport significantly influenced the intestinal permeation of ODSF. The oral bioavailabilities of ODSF in rats and monkeys were 68.2% and 277% higher, respectively, than the oral bioavailability of free OP. In vivo analyses of anticancer efficacy in CT26 and HCT116 cell-bearing mice treated with ODSF demonstrated significant suppression of tumor growth, with respective maximal tumor volume reductions of 7.77-fold and 4.07-fold, compared to controls. Conclusion ODSF exhibits therapeutic potential, constituting an effective delivery system that increases oral bioavailability, with applications to metronomic chemotherapy.
Collapse
Affiliation(s)
- Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo-Hee Kang
- Global R&D Center, IcureBNP, Seoul 08511, Republic of Korea
| | | | - Jeong Uk Choi
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea.,Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| |
Collapse
|
13
|
Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-Based Theranostic Nanoplatform for Improving Chemodynamic Therapy of Cancer. ACS Biomater Sci Eng 2020; 6:4834-4845. [DOI: 10.1021/acsbiomaterials.0c01009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengxue Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
14
|
Jajaei MS, Rafiei S. Preparation of drug delivery system based on poly (lactide-glycolide) and evaluation of parameters affecting its structure for cancer treatment. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1016/j.sajce.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Shen F, Feng L, Zhu Y, Tao D, Xu J, Peng R, Liu Z. Oxaliplatin-/NLG919 prodrugs-constructed liposomes for effective chemo-immunotherapy of colorectal cancer. Biomaterials 2020; 255:120190. [PMID: 32563943 DOI: 10.1016/j.biomaterials.2020.120190] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022]
Abstract
High expression of indoleamine 2,3-dioxygenase 1 (IDO1) is a major cause of tumor induced immunosuppression, and appears to be associated with poor prognosis in human colorectal cancer and some others. In this study, we construct a bifunctional liposome by self-assembly of oxaliplatin-prodrug (Oxa(IV)) conjugated phospholipid and alkylated NLG919 (aNLG), an IDO1 inhibitor, together with other commercial lipids. The obtained aNLG/Oxa(IV)-Lip can not only release cytotoxic oxaliplatin inside the reductive cytosol to trigger immunogenic cell death (ICD) of cancer cells, but also efficiently retard the degradation of tryptophan to immunosuppressive kynurenine via the NLG919 mediated inhibition of IDO1. Moreover, in vivo pharmacokinetic studies indicate that such aNLG/Oxa(IV)-Lip has a long blood circulation time, thereby enables highly-efficient passive tumor homing. Upon tumor accumulation, such aNLG/Oxa(IV)-Lip presents superior synergistic antitumor efficacies to both subcutaneous and orthotopic CT26 tumors, ascribing to significantly primed anti-tumor immunity of enhanced intratumoral infiltration of CD8+ T cells, scretion of cytotoxic cytokines and downregulation of immunosuppressive regulatory T cells. This work highlights that such bifunctional aNLG/Oxa(IV)-Lip is a potent candidate for future clinical translation owing to its excellent biocompatibility and high therapeutic efficacy.
Collapse
Affiliation(s)
- Fengyun Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yujie Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Danlei Tao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Rui Peng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
16
|
Du W, Chen C, Sun P, Zhang S, Zhang J, Zhang X, Liu Y, Zhang R, Yan C, Fan C, Wu J, Jiang X. Eliciting an immune hot tumor niche with biomimetic drug-based multi-functional nanohybrids augments immune checkpoint blockade-based breast cancer therapy. NANOSCALE 2020; 12:3317-3329. [PMID: 31976511 DOI: 10.1039/c9nr09835f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as one of the breakthrough approaches for tumor immunotherapy. However, known as an immune "cold" tumor, breast cancer harbors an immunosuppressive tumor niche that compromises ICB-based therapy. Chemoimmunotherapy combines a chemotherapeutic with an immune-modulating agent, representing a promising tactic to combat cancers, while the lack of effectively targeted co-delivery strategy is one of the main obstacles to achieve the synergistic utilization. Herein, self-assembled PEGylated pure drug-based nanohybrids (DNH) were created, which could evoke immunogenic cell death (ICD), aiding ICB-based immunotherapy by controlling the spatiotemporal release of oxaliplatin (OXA) and small molecular inhibitor 1-methyl-d-tryptophan (1-MT). Furthermore, biomimetic functionalization was exploited by nature killer cell membrane camouflaging to target cancerous cells as well as by elicit immune response through inducing M1 macrophage polarization. The drug release profiles of the nanosystem were investigated in the presence of low pH and intracellular reductants. Systemic in vivo bio-behaviors were evaluated via pharmacokinetics and biodistribution. As an "all-in-one" pure drug-based codelivery system, our biomimetic nanoplatform possessed multiple immunomodulation functions, which markedly aided in increasing the frequency of immune responders and generate an immune "hot" breast tumor niche, and eventually allowed to boost breast cancer therapy.
Collapse
Affiliation(s)
- Wei Du
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong Province 250012, PR China.
| | - Chen Chen
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong Province 250012, PR China.
| | - Peng Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengchang Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong Province 250012, PR China.
| | - Jing Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong Province 250012, PR China.
| | - Xiaoyu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong Province 250012, PR China.
| | - Ying Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong Province 250012, PR China.
| | - Rui Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong Province 250012, PR China.
| | - Chongzheng Yan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong Province 250012, PR China.
| | - Changchun Fan
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong 250014, PR China
| | - Jibiao Wu
- Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyi Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, Shandong Province 250012, PR China.
| |
Collapse
|
17
|
A light-triggered self-reinforced nanoagent for targeted chemo-photodynamic therapy of breast cancer bone metastases via ER stress and mitochondria mediated apoptotic pathways. J Control Release 2019; 319:119-134. [PMID: 31883459 DOI: 10.1016/j.jconrel.2019.12.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/10/2019] [Accepted: 12/25/2019] [Indexed: 11/20/2022]
Abstract
Current therapeutic strategies for the treatment of bone metastases are often limited by the lack of selectivity, severe systemic toxicity and suboptimal efficacy. Nanomedicine meditated chemo-photodynamic therapy provides a promising therapeutic opportunity for enhanced cancer therapy. Herein, we constructed an alendronate (ALN)-functionalized bone-seeking nanoagent (BTZ@ZnPc-ALN) to co-deliver the proteasome inhibitor bortezomib (BTZ) and the photosensitizer Zinc phthalocyanine (ZnPc) for synergistic chemo-photodynamic therapy of bone metastases. Results showed that BTZ@ZnPc-ALN possessed favorable bone affinity both in vitro and in vivo and could release drug in a pH-responsive manner. Under irradiation, BTZ@ZnPc-ALN could generate reactive oxygen species (ROS) to cause mitochondrial damage, and increase the cytosolic Ca2+ levels and the expression of GRP78 protein to induce excessive endoplasmic reticulum (ER) stress, thereby synergistically inhibiting cell proliferation. More importantly, BTZ@ZnPc-ALN could prolong blood circulation time and preferentially navigate to the bone affected site. As a result, tumor growth was significantly inhibited by bone targeted chemo-photodynamic therapy, with tumor volume cut down by 85% compared with PBS group and bone remained undamaged. Besides, the systemic toxicity of BTZ was significantly reduced. Therefore, the versatile nanoagent is expected to be a promising nanoplatform to concern multiple intracellular stress for remarkable synergistic chemo-photodynamic therapy of bone metastases.
Collapse
|
18
|
Liao J, Peng H, Wei X, Song Y, Liu C, Li D, Yin Y, Xiong X, Zheng H, Wang Q. A bio-responsive 6-mercaptopurine/doxorubicin based "Click Chemistry" polymeric prodrug for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110461. [PMID: 31924029 DOI: 10.1016/j.msec.2019.110461] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/05/2019] [Accepted: 11/17/2019] [Indexed: 01/04/2023]
Abstract
A novel bio-responsive co-delivery system based on Poly(DEA)-b-Poly(ABMA-co-OEGMA) (PDPAO, prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization) copolymers was constructed for enhanced cellular internalization and effective combination therapy. Reduction-sensitive 6-mercaptopurine (6MP) based prodrug and pH-sensitive doxorubicin (DOX) based prodrug were grafted onto PDPAO by an azide-alkyne "Click Chemistry" reaction to acquire a pH/reduction-sensitive polymeric prodrug (PDPAO@imine-DOX/cis-6MP), which was able to self-aggregate to form polymeric micelles (M(DOX/6MP)) with an average particle size of 116 ± 2 nm in the water. The resultant micelles could maintain a stable sphere structure and show stability with a small particles' dispersion index in the blood. Importantly, it has been observed that the pH-sensitive surface charge-conversion accompanied pH-triggered DOX release in the biomimetic extracellular acidic environment of tumor tissue and a rapid dual-drug release triggered by pH and GSH in the intracellular environment. The in vitro evaluation of micelles on human cervical cancer (HeLa) and human promyelocytic leukemia (HL-60) cells showed an enhanced cellular uptake because of charge-conversion and exhibited a higher cell-killing performance. Moreover, the graft ratio of DOX and 6MP showed the ability to adjust the cytotoxicity; the micelles with a graft ratio of 2: 1 (M(DOX2/6MP)) displayed the higher cellular inhibition on either HeLa (combination index (CI) = 0.62) or HL-60 (CI = 0.35) cells. Overall, this novel dual-drug-conjugated delivery system might have important potential applications for combination therapy of cancer.
Collapse
Affiliation(s)
- Jianhong Liao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Haisheng Peng
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States; Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing 163319, PR China
| | - Xuan Wei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yajing Song
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Can Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yihua Yin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiong Xiong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
19
|
Li H, Ma M, Zhang J, Hou W, Chen H, Zeng D, Wang Z. Ultrasound-Enhanced Delivery of Doxorubicin-Loaded Nanodiamonds from Pullulan-all-trans-Retinal Nanoparticles for Effective Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20341-20349. [PMID: 31082187 DOI: 10.1021/acsami.9b03559] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanodiamond as a drug carrier is of great significance in improving cancer therapy by overcoming chemoresistance. However, its clinical application is severely limited because of insufficient tumor vascular penetration. To address this limitation, pullulan-all-trans-retinal (pullulan-ATR) self-assembled nanoparticles were prepared as nanocarriers, which encapsulated doxorubicin-loaded nanodiamonds, to construct a core-shell structured coloading nanosystem. The obtained composite nanoparticles show a homogeneous size distribution with good dispersity and pH sensitivity. Furthermore, ultrasound was utilized to promote the intratumoral penetration of these nanoparticles. As a result, the intracellular retention of DOX was efficiently enhanced, and DOX in the tumor tissue reached 17.3% of the injected dosage. The antitumor effect of this combined strategy was remarkably improved in both the DOX-sensitive HepG2 and DOX-resistant HepG2/ADR tumor models in vivo. This new strategy might serve as a powerful method to address the limitation of nanodiamonds and provide innovative ideas for the application of nanoparticles in clinical cancer therapy.
Collapse
Affiliation(s)
- Huanan Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 200050 Shanghai , P. R. China
| | - Jingni Zhang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Wei Hou
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 200050 Shanghai , P. R. China
| | - Deping Zeng
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| |
Collapse
|
20
|
The progresses in curcuminoids-based metal complexes: especially in cancer therapy. Future Med Chem 2019; 11:1035-1056. [PMID: 31140861 DOI: 10.4155/fmc-2018-0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Curcuminoids (CURs), a series of derivatives in turmeric (Curcuma longa), are commonly discovered to control the deterioration of cancers. However, the physiochemical properties and the original side effects of many CURs complexes put barriers in their medical applications. To address them, the investigation of metal-based complexes with CURs is in progress. The complexes were summarized according to articles in recent years. The results showed that the complexes improved the physicochemical properties or therapeutic performances compared with pure CURs. Further, it is possible for the novel complexes to be applied in chemical detecting, paramagnetic-luminescent and bio-imaging fields. Therefore, the formation of the metal-based CURs complexes (MBCCs) is beneficial for the development of CURs especially in medical fields.
Collapse
|
21
|
Ekladious I, Colson YL, Grinstaff MW. Polymer-drug conjugate therapeutics: advances, insights and prospects. Nat Rev Drug Discov 2019; 18:273-294. [PMID: 30542076 DOI: 10.1038/s41573-018-0005-0] [Citation(s) in RCA: 518] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymer-drug conjugates have long been a mainstay of the drug delivery field, with several conjugates successfully translated into clinical practice. The conjugation of therapeutic agents to polymeric carriers, such as polyethylene glycol, offers several advantages, including improved drug solubilization, prolonged circulation, reduced immunogenicity, controlled release and enhanced safety. In this Review, we discuss the rational design, physicochemical characteristics and recent advances in the development of different classes of polymer-drug conjugates, including polymer-protein and polymer-small-molecule drug conjugates, dendrimers, polymer nanoparticles and multifunctional systems. Current obstacles hampering the clinical translation of polymer-drug conjugate therapeutics and future prospects are also presented.
Collapse
Affiliation(s)
- Iriny Ekladious
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA
| | - Yolonda L Colson
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA.
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
22
|
Liao J, Song Y, Liu C, Li D, Zheng H, Lu B. Dual-drug delivery based charge-conversional polymeric micelles for enhanced cellular uptake and combination therapy. Polym Chem 2019. [DOI: 10.1039/c9py01105f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report on the synthesis and characterization of a dual-drug conjugated prodrug, and the self-assembled micelles showed a charge-conversion behavior and synergistic effectin vitro.
Collapse
Affiliation(s)
- Jianhong Liao
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Yajing Song
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Can Liu
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Dan Li
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Hua Zheng
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| | - Bo Lu
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- PR China
| |
Collapse
|
23
|
Hu Z, Li X, Yuan M, Wang X, Zhang Y, Wang W, Yuan Z. Study on the effectiveness of ligand reversible shielding strategy in targeted delivery and tumor therapy. Acta Biomater 2019; 83:349-358. [PMID: 30448436 DOI: 10.1016/j.actbio.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/04/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022]
Abstract
We previously proved the superiority of the ligand reversible shielding strategy based on the pH-responsive self-assembly/disassembly of gold nanoparticles through computed tomography imaging in vivo. Herein, the practicality of this strategy in tumor therapy was investigated by a ligand reversible shielding system based on a temperature-responsive polymer. The ligand biotin, cisplatin-loaded chain poly(acrylic acid)-Pt, and the shielding segment thermo-sensitive poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AAm)) were co-modified onto the surface of gold nanostars. In the blood circulation (37 °C), the ligand was shielded by the extension of P(NIPAAm-co-AAm), whose lower critical solution temperature (LCST) is approximately 39 °C. After the nanoparticles accumulate at the tumor site by the enhanced permeability and retention (EPR) effect, the heat generated from gold nanostars upon near-infrared light irradiation would trigger the contraction of P(NIPAAm-co-AAm), thus deshielding the ligand for enhanced tumor cellular uptake. Owing to the reversible extension-contraction transformation change of P(NIPAAm-co-AAm), the reversible shielding effect on the ligand could be accomplished even if the nanoparticles return to the blood circulation. The results indicated that the system could extend blood circulation (1.6-fold at 24 h), reduce immune system clearance (28% lower), and enhance tumor accumulation (37% higher) effectively compared with the irreversible ligand shielding system by analysis of platinum. This strategy showed significantly superior tumor inhibition (11% higher) than the irreversible system. All these results make clear that the ligand reversible shielding strategy is effective and offers important references for the design of nanomaterials for improving tumor accumulation. STATEMENT OF SIGNIFICANCE: Herein, the practicality of the ligand reversible shielding strategy in tumor therapy was investigated. The ligand biotin, cisplatin loaded chain poly(acrylic acid)-Pt and the shielding segment thermo-sensitive poly(N-isopropylacrylamide-co-acrylamide) (P(NIPAAm-co-AAm) which LCST is about 39 °C) were co-modified onto the surface of gold nanostars. This well-designed NPs could shield target ligand in blood circulation (37 °C) and deshield it at tumor site (40-41 °C) reversibly. The results indicated that the system could extend blood circulation (1.6-fold at 24 h), reduce immune system clearance (28% lower) and enhance tumor accumulation (37% higher) effectively compared with the irreversible ligand shielding system by analysis of platinum. Significantly, the strategy showed superior tumor inhibition than the irreversible system (11% higher).
Collapse
|
24
|
Xiao H, Yan L, Dempsey EM, Song W, Qi R, Li W, Huang Y, Jing X, Zhou D, Ding J, Chen X. Recent progress in polymer-based platinum drug delivery systems. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Cisplatin-stitched α-poly(glutamatic acid) nanoconjugate for enhanced safety and effective tumor inhibition. Eur J Pharm Sci 2018; 119:189-199. [DOI: 10.1016/j.ejps.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 11/18/2022]
|
26
|
Mu Q, Yu J, McConnachie LA, Kraft JC, Gao Y, Gulati GK, Ho RJY. Translation of combination nanodrugs into nanomedicines: lessons learned and future outlook. J Drug Target 2018; 26:435-447. [PMID: 29285948 PMCID: PMC6205718 DOI: 10.1080/1061186x.2017.1419363] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/01/2017] [Accepted: 12/16/2017] [Indexed: 12/12/2022]
Abstract
The concept of nanomedicine is not new. For instance, some nanocrystals and colloidal drug molecules are marketed that improve pharmacokinetic characteristics of single-agent therapeutics. For the past two decades, the number of research publications on single-agent nanoformulations has grown exponentially. However, formulations advancing to pre-clinical and clinical evaluations that lead to therapeutic products has been limited. Chronic diseases such as cancer and HIV/AIDS require drug combinations, not single agents, for durable therapeutic responses. Therefore, development and clinical translation of drug combination nanoformulations could play a significant role in improving human health. Successful translation of promising concepts into pre-clinical and clinical studies requires early considerations of the physical compatibility, pharmacological synergy, as well as pharmaceutical characteristics (e.g. stability, scalability and pharmacokinetics). With this approach and robust manufacturing processes in place, some drug-combination nanoparticles have progressed to non-human primate and human studies. In this article, we discuss the rationale and role of drug-combination nanoparticles, the pre-clinical and clinical research progress made to date and the key challenges for successful clinical translation. Finally, we offer insight to accelerate clinical translation through leveraging robust nanoplatform technologies to enable implementation of personalised and precision medicine.
Collapse
Affiliation(s)
- Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | | | - John C. Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Yu Gao
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, China
| | - Gaurav K. Gulati
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rodney J. Y. Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Tabatabaei Rezaei SJ, Hesami A, Khorramabadi H, Amani V, Malekzadeh AM, Ramazani A, Niknejad H. Pt(II) complexes immobilized on polymer-modified magnetic carbon nanotubes as a new platinum drug delivery system. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Seyed Jamal Tabatabaei Rezaei
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry; Faculty of Science, University of Zanjan; PO Box 45195-313 Zanjan Iran
| | - Ali Hesami
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry; Faculty of Science, University of Zanjan; PO Box 45195-313 Zanjan Iran
| | - Hossein Khorramabadi
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry; Faculty of Science, University of Zanjan; PO Box 45195-313 Zanjan Iran
| | - Vahid Amani
- Department of Chemistry; Farhangian University; Tehran Iran
| | - Asemeh Mashhadi Malekzadeh
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry; Faculty of Science, University of Zanjan; PO Box 45195-313 Zanjan Iran
| | - Ali Ramazani
- Laboratory of Novel Drug Delivery Systems, Department of Chemistry; Faculty of Science, University of Zanjan; PO Box 45195-313 Zanjan Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
28
|
Liang C, Wang H, Zhang M, Cheng W, Li Z, Nie J, Liu G, Lian D, Xie Z, Huang L, Zeng X. Self-controlled release of Oxaliplatin prodrug from d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) functionalized mesoporous silica nanoparticles for cancer therapy. J Colloid Interface Sci 2018; 525:1-10. [PMID: 29679795 DOI: 10.1016/j.jcis.2018.04.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/11/2022]
Abstract
Oxaliplatin is a promising antitumor drug, but its effectiveness is limited by its side effects in vivo. In this study, we introduced an Oxaliplatin prodrug (Oxa(IV)) self-controlled release strategy, in which Oxa(IV) is encapsulated by TPGS functionalized mesoporous silica nanoparticles (MSNs), and its release is controlled by biological stimuli, such as acidic environments in tumor tissue and high concentrations of reductants in cancer cells. Despite the lack of auxiliary "gatekeepers" to MSNs, this simplified model of Oxa(IV)-MSNs-TPGS could fine-tune the movements of the drug release. Furthermore, we utilized a prodrug approach to avoid the side effects of Oxaliplatin, and we used TPGS groups to reduce multidrug resistance (MDR). Finally, the toxicity of Oxa(IV)-MSNs-TPGS to a human lung adenocarcinoma cell line (A549) in vitro was significantly lower than that of Oxaliplatin. This model demonstrates the considerable potential of a simple self-controlled release system with multiple functions.
Collapse
Affiliation(s)
- Chaoyu Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, China; Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Heping Wang
- Department of Respiratory Diseases, Shenzhen Children's Hospital, 7019 Yitian Road, Futian District, Shenzhen 518026, China
| | - Min Zhang
- Shenzhen Xili People's Hospital, Shenzhen 518055, China
| | - Wei Cheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China; Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Zihuang Li
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen Municipal People's Hospital, Shenzhen 518020, China.
| | - Junpeng Nie
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Daizheng Lian
- Department of Radiation Oncology, Second Clinical Medicine College of Jinan University, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Zhenhua Xie
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Laiqiang Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, China; Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Xiaowei Zeng
- Department of Chemistry, Tsinghua University, Beijing 100084, China; Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
29
|
Abstract
By the end of 2017 more than 200,000 scientific research articles had been published about nanomedicine. Out of this vast number only a few of the reported nanoconstructs reached clinical trials for various applications, including the diagnosis and treatment of several cancers, and the treatment of infections and other non-cancerous diseases. 30 years after the pioneering work in this field of research, the low product yield at the end of research pipeline leads to a question that is asked by many: 'had nanomedicine been lost in translation?' In this review, we will discuss the landscape of nanomedicine regarding cancer treatment and miscellaneous applications as well as some obstacles toward full utilization of this powerful therapeutic tool and suggest a few solutions to improve the current translational value of nanomedicine research.
Collapse
|
30
|
Liang S, Han L, Mu W, Jiang D, Hou T, Yin X, Pang X, Yang R, Liu Y, Zhang N. Carboplatin-loaded SMNDs to reduce GSH-mediated platinum resistance for prostate cancer therapy. J Mater Chem B 2018; 6:7004-7014. [DOI: 10.1039/c8tb01721b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathione (GSH)-mediated drug resistance can strongly weaken the therapeutic efficiency of platinum(ii).
Collapse
|
31
|
Teng B, Han Y, Zhang X, Xiao H, Yu C, Li H, Cheng Z, Jin D, Wong KL, Ma P, Lin J. Phenanthriplatin(iv) conjugated multifunctional up-converting nanoparticles for drug delivery and biomedical imaging. J Mater Chem B 2018; 6:5059-5068. [DOI: 10.1039/c8tb01034j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Platinum-based drugs cisplatin, carboplatin, and oxaliplatin are widely used in the clinical treatment of cancer.
Collapse
|
32
|
Niu Y, Stadler FJ, He T, Zhang X, Yu Y, Chen S. Smart multifunctional polyurethane microcapsules for the quick release of anticancer drugs in BGC 823 and HeLa tumor cells. J Mater Chem B 2017; 5:9477-9481. [PMID: 32264561 DOI: 10.1039/c7tb02570j] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Smart multifunctional drug delivery systems (DDSs) based on cytophilic fluorescent polyurethane copolymer microcapsules with high tumor cell internalization, triggered release, quick cancer cell death and real time fluorescent monitoring abilities is developed as a facile and versatile approach for precision cancer therapy.
Collapse
Affiliation(s)
- Yuqing Niu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Qi SS, Sun JH, Yu HH, Yu SQ. Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv 2017; 24:1909-1926. [PMID: 29191057 PMCID: PMC8241150 DOI: 10.1080/10717544.2017.1410256] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
To achieve superior therapeutic efficacy, the combination chemotherapy using two or more anticancer drugs in clinical practice has been generally accepted as a feasible strategy. On account of the concept of combination chemotherapy, co-delivery of anticancer drugs with nanotechnology gradually becomes a desired strategy and one of the research frontiers on modern drug delivery. In recent years, nano drug co-delivery system (NDCDS), which loads at least two anticancer drugs with different physicochemical and pharmacological properties into a combination delivery system, has achieved rapid development. NDCDS synergistically inhibited the growth of the tumor compared with the free drugs. In this review, we highlighted the current state of co-delivery nanoparticles and the most commonly used nanomaterial, discussed challenges and strategies, and prospect future development.
Collapse
Affiliation(s)
- Shan-Shan Qi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, The People’s Republic of China
- Cancer Pharmacology Crown Bioscience Inc, Taicang, The People’s Republic of China
| | - Jia-Hui Sun
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, The People’s Republic of China
| | - Hao-Han Yu
- Nanjing DeBioChem Inc, Nanjing, The People’s Republic of China
| | - Shu-Qin Yu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, The People’s Republic of China
| |
Collapse
|
34
|
Zhu C, Xiao J, Tang M, Feng H, Chen W, Du M. Platinum covalent shell cross-linked micelles designed to deliver doxorubicin for synergistic combination cancer therapy. Int J Nanomedicine 2017; 12:3697-3710. [PMID: 28553108 PMCID: PMC5439721 DOI: 10.2147/ijn.s130938] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The preparation of polymer therapeutics capable of controlled release of multiple chemotherapeutic drugs has remained a tough problem in synergistic combination cancer therapy. Herein, a novel dual-drug co-delivery system carrying doxorubicin (DOX) and platinum(IV) (Pt[IV]) was developed. An amphiphilic diblock copolymer, PCL-b-P(OEGMA-co-AzPMA), was synthesized and used as a nanoscale drug carrier in which DOX and Pt(IV) could be packaged together. The copolymers were shell cross-linked by Pt(IV) prodrug via a click reaction. Studies on the in vitro drug release and cellular uptake of the dual-drug co-delivery system showed that the micelles were effectively taken up by the cells and simultaneously released drugs in the cells. Futhermore, the co-delivery polymer nanoparticles caused much higher cell death in HeLa and A357 tumor cells than either the free drugs or single-drug-loaded micelles at the same dosage, exhibiting a synergistic combination of DOX and Pt(IV). The results obtained with the shell cross-linked micelles based on an anticancer drug used as a cross-linking linkage suggested a promising application of the micelles for multidrug delivery in combination cancer therapy.
Collapse
Affiliation(s)
- Caiying Zhu
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Jingjing Xiao
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Ming Tang
- Department of Otorhinolaryngology-Head and Neck Surgery, Ningbo Medical Center, Li Huli Hospital, Ningbo
| | - Hua Feng
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Wulian Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Ming Du
- Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital, Shanghai Medical College, Fudan University, Shanghai
| |
Collapse
|
35
|
Xiao H, Qi R, Li T, Awuah SG, Zheng Y, Wei W, Kang X, Song H, Wang Y, Yu Y, Bird MA, Jing X, Yaffe MB, Birrer MJ, Ghoroghchian PP. Maximizing Synergistic Activity When Combining RNAi and Platinum-Based Anticancer Agents. J Am Chem Soc 2017; 139:3033-3044. [PMID: 28166401 DOI: 10.1021/jacs.6b12108] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNAi approaches have been widely combined with platinum-based anticancer agents to elucidate cellular responses and to target gene products that mediate acquired resistance. Recent work has demonstrated that platination of siRNA prior to transfection may negatively influence RNAi efficiency based on the position and sequence of its guanosine nucleosides. Here, we used detailed spectroscopic characterization to demonstrate rapid formation of Pt-guanosine adducts within 30 min after coincubation of oxaliplatin [OxaPt(II)] or cisplatin [CisPt(II)] with either guanosine monophosphate or B-cell lymphoma 2 (BCL-2) siRNA. After 3 h of exposure to these platinum(II) agents, >50% of BCL-2 siRNA transcripts were platinated and unable to effectively suppress mRNA levels. Platinum(IV) analogues [OxaPt(IV) or CisPt(IV)] did not form Pt-siRNA adducts but did display decreased in vitro uptake and reduced potency. To overcome these challenges, we utilized biodegradable methoxyl-poly(ethylene glycol)-block-poly(ε-caprolactone)-block-poly(l-lysine) (mPEG-b-PCL-b-PLL) to generate self-assembled micelles that covalently conjugated OxaPt(IV) and/or electrostatically complexed siRNA. We then compared multiple strategies by which to combine BCL-2 siRNA with either OxaPt(II) or OxaPt(IV). Overall, we determined that the concentrations of siRNA (nM) and platinum(II)-based anticancer agents (μM) that are typically used for in vitro experiments led to rapid Pt-siRNA adduct formation and ineffective RNAi. Coincorporation of BCL-2 siRNA and platinum(IV) analogues in a single micelle enabled maximal suppression of BCL-2 mRNA levels (to <10% of baseline), augmented the intracellular levels of platinum (by ∼4×) and the numbers of resultant Pt-DNA adducts (by >5×), increased the cellular fractions that underwent apoptosis (by ∼4×), and enhanced the in vitro antiproliferative activity of the corresponding platinum(II) agent (by 10-100×, depending on the cancer cell line). When combining RNAi and platinum-based anticancer agents, this generalizable strategy may be adopted to maximize synergy during screening or for therapeutic delivery.
Collapse
Affiliation(s)
- Haihua Xiao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ruogu Qi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ting Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Samuel G Awuah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yaorong Zheng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Wei Wei
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Xiang Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Haiqin Song
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yongheng Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Yingjie Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Molly A Bird
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael J Birrer
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - P Peter Ghoroghchian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.,Dana-Farber Cancer Institute , Boston, Massachusetts 02115, United States
| |
Collapse
|
36
|
Wang Y, Qiu Y, Yin S, Zhang L, Shi K, Gao H, Zhang Z, He Q. A functional nanocarrier that copenetrates extracellular matrix and multiple layers of tumor cells for sequential and deep tumor autophagy inhibitor and chemotherapeutic delivery. Autophagy 2017; 13:359-370. [PMID: 27911136 PMCID: PMC5324845 DOI: 10.1080/15548627.2016.1256523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/19/2016] [Accepted: 10/31/2016] [Indexed: 02/05/2023] Open
Abstract
To further enhance the intensity of deep tumor drug delivery and integrate a combined therapy, we herein report on a core-shell nanocarrier that could simultaneously overcome the double barriers of the extracellular matrix (ECM) and multiple layers of tumor cells (MLTC). A pH-triggered reversible swelling-shrinking core and an MMP2 (matrix metallopeptidase 2) degradable shell were developed to encapsulate chemotherapeutics and macroautophagy/autophagy inhibitors, respectively. MMP2 degraded the shell, which was followed by the autophagy inhibitors' release. The exposed core could diffuse along the pore within the ECM to deliver chemotherapeutics into deep tumors, and it was able to swell in lysosomes and shrink back in the cytoplasm or ECM. The swelling of the core resulted in the rapid release of chemotherapeutics to kill autophagy-inhibited cells. After leaving the dead cells, the shrinking core could act on neighboring cells that were closer to the center of the tumor. The core thus could also cross MLTC layer by layer to deliver chemotherapeutics into the deep tumor.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of education, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Qiu
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of education, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng Yin
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of education, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of education, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kairong Shi
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of education, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of education, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of education, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of education, West China School of Pharmacy, and State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Zhang Z, Wu Y, Kuang G, Liu S, Zhou D, Chen X, Jing X, Huang Y. Pt(iv) prodrug-backboned micelle and DCA loaded nanofibers for enhanced local cancer treatment. J Mater Chem B 2017; 5:2115-2125. [DOI: 10.1039/c7tb00178a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An implantable Pt(iv) prodrug-backboned micelle and DCA loaded electrospun nanofiber system was developed for local combination chemotherapy.
Collapse
Affiliation(s)
- Zhiyun Zhang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of Chinese Academy of Sciences
| | - Yanjuan Wu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
- University of Chinese Academy of Sciences
| | - Gaizhen Kuang
- Department of Gastroenterology
- the Second Affiliated Hospital
- Medical School of Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
38
|
Yang X, Tong J, Guo L, Qian Z, Chen Q, Qi R, Qiu Y. Bundling potent natural toxin cantharidin within platinum (IV) prodrugs for liposome drug delivery and effective malignant neuroblastoma treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:287-296. [DOI: 10.1016/j.nano.2016.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/06/2016] [Accepted: 08/18/2016] [Indexed: 11/26/2022]
|
39
|
Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Control Release 2016; 240:489-503. [PMID: 27287891 PMCID: PMC5064882 DOI: 10.1016/j.jconrel.2016.06.012] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| | - Ho Lun Wong
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - June Young Eoh
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Yu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| |
Collapse
|
40
|
Parker JP, Ude Z, Marmion CJ. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer. Metallomics 2016; 8:43-60. [PMID: 26567482 DOI: 10.1039/c5mt00181a] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Platinum drugs as anti-cancer therapeutics are held in extremely high regard. Despite their success, there are drawbacks associated with their use; their dose-limiting toxicity, their limited activity against an array of common cancers and patient resistance to Pt-based therapeutic regimes. Current investigations in medicinal inorganic chemistry strive to offset these shortcomings through selective targeting of Pt drugs and/or the development of Pt drugs with new or multiple modes of action. A comprehensive overview showcasing how liposomes, nanocapsules, polymers, dendrimers, nanoparticles and nanotubes may be employed as vehicles to selectively deliver cytotoxic Pt payloads to tumour cells is provided.
Collapse
Affiliation(s)
- James P Parker
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| | - Ziga Ude
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
41
|
Yan Y, Zhang J, Ren L, Tang C. Metal-containing and related polymers for biomedical applications. Chem Soc Rev 2016; 45:5232-63. [PMID: 26910408 PMCID: PMC4996776 DOI: 10.1039/c6cs00026f] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A survey of the most recent progress in the biomedical applications of metal-containing polymers is given. Due to the unique optical, electrochemical, and magnetic properties, at least 30 different metal elements, most of them transition metals, are introduced into polymeric frameworks for interactions with biology-relevant substrates via various means. Inspired by the advance of metal-containing small molecular drugs and promoted by the great progress in polymer chemistry, metal-containing polymers have gained momentum during recent decades. According to their different applications, this review summarizes the following biomedical applications: (1) metal-containing polymers as drug delivery vehicles; (2) metal-containing polymeric drugs and biocides, including antimicrobial and antiviral agents, anticancer drugs, photodynamic therapy agents, radiotherapy agents and biocides; (3) metal-containing polymers as biosensors, and (4) metal-containing polymers in bioimaging.
Collapse
Affiliation(s)
- Yi Yan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
- Department of Applied Chemistry, School of Science, Northwestern Polytechnical, University, Xi’an, Shannxi, 710129, China
| | - Jiuyang Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Lixia Ren
- School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
42
|
The application of prodrug-based nano-drug delivery strategy in cancer combination therapy. Colloids Surf B Biointerfaces 2016; 146:482-9. [DOI: 10.1016/j.colsurfb.2016.06.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/20/2022]
|
43
|
Kang X, Zhao C, Yan L, Qi R, Jing X, Wang Z. Sensitizing nanoparticle based platinum(IV) drugs by curcumin for better chemotherapy. Colloids Surf B Biointerfaces 2016; 145:812-819. [DOI: 10.1016/j.colsurfb.2016.05.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 05/11/2016] [Accepted: 05/28/2016] [Indexed: 11/30/2022]
|
44
|
Zhang Z, Liu S, Qi Y, Zhou D, Xie Z, Jing X, Chen X, Huang Y. Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. J Control Release 2016; 235:125-133. [DOI: 10.1016/j.jconrel.2016.05.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/29/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
|
45
|
Zhang B, Wang T, Yang S, Xiao Y, Song Y, Zhang N, Garg S. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J Control Release 2016; 238:10-21. [PMID: 27432750 DOI: 10.1016/j.jconrel.2016.07.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023]
Abstract
Drug combinations are widely employed in chemotherapy for colorectal cancer treatment. However, traditional cocktail combination in clinic causes the uncertainty of the treatment, owing to varying pharmacokinetics of different drugs. The aim of this study was to design co-loaded liposomes to achieve the synchronised delivery and release. Oxaliplatin and irinotecan hydrochloride, as one of recommended combination schemes for the treatment of colorectal cancer in clinic, were co-loaded into the liposomes. The particle sizes of the liposomes were <200nm with uniform size distribution. In vitro release study showed that both drugs could be synchronously released from the liposomes, which means the optimized synergistic ratio of two drugs could be achieved. In vitro cellular uptake revealed that co-loaded liposomes could efficiently deliver different drugs into the same cells, indicating their potential as carriers for enhancing the cancer therapy. CLSM images of cryo-sections for in vivo co-delivery study also revealed that co-loaded liposomes had superior ability to co-deliver both the cargoes into the same tumor cells. Besides, in vivo NIRF imaging indicated that the liposomes could increase the drug accumulation in tumor compared with free drug. In vitro cytotoxicity evaluation demonstrated that co-loaded liposomes exhibited higher cytotoxicity than the mixture of single loaded liposomes in both CT-26 and HCT-116 cells. Furthermore, co-loaded liposomes also presented superior anti-tumor activity in CT-26 bearing BALB/c mice. In vivo safety assessment demonstrated that liposomes had lower toxicities than their solution formulations. These results indicated that oxaliplatin and irinotecan hydrochloride co-loaded liposomes would be an efficient formulation for improving colorectal cancer therapy with potential clinical applications.
Collapse
Affiliation(s)
- Bo Zhang
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Tianqi Wang
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Shaomei Yang
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Yanan Xiao
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Na Zhang
- School of Pharmaceutical Science, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China.
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
46
|
Li W, Jiang M, Cao Y, Yan L, Qi R, Li Y, Jing X. Turning Ineffective Transplatin into a Highly Potent Anticancer Drug via a Prodrug Strategy for Drug Delivery and Inhibiting Cisplatin Drug Resistance. Bioconjug Chem 2016; 27:1802-6. [DOI: 10.1021/acs.bioconjchem.6b00302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenliang Li
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Mo Jiang
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Yue Cao
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Lesan Yan
- Department
of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104-6321, United States
| | - Ruogu Qi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Yuxin Li
- National
Engineering Laboratory for Druggable Gene and Protein Screening, School
of Life Science, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Xiabin Jing
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
47
|
|
48
|
He S, Qi Y, Kuang G, Zhou D, Li J, Xie Z, Chen X, Jing X, Huang Y. Single-Stimulus Dual-Drug Sensitive Nanoplatform for Enhanced Photoactivated Therapy. Biomacromolecules 2016; 17:2120-7. [DOI: 10.1021/acs.biomac.6b00353] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shasha He
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
- University of
Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yanxin Qi
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Gaizhen Kuang
- Department
of Gastroenterology, The Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710048, PR China
| | - Dongfang Zhou
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jizhen Li
- College
of Chemistry, Jilin University, Changchun 130023, PR China
| | - Zhigang Xie
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xuesi Chen
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Xiabin Jing
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Yubin Huang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| |
Collapse
|
49
|
Cheng Q, Liu Y. Multifunctional platinum-based nanoparticles for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1410] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/07/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Qinqin Cheng
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry; University of Science and Technology of China; Hefei China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, CAS High Magnetic Field Laboratory, Department of Chemistry; University of Science and Technology of China; Hefei China
| |
Collapse
|
50
|
Matyszewska D. Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:524-532. [PMID: 27335743 PMCID: PMC4901540 DOI: 10.3762/bjnano.7.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/29/2016] [Indexed: 06/06/2023]
Abstract
In this work the interactions of an anticancer drug daunorubicin (DNR) with model thiolipid layers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) were investigated using Langmuir technique. The results obtained for a free drug were compared with the results recorded for DNR attached to SWCNTs as potential drug carrier. Langmuir studies of mixed DPPTE-SWCNTs-DNR monolayers showed that even at the highest investigated content of the nanotubes in the monolayer, the changes in the properties of DPPTE model membranes were not as significant as in case of the incorporation of a free drug, which resulted in a significant increase in the area per molecule and fluidization of the thiolipid layer. The presence of SWCNTs-DNR in the DPPTE monolayer at the air-water interface did not change the organization of the lipid molecules to such extent as the free drug, which may be explained by different types of interactions playing crucial role in these two types of systems. In the case of the interactions of free DNR the electrostatic attraction between positively charged drug and negatively charged DPPTE monolayer play the most important role, while in the case of SWCNTs-DNR adducts the hydrophobic interactions between nanotubes and acyl chains of the lipid seem to be prevailing. Electrochemical studies performed for supported model membranes containing the drug delivered in the two investigated forms revealed that the surface concentration of the drug-nanotube adduct in supported monolayers is comparable to the reported surface concentration of the free DNR incorporated into DPPTE monolayers on gold electrodes. Therefore, it may be concluded that the application of carbon nanotubes as potential DNR carrier allows for the incorporation of comparable amount of the drug into model membranes with simultaneous decrease in the negative changes in the membrane structure and organization, which is an important aspect in terms of side effects of the drug.
Collapse
Affiliation(s)
- Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02089 Warsaw, Poland
| |
Collapse
|