1
|
Morita K, Motoyama K, Kuramoto A, Onodera R, Higashi T. Synthesis of cyclodextrin‐based radial polycatenane cyclized by amide bond and subsequent fabrication of water‐soluble derivatives. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01068-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
2
|
Ghodke SB, Parkar JN, Deshpande AR, Dandekar PP, Jain RD. Structure–Activity Relationship of Polyester-Based Cationic Polyrotaxane Vector-Mediated In Vitro siRNA Delivery: Effect on Gene Silencing Efficiency. ACS APPLIED BIO MATERIALS 2020; 3:7500-7514. [DOI: 10.1021/acsabm.0c00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sharwari B. Ghodke
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Junaid N. Parkar
- Department of Polymer & Surface Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Aparna R. Deshpande
- Department of Physics and Center for Energy Science, h cross, Indian Institute of Science Education Research, Pune 411008, India
| | - Prajakta P. Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Ratnesh D. Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
3
|
Cooper RC, Yang H. Duplex of Polyamidoamine Dendrimer/Custom-Designed Nuclear-Localization Sequence Peptide for Enhanced Gene Delivery. Bioelectricity 2020; 2:150-157. [PMID: 32856017 DOI: 10.1089/bioe.2020.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Dendrimers are an attractive alternative to viral vectors due to the low cost of production, larger genetic insert-carrying capacity, and added control over immune- and genotoxic complications through versatile functionalization. However, their transfection rates pale in comparison to their viral counterparts, resulting in widespread research efforts in the attempt to improve transfection efficiency. Materials and Methods: In this work, we designed a synthetic diblock nuclear-localization sequence peptide (NLS) (DDDDDDVKRKKKP) and complexed it with polyamidoamine (PAMAM) dendrimer G4 to form a duplex for gene delivery. We conducted transmission electron microscopy, gel mobility shift assay, and intracellular trafficking studies. We also assessed its transfection efficiency for the delivery of a green fluorescent protein-encoding plasmid (pGFP) to NIH3T3 cells. Results: PAMAM dendrimer G4, NLS, and plasmid DNA can form a stable three-part polyplex and gain enhanced entry into the nucleus. We found transfection efficiency, in large part, depends on the ratio of G4:NLS:plasmid. The triplex prepared at the ratio of 1:60:1 for G4:NLS:pGFP has been shown to be more significantly efficient in transfecting cells than the control group (G4/pGFP, 0.5:1). Conclusions: This new diblock NLS peptide can facilely complex with dendrimers to improve dendrimer-based gene transfection. It can also complex with other polycationic polymers to produce more potent nonviral duplex gene delivery vehicles.
Collapse
Affiliation(s)
- Remy C Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, USA.,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
Zhang YM, Liu YH, Liu Y. Cyclodextrin-Based Multistimuli-Responsive Supramolecular Assemblies and Their Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806158. [PMID: 30773709 DOI: 10.1002/adma.201806158] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Cyclodextrins (CDs), which are a class of cyclic oligosaccharides extracted from the enzymatic degradation of starch, are often utilized in molecular recognition and assembly constructs, primarily via host-guest interactions in water. In this review, recent progress in CD-based supramolecular nanoassemblies that are sensitive to chemical, biological, and physical stimuli is updated and reviewed, and intriguing examples of the biological functions of these nanoassemblies are presented, including pH- and redox-responsive drug and gene delivery, enzyme-activated specific cargo release, photoswitchable morphological interconversion, microtubular aggregation, and cell-cell communication, as well as a geomagnetism-controlled nanosystem for the suppression of tumor invasion and metastasis. Moreover, future perspectives and challenges in the fabrication of intelligent CD-based biofunctional materials are also discussed at the end of this review, which is expected to promote the translational development of these nanomaterials in the biomedical field.
Collapse
Affiliation(s)
- Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
5
|
Abstract
Cyclodextrins are widely used excipients, composed of glucopyranose units with a cyclic structure. One of their most important properties, is that their inner cavity is hydrophobic, while their surface is hydrophilic. This enables them for the complex formation with lipophilic molecules. They have several applications in the pharmaceutical field like solubility enhancers or the building blocks of larger drug delivery systems. On the other hand, they have numerous effects on cells or biological barriers. In this review the most important properties of cyclodextrins and cyclodextrin-based drug delivery systems are summarized with special focus on their biological activity.
Collapse
|
6
|
Sivakumar PM, Peimanfard S, Zarrabi A, Khosravi A, Islami M. Cyclodextrin-Based Nanosystems as Drug Carriers for Cancer Therapy. Anticancer Agents Med Chem 2019; 20:1327-1339. [PMID: 31490765 DOI: 10.2174/1871520619666190906160359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Cyclodextrins have been of great interest as excellent candidates for fabricating versatile nano-drug delivery systems due to their commercial availability, easy functionalization, low immunogenicity, biocompatibility and safety. The possibility of reversible inclusion complex formation between cyclodextrins and various guest molecules in association with versatile exclusive properties of cyclodextrins offer a route towards the fabrication of highly sophisticated nanostructures with enormous potential for cancer treatment. METHODS AND RESULTS The current review discusses important recent advances in the fabrication and development of cyclodextrin-based nanostructures for cancer therapy. Firstly, the formation of inclusion complexes between cyclodextrin derivatives and anticancer compounds, as well as their application, are summarized. Secondly, the cyclodextrins -based nanosystems including cyclodextrin-containing polymers, cyclodextrin-based supramolecular necklaces, which consist of polyrotaxanes and polypseudorotaxanes and cyclodextrin based hydrogels accompanied by their applications in cancer treatment are highlighted. In the end, the future perspective of this field is discussed. CONCLUSION Numerous investigations in this area pave the way for the flourishing of the next generation of nano-therapeutics towards enhanced cancer therapy.
Collapse
Affiliation(s)
- Ponnurengam M Sivakumar
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
| | - Shohreh Peimanfard
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Orta Mh. Üniversite Cd. No: 27/1
- 34956 Tuzla, Istanbul, Turkey
| | - Arezoo Khosravi
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran
| | - Matin Islami
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
7
|
Karimian R, Aghajani M. Cyclodextrins and their Derivatives as Carrier Molecules in Drug and Gene Delivery Systems. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190627115422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides containing
six (α-CD), seven (β-CD), eight (γ-CD) and more glucopyranose units linked with α-(1,4)
bonds, having a terminal hydrophilic part and central lipophilic cavity. α-, β- and γ-CDs
are widely used in many industrial products, technologies and analytical methods owing to
their unique, versatile and tunable characteristics. In the pharmaceutical industry, CDs are
used as complexing agents to enhance aqueous solubility, physico-chemical stability and
bio-availability of administered drugs. Herein, special attention is given to the use of α-, β-
and γ-CDs and their derivatives in different areas of drug and gene delivery systems in the
past few decades through various routes of administration with a major emphasis on the
more recent developments.
Collapse
Affiliation(s)
- Ramin Karimian
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Milad Aghajani
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Evenou P, Rossignol J, Pembouong G, Gothland A, Colesnic D, Barbeyron R, Rudiuk S, Marcelin AG, Ménand M, Baigl D, Calvez V, Bouteiller L, Sollogoub M. Bridging β-Cyclodextrin Prevents Self-Inclusion, Promotes Supramolecular Polymerization, and Promotes Cooperative Interaction with Nucleic Acids. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Pierre Evenou
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Julien Rossignol
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Gaëlle Pembouong
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Adélie Gothland
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Dmitri Colesnic
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Renaud Barbeyron
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Sergii Rudiuk
- PASTEUR; Département de chimie; École normale supérieure; PSL University; Sorbonne Université; CNRS; 75005 Paris France
| | - Anne-Geneviève Marcelin
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Mickaël Ménand
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Damien Baigl
- PASTEUR; Département de chimie; École normale supérieure; PSL University; Sorbonne Université; CNRS; 75005 Paris France
| | - Vincent Calvez
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Laurent Bouteiller
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| |
Collapse
|
9
|
Evenou P, Rossignol J, Pembouong G, Gothland A, Colesnic D, Barbeyron R, Rudiuk S, Marcelin AG, Ménand M, Baigl D, Calvez V, Bouteiller L, Sollogoub M. Bridging β-Cyclodextrin Prevents Self-Inclusion, Promotes Supramolecular Polymerization, and Promotes Cooperative Interaction with Nucleic Acids. Angew Chem Int Ed Engl 2018; 57:7753-7758. [DOI: 10.1002/anie.201802550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Pierre Evenou
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Julien Rossignol
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Gaëlle Pembouong
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Adélie Gothland
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Dmitri Colesnic
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Renaud Barbeyron
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Sergii Rudiuk
- PASTEUR; Département de chimie; École normale supérieure; PSL University; Sorbonne Université; CNRS; 75005 Paris France
| | - Anne-Geneviève Marcelin
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Mickaël Ménand
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Damien Baigl
- PASTEUR; Département de chimie; École normale supérieure; PSL University; Sorbonne Université; CNRS; 75005 Paris France
| | - Vincent Calvez
- Sorbonne Université; INSERM; Institut Pierre Louis d'Epidémiologie et de Santé Publique, UMR 1136; 83 boulevard de l'hôpital 75652 Paris cedex 13 France
| | - Laurent Bouteiller
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| | - Matthieu Sollogoub
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; UMR 8232; 4 place Jussieu 75005 Paris France
| |
Collapse
|
10
|
Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700513. [PMID: 29721408 PMCID: PMC5908359 DOI: 10.1002/advs.201700513] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Indexed: 05/08/2023]
Abstract
Polysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.e., alginate, chitosan, hyaluronic acid, and dextran) and emphasizes their chemical modification, preparation approaches, preclinical studies, and clinical translations. Different cargo fabrication techniques are also presented in the third section. Recent progresses in preclinical applications are then discussed, including tissue engineering and treatment of diseases in both therapeutic and monitoring aspects. Finally, clinical translational studies with ongoing clinical trials are summarized and reviewed. The promise of new development in nanotechnology and polysaccharide chemistry helps clinical translation of polysaccharide-based drug delivery systems.
Collapse
Affiliation(s)
- Tianxin Miao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Collaborative Innovation Center of Guangxi Biological Medicine and theMedical and Scientific Research CenterGuangxi Medical UniversityNanning530021China
| | - Yun Zeng
- Department of PharmacologyXiamen Medical CollegeXiamen361008China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| |
Collapse
|
11
|
Shen Y, Zhang J, Hao W, Wang T, Liu J, Xie Y, Xu S, Liu H. Copolymer micelles function as pH-responsive nanocarriers to enhance the cytotoxicity of a HER2 aptamer in HER2-positive breast cancer cells. Int J Nanomedicine 2018; 13:537-553. [PMID: 29416334 PMCID: PMC5790103 DOI: 10.2147/ijn.s149942] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Efficient delivery of nucleic acids into target cells is crucial for nucleic acid-based therapies. Various nucleic acid delivery systems have been developed, each with its own advantages and limitations. We previously developed a nanoparticle-based delivery system for small chemical drugs using pH-responsive PEG8-PDPA100-PEG8 polymer micelles as carriers. In this study, we extend the application of these pH-responsive micelle-like nanoparticles (MNPs) to deliver oligonucleotides. We demonstrate that the MNPs efficiently encapsulate and deliver oligonucleotides of different lengths (20-100 nt) into cells. The cargo oligonucleotides are rapidly released at pH 5.0. We prepared MNPs carrying a Texas red-fluorescently labeled anti-human epidermal growth factor receptor 2 (HER2) aptamer (HApt). Compared to free HApt, the HApt-MNPs resulted in significantly better cellular uptake, reduced cell viability, and increased apoptosis in SKBR3 breast cancer cells, which overexpress HER2. Moreover, HApt-MNPs were significantly less cytotoxic to MCF7 breast cancer cells, which express low levels of HER2. After cellular uptake, HApt-MNPs mainly accumulated in lysosomes; inhibition of lysosomal activity using bafilomycin A1 and LysoTracker Red staining confirmed that lysosomal activity and low pH were required for HApt-MNP accumulation and release. Furthermore, HER2 protein expression declined significantly following treatment with HApt-MNPs in SKBR3 cells, indicating that HApt-induced translocation of HER2 to lysosomes exerted a potent cytotoxic effect by altering signaling downstream of HER2. In conclusion, this pH-responsive and lysosome-targeting nanoparticle system can efficiently deliver oligonucleotides to specific target cells and has significant potential for nucleic acid-based cancer therapies.
Collapse
Affiliation(s)
- Yinxing Shen
- State Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology.,Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Junqi Zhang
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Weiju Hao
- State Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology
| | - Tong Wang
- State Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology
| | - Jing Liu
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Youhua Xie
- Department of Medical Microbiology and Parasitology, Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Shouhong Xu
- State Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology
| | - Honglai Liu
- State Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology
| |
Collapse
|
12
|
Ardeleanu R, Dascalu AI, Neamtu A, Peptanariu D, Uritu CM, Maier SS, Nicolescu A, Simionescu BC, Barboiu M, Pinteala M. Multivalent polyrotaxane vectors as adaptive cargo complexes for gene therapy. Polym Chem 2018. [DOI: 10.1039/c7py01256j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The philosophy to design and construct polyrotaxane carriers, as efficient gene delivery systems.
Collapse
Affiliation(s)
- Rodinel Ardeleanu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Andrei I. Dascalu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Andrei Neamtu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Regional Institute of Oncology (IRO)
| | - Dragos Peptanariu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Cristina M. Uritu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Stelian S. Maier
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Department of Textile and Leather Chemical Engineering
| | - Alina Nicolescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| | - Bogdan C. Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
- Department of Natural and Synthetic Polymers
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group
- Institut
- Européen des Membranes
- ENSCM/UMII/UMR-CNRS 5635
- 34095 Montpellier, Cedex 5
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers
- “Petru Poni” Institute of Macromolecular Chemistry
- 700487 Iasi
- Romania
| |
Collapse
|
13
|
Wan N, Huan ML, Ma XX, Jing ZW, Zhang YX, Li C, Zhou SY, Zhang BL. Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors. NANOTECHNOLOGY 2017; 28:465101. [PMID: 28905810 DOI: 10.1088/1361-6528/aa8c9c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.
Collapse
Affiliation(s)
- Ning Wan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, People's Republic of China. Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Li H, Lv N, Li X, Liu B, Feng J, Ren X, Guo T, Chen D, Fraser Stoddart J, Gref R, Zhang J. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. NANOSCALE 2017; 9:7454-7463. [PMID: 28530283 DOI: 10.1039/c6nr07593b] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Metal-organic frameworks (MOFs), which are typically embedded in polymer matrices as composites, are emerging as a new class of carriers for sustained drug delivery. Most of the MOFs and the polymers used so far in these composites, however, are not pharmaceutically acceptable. In the investigation reported herein, composites of γ-cyclodextrin (γ-CD)-based MOFs (CD-MOFs) and polyacrylic acid (PAA) were prepared by a solid in oil-in-oil (s/o/o) emulsifying solvent evaporation method. A modified hydrothermal protocol has been established which produces efficiently at 50 °C in 6 h micron (5-10 μm) and nanometer (500-700 nm) diameter CD-MOF particles of uniform size with smooth surfaces and powder X-ray diffraction patterns that are identical with those reported in the literature. Ibuprofen (IBU) and Lansoprazole (LPZ), both insoluble in water and lacking in stability, were entrapped with high drug loading in nanometer-sized CD-MOFs by co-crystallisation (that is more effective than impregnation) without causing MOF crystal degradation during the loading process. On account of the good dispersion of drug-loaded CD-MOF nanocrystals inside polyacrylic acid (PAA) matrices and the homogeneous distribution of the drug molecules within these crystals, the composite microspheres exhibit not only spherical shapes and sustained drug release over a prolonged period of time, but they also demonstrate reduced cell toxicity. The cumulative release rate for IBU (and LPZ) follows the trend: IBU-γ-CD complex microspheres (ca. 80% in 2 h) > IBU microspheres > IBU-CD-MOF/PAA composite microspheres (ca. 50% in 24 h). Importantly, no burst release of IBU (and LPZ) was observed from the CD-MOF/PAA composite microspheres, suggesting an even distribution of the drug as well as strong drug carrier interactions inside the CD-MOF. In summary, these composite microspheres, composed of CD-MOF nanocrystals embedded in a biocompatible polymer (PAA) matrix, constitute an efficient and pharmaceutically acceptable MOF-based carrier for sustained drug release.
Collapse
Affiliation(s)
- Haiyan Li
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Qin Q, Ma X, Liao X, Yang B. Scutellarin-graft cationic β-cyclodextrin-polyrotaxane: Synthesis, characterization and DNA condensation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1028-1036. [DOI: 10.1016/j.msec.2016.11.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/13/2016] [Accepted: 11/15/2016] [Indexed: 01/23/2023]
|
16
|
Przybylski C, Benito JM, Bonnet V, Mellet CO, García Fernández JM. Toward a suitable structural analysis of gene delivery carrier based on polycationic carbohydrates by electron transfer dissociation tandem mass spectrometry. Anal Chim Acta 2016; 948:62-72. [PMID: 27871611 DOI: 10.1016/j.aca.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/02/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023]
Abstract
Polycationic carbohydrates represent an attractive class of biomolecules for several applications and particularly as non viral gene delivery vectors. In this case, the establishment of structure-biological activity relationship requires sensitive and accurate characterization tools to both control and achieve fine structural deciphering. Electrospray-tandem mass spectrometry (ESI-MS/MS) appears as a suitable approach to address these questions. In the study herein, we have investigated the usefulness of electron transfer dissociation (ETD) to get structural data about five polycationic carbohydrates demonstrated as promising gene delivery agents. A particular attention was paid to determine the influence of charge states as well as both fluoranthene reaction time and supplementary activation (SA) on production of charge reduced species, fragmentation yield, varying from 2 to 62%, as well as to obtain the most higher both diversity and intensity of fragments, according to charge states and targeted compounds. ETD fragmentation appeared to be mainly directed toward pending group rather than carbohydrate cyclic scaffold leading to a partial sequencing for building blocks when amino groups are close to carbohydrate core, but allowing to complete structural deciphering of some of them, such as those including dithioureidocysteaminyl group which was not possible with CID only. Such findings clearly highlight the potential to help the rational choice of the suitable analytical conditions, according to the nature of the gene delivery molecules exhibiting polycationic features. Moreover, our ETD-MS/MS approach open the way to a fine sequencing/identification of grafted groups carried on various sets of oligo-/polysaccharides in various fields such as glycobiology or nanomaterials, even with unknown or questionable extraction, synthesis or modification steps.
Collapse
Affiliation(s)
- Cédric Przybylski
- Université d'Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, CNRS UMR 8587, Bâtiment Maupertuis, Bld F. Mitterrand, F-91025 Evry, France.
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| | - Véronique Bonnet
- Université de Picardie Jules Verne, Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources, CNRS UMR 7378, 80039 Amiens, France
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, E-41012 Sevilla, Spain
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain
| |
Collapse
|
17
|
Cooper BM, Putnam D. Polymers for siRNA Delivery: A Critical Assessment of Current Technology Prospects for Clinical Application. ACS Biomater Sci Eng 2016; 2:1837-1850. [PMID: 33440520 DOI: 10.1021/acsbiomaterials.6b00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The number of polymer-based vectors for siRNA delivery in clinical trials lags behind other delivery strategies; however, the molecular architectures and chemical compositions available to polymers make them attractive candidates for further exploration. Polymer vectors are extensively investigated in academic laboratories worldwide with fundamental progress having recently been made in the areas of high-throughput screening, synthetic methods, cellular internalization, endosomal escape and computational prediction and analysis. This review assesses recent advances within the field and highlights relevant developments from within the complementary fields of nanotechnology and protein chemistry with the intent to propose future work that addresses key gaps within the current body of knowledge, potentially advancing the development of the next generation of polymeric vectors.
Collapse
Affiliation(s)
- Bailey M Cooper
- Meinig School of Biomedical Engineering and ‡Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering and Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
18
|
Badwaik VD, Aicart E, Mondjinou YA, Johnson MA, Bowman VD, Thompson DH. Structure-property relationship for in vitro siRNA delivery performance of cationic 2-hydroxypropyl-β-cyclodextrin: PEG-PPG-PEG polyrotaxane vectors. Biomaterials 2016; 84:86-98. [PMID: 26826298 PMCID: PMC4755830 DOI: 10.1016/j.biomaterials.2015.11.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/22/2015] [Accepted: 11/25/2015] [Indexed: 11/20/2022]
Abstract
Nanoparticle-mediated siRNA delivery is a promising therapeutic approach, however, the processes required for transport of these materials across the numerous extracellular and intracellular barriers are poorly understood. Efficient delivery of siRNA-containing nanoparticles would ultimately benefit from an improved understanding of how parameters associated with these barriers relate to the physicochemical properties of the nanoparticle vectors. We report the synthesis of three Pluronic(®)-based, cholesterol end-capped cationic polyrotaxanes (PR(+)) threaded with 2-hydroxypropyl-β-cyclodextrin (HPβCD) for siRNA delivery. The biological data showed that PR(+):siRNA complexes were well tolerated (∼90% cell viability) and produced efficient silencing (>80%) in HeLa-GFP and NIH 3T3-GFP cell lines. We further used a multi-parametric approach to identify relationships between the PR(+) structure, PR(+):siRNA complex physical properties, and biological activity. Small angle X-ray scattering and cryoelectron microscopy studies reveal periodicity and lamellar architectures for PR(+):siRNA complexes, whereas the biological assays, ζ potential measurements, and imaging studies suggest that silencing efficiency is influenced by the effective charge ratio (ρeff), polypropylene oxide (PO) block length, and central PO block coverage (i.e., rigidity) of the PR(+) core. We infer from our findings that more compact PR(+):siRNA nanostructures arising from lower molecular weight, rigid rod-like PR(+) polymer cores produce improved silencing efficiency relative to higher molecular weight, more flexible PR(+) vectors of similar effective charge. This study demonstrates that PR(+):siRNA complex formulations can be produced having higher performance than Lipofectamine(®) 2000, while maintaining good cell viability and siRNA sequence protection in cell culture.
Collapse
Affiliation(s)
- Vivek D Badwaik
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, IN 47907, USA
| | - Emilio Aicart
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, IN 47907, USA
| | - Yawo A Mondjinou
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, IN 47907, USA
| | - Merrell A Johnson
- Department of Physics, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Valorie D Bowman
- Discovery Park, Hockmeyer Hall of Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - David H Thompson
- Department of Chemistry, Multi-disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
19
|
Badwaik V, Mondjinou Y, Kulkarni A, Liu L, Demoret A, Thompson DH. Efficient pDNA Delivery Using Cationic 2-Hydroxypropyl-β-Cyclodextrin Pluronic-Based Polyrotaxanes. Macromol Biosci 2016; 16:63-73. [PMID: 26257319 PMCID: PMC4891183 DOI: 10.1002/mabi.201500220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/01/2015] [Indexed: 12/23/2022]
Abstract
A family of cationic Pluronic-based polyrotaxanes (PR(+)), threaded with 2-hydroxypropyl-β-cyclodextrin (HPCD), was synthesized for pDNA delivery into multiple cell lines. All PR(+) formed highly stable, positively charged pDNA complexes that were < 250 nm in diameter. The cellular uptake and pDNA transfection efficiencies of the PR(+):pDNA complexes was enhanced relative to the commercial transfection standards L2K and bPEI, while displaying similar or lower toxicity profiles. Charge density and threading efficiency of the PR(+) agent significantly influenced the colloidal stability and physical properties of the complexes, which impacted their intracellular transfection efficiencies. Taken together, our results suggest that HPCD: Pluronic PR(+) can be used as potent vectors for pDNA-based therapeutics.
Collapse
Affiliation(s)
- Vivek Badwaik
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA
| | - Yawo Mondjinou
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA
| | - Aditya Kulkarni
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA
| | - Linjia Liu
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA
| | - Asher Demoret
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA
| | - David H Thompson
- Department of Chemistry, Multi-Disciplinary Cancer Research Facility, Bindley Bioscience Center, 1203 W. State Street, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
20
|
Pofali PA, Singh B, Dandekar P, Jain RD, Maharjan S, Choi YJ, Arote RB, Cho CS. Drug-conjugated polymers as gene carriers for synergistic therapeutic effect. J Biomed Mater Res B Appl Biomater 2015; 104:698-711. [PMID: 26471335 DOI: 10.1002/jbm.b.33545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 01/12/2023]
Abstract
The ability to safely and effectively transfer gene into cells is the fundamental goal of gene delivery. In spite of the best efforts of researchers around the world, gene therapy has limited success. This may be because of several limitations of delivering gene which is one of the greatest technical challenges in the modern medicine. To address these issues, many efforts have been made to bind drugs and genes together by polymers for co-delivery to achieve synergistic effect. Usually, binding interaction of drugs with polymers is either physical or chemical. In case of drug-polymer physical interaction, the efficiency of drugs generally decreases because of separation of drugs from polymers in vivo whenever it comes in contact with charged biofluid/s or cells. While chemical interaction of drug-polymer overcomes the aforementioned obstacle, several problems such as steric hindrance, solubility, and biodegradability hinder it to develop as gene carrier. Considering these benefits and pitfalls, the objective of this review is to discuss the possible extent of drug-conjugated polymers as safe and efficient gene delivery carriers for achieving synergistic effect to combat various genetic disorders.
Collapse
Affiliation(s)
- P A Pofali
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400-019, India.,Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - B Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400-019, India
| | - R D Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400-019, India
| | - S Maharjan
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Y J Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - R B Arote
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 110-749, Republic of Korea
| | - C S Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
21
|
Cationic β-cyclodextrin polymer applied to a dual cyclodextrin polyelectrolyte multilayer system. Carbohydr Polym 2015; 126:156-67. [DOI: 10.1016/j.carbpol.2015.02.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 01/06/2023]
|
22
|
Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 2015; 115:11043-78. [DOI: 10.1021/cr5006793] [Citation(s) in RCA: 418] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
23
|
Mostaghaci B, Susewind J, Kickelbick G, Lehr CM, Loretz B. Transfection system of amino-functionalized calcium phosphate nanoparticles: in vitro efficacy, biodegradability, and immunogenicity study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5124-5133. [PMID: 25692576 DOI: 10.1021/am507193a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many methods have been developed in order to use calcium phosphate (CaP) for delivering nucleotides into living cells. Surface functionalization of CaP nanoparticles (CaP NPs) with N-(2-aminoethyl)-3-aminopropyltrimethoxysilane was shown recently to achieve dispersed NPs with a positive surface charge, capable of transfection (Chem. Mater. 2013, 25 (18), 3667). In this study, different crystal structures of amino-modified CaP NPs (brushite and hydroxyapatite) were investigated for their interaction in cell culture systems in more detail. Qualitative (confocal laser scanning microscopy) and quantitative (flow cytometry) transfection experiments with two cell lines showed the higher transfection efficacy of brushite versus hydroxyapatite. The transfection also revealed a cell type dependency. HEK293 cells were easier to transfect compared to A549 cells. This result was supported by the cytotoxicity results. A549 cells showed a higher degree of tolerance toward the CaP NPs. Further, the impact of the surface modification on the interaction with macrophages and complement as two important components of the innate immune system were considered. The amine surface functionalization had an effect of decreasing the release of proinflammatory cytokines. The complement interaction investigated by a C3a complement activation assay did show no significant differences between CaP NPs without or with amine modification and overall weak interaction. Finally, the degradation of CaP NPs in biological media was studied with respect to the two crystal structures and at acidic and neutral pH. Both amino-modified CaP NPs disintegrate within days at neutral pH, with a notable faster disintegration of brushite NPs at acidic pH. In summary, the fair transfection capability of this amino functionalized CaP NPs together with the excellent biocompatibility, biodegradability, and low immunogenicity make them interesting candidates for further evaluation.
Collapse
Affiliation(s)
- Babak Mostaghaci
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University , 66123 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
24
|
Dandekar P, Jain R, Keil M, Loretz B, Koch M, Wenz G, Lehr CM. Enhanced uptake and siRNA-mediated knockdown of a biologically relevant gene using cyclodextrin polyrotaxane. J Mater Chem B 2015; 3:2590-2598. [DOI: 10.1039/c4tb01821d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellular investigations confirm the ability of cyclodextrin polyrotaxane nanoplexes to deliver siRNA for down-regulating genes relevant to the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- P. Dandekar
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| | - R. Jain
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| | - M. Keil
- Organic Macromolecular Chemistry
- Campus C4 2
- Saarland University
- Saarbrücken
- Germany
| | - B. Loretz
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| | - M. Koch
- Innovative Electron Microscopy
- INM-Leibniz Institute for New Materials
- Campus D2 2
- Saarland University
- Saarbrücken
| | - G. Wenz
- Organic Macromolecular Chemistry
- Campus C4 2
- Saarland University
- Saarbrücken
- Germany
| | - C.-M. Lehr
- Department of Drug Delivery (DDEL)
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)
- Campus A4 1
- Saarland University
- Saarbrücken
| |
Collapse
|
25
|
Recycling gene carrier with high efficiency and low toxicity mediated by L-cystine-bridged bis(β-cyclodextrin)s. Sci Rep 2014; 4:7471. [PMID: 25503268 PMCID: PMC4265772 DOI: 10.1038/srep07471] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 11/18/2014] [Indexed: 11/15/2022] Open
Abstract
Constructing safe and effective gene delivery carriers is becoming highly desirable for gene therapy. Herein, a series of supramolecular crosslinking system were prepared through host-guest binding of adamantyl-modified low molecular weight of polyethyleneimine with L-cystine-bridged bis(β-cyclodextrin)s and characterized by 1H NMR titration, electron microscopy, zeta potential, dynamic light-scattering, gel electrophoresis, flow cytometry and confocal fluorescence microscopy. The results showed that these nanometersized supramolecular crosslinking systems exhibited higher DNA transfection efficiencies and lower cytotoxicity than the commercial DNA carrier gold standard (25 kDa bPEI) for both normal cells and cancer cells, giving a very high DNA transfection efficiency up to 54% for 293T cells. Significantly, this type of supramolecular crosslinking system possesses a number of enzyme-responsive disulfide bonds, which can be cleaved by reductive enzyme to promote the DNA release but recovered by oxidative enzyme to make the carrier renewable. These results demonstrate that these supramolecular crosslinking systems can be used as promising gene carriers.
Collapse
|
26
|
Hayashida K, Higashi T, Kono D, Motoyama K, Wada K, Arima H. Preparation and evaluation of cyclodextrin polypseudorotaxane with PEGylated liposome as a sustained release drug carrier. Beilstein J Org Chem 2014; 10:2756-64. [PMID: 25550741 PMCID: PMC4273225 DOI: 10.3762/bjoc.10.292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/05/2014] [Indexed: 12/29/2022] Open
Abstract
Cyclodextrins (CDs) can form polypseudorotaxanes (PPRXs) with drugs or drug carriers possessing linear polymers such as polyethylene glycol (PEG). On the other hand, PEGylated liposomes have been utilized as a representative anticancer drug carrier. However, little is known about the formation of CD PPRX with PEGylated liposome. In the present study, we first report the formation of CD PPRX with PEGylated liposome and evaluate it as a sustained release drug carrier. PEGylated liposome encapsulating doxorubicin was disrupted by the addition of α-CD. Meanwhile, γ-CD included two PEG chains and/or one bending PEG chain of PEGylated liposome and formed PPRX without the disruption of the membrane integrity of the PEGylated liposome. Moreover, the release of doxorubicin and/or PEGylated liposome encapsulating doxorubicin from the PPRX was prolonged in accordance with the matrix type release mechanism. These findings suggest the potential of γ-CD PPRX as sustained release carriers for PEGylated liposome products.
Collapse
Affiliation(s)
- Kayoko Hayashida
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Daichi Kono
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Koki Wada
- Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji, Shizuoka 417-8539, Japan
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
27
|
Shakhbazau A, Archibald SJ, Shcharbin D, Bryszewska M, Midha R. Aligned collagen-GAG matrix as a 3D substrate for Schwann cell migration and dendrimer-based gene delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1979-1989. [PMID: 24801062 DOI: 10.1007/s10856-014-5224-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
The development of artificial off-the-shelf conduits that facilitate effective nerve regeneration and recovery after repair of traumatic nerve injury gaps is of fundamental importance. Collagen-glycosaminoglycan (GAG) matrix mimicking Schwann cell (SC) basal lamina has been proposed as a suitable and biologically rational substrate for nerve regeneration. In the present study, we have focused on the permissiveness of this matrix type for SC migration and repopulation, as these events play an essential role in nerve remodeling. We have also demonstrated that SCs cultured within collagen-GAG matrix are compatible with non-viral dendrimer-based gene delivery, that may allow conditioning of matrix-embedded cells for future gene therapy applications.
Collapse
Affiliation(s)
- Antos Shakhbazau
- Department of Clinical Neuroscience, Faculty of Medicine, University of Calgary, HMRB 109-3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada,
| | | | | | | | | |
Collapse
|
28
|
Huang H, Cao D, Qin L, Tian S, Liang Y, Pan S, Feng M. Dilution-stable PAMAM G1-grafted polyrotaxane supermolecules deliver gene into cells through a caveolae-dependent pathway. Mol Pharm 2014; 11:2323-33. [PMID: 24957192 DOI: 10.1021/mp5002608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Numerous preclinical studies have demonstrated that polycation mediated gene delivery systems successfully achieved efficient gene transfer into cells and animal models. However, results of their clinical trials to date have been disappointing. That self-assembled gene and polycation systems should be stable undergoing dilution in the body is one of the prerequisites to ensuring efficiency of gene transfer in clinical trials, but it was neglected in most preclinical studies. In this account, we developed the dilution-stable PAMAM G1-grafted polyrotaxane (PPG1) supermolecules in which PAMAM G1-grafted α-cyclodextrins are threaded onto a PEG chain capped with hydrophobic adamantanamine. The PPG1/pDNA polyplex (approximate 100 nm in diameter) was very stable and kept its initial particle size and a uniform size distribution at ultrahigh dilution, whereas DNA/PEI 25K polyplex was above three times bigger at a 16-fold dilution than the initial size and their particle size distribution indicated multiple peaks mainly due to forming loose and noncompacted aggregates. PPG1 supermolecules showed significantly superior transfection efficiencies compared to either PEI 25K or Lipofectamine 2000 in most cell lines tested including normal cells (HEK293A) and cancer cells (Bel7402, HepG2, and HeLa). Furthermore, we found that the PPG1 supermolecules delivered DNA into HEK293A through a caveolae-dependent pathway but not a clathrin-dependent pathway as PEI 25K did. These findings raised the intriguing possibility that the caveolae-dependent pathway of PPG1 supermolecule/pDNA polyplex avoiding lysosomal degradation was attributed to their high transfection efficiency. The dilution-stable PPG1 supermolecule polyplex facilitating caveolae-dependent internalization has potential applications to surmount the challenges of high dilutions in the body and lysosomal degradation faced by most gene therapy clinical trials.
Collapse
Affiliation(s)
- Huan Huang
- School of Pharmaceutical Sciences and the First Affiliated Hospital, Sun Yat-sen University , Guangzhou 510080, P. R. China
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang D, Tong G, Dong R, Zhou Y, Shen J, Zhu X. Self-assembly of supramolecularly engineered polymers and their biomedical applications. Chem Commun (Camb) 2014; 50:11994-2017. [DOI: 10.1039/c4cc03155e] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly behavior of supramolecularly engineered polymers and their biomedical applications have been summarized.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai, P. R. China
| | - Gangsheng Tong
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai, P. R. China
- Instrumental Analysis Center
| | - Ruijiao Dong
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai, P. R. China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai, P. R. China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Biomedical Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- 210046 Nanjing, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai, P. R. China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
| |
Collapse
|
30
|
Tamura A, Yui N. Threaded macromolecules as a versatile framework for biomaterials. Chem Commun (Camb) 2014; 50:13433-46. [DOI: 10.1039/c4cc03709j] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this feature article, the recent progress in biomaterial application of threaded macromolecules including polyrotaxanes such as drug delivery and gene delivery is described.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University
- Tokyo 101-0062, Japan
| |
Collapse
|
31
|
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides. They consist of (α-1,4)-linked glucose units, and possess a basket-shaped topology with an "inner-outer" amphiphilic character. Over the years, substantial efforts have been undertaken to investigate the possible use of CDs in drug delivery and controlled drug release, yet the potential of CDs in gene delivery has received comparatively less discussion in the literature. In this article, we will first discuss the properties of CDs for gene delivery, followed by a synopsis of the use of CDs in development and modification of non-viral gene carriers. Finally, areas that are noteworthy in CD-based gene delivery will be highlighted for future research. Due to the application prospects of CDs, it is anticipated that CDs will continue to emerge as an important tool for vector development, and will play significant roles in facilitating non-viral gene delivery in the forthcoming decades.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Division in Anatomy and Developmental Biology, Department of Oral Biology, College of Dentistry, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Tamura A, Yui N. Cellular internalization and gene silencing of siRNA polyplexes by cytocleavable cationic polyrotaxanes with tailored rigid backbones. Biomaterials 2013; 34:2480-91. [PMID: 23332177 DOI: 10.1016/j.biomaterials.2012.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
To achieve successful delivery of siRNA therapeutics, cytocleavable cationic polyrotaxanes (PRXs) composed of N,N-dimethylaminoethyl (DMAE) group-modified α-cyclodextrins (CDs) that were threaded onto a poly(ethylene glycol) (PEG) axis and capped with a bulky stopper using cytocleavable disulfide linkages (DMAE-PRX) were utilized as an siRNA carrier. DMAE-PRXs with various numbers of threading CDs and modified DMAE groups were synthesized, and the physicochemical properties, cellular internalization, and gene silencing activity of DMAE-PRX/siRNA were investigated to elucidate the relationship between its supramolecular structure and its function. When the numbers of modified DMAE groups were increased, the DMAE-PRXs formed closely associated polyplexes with siRNA and increased their polyanion exchange resistance. Additionally, the DMAE-PRXs with 52 threading CDs (52CD-PRXs) showed greater binding capabilities with siRNA and greater resistance to polyanion competition than 31CD-PRXs, indicating that the highly CD-threaded PRX structure in the 52CD-PRXs is superior in forming stable polyplexes with siRNA. Indeed, 52CD-PRX/siRNA showed greater intracellular uptake of siRNA than 31CD-PRX/siRNA with comparable numbers of DMAE groups. 52CD-PRX/siRNA successfully induced gene silencing of a targeted luciferase expressed in human cervical carcinoma without marked cytotoxicity and non-specific gene silencing. Although the gene silencing activities of DMAE-PRX/siRNA were comparable to those of linear poly(ethylenimine) (L-PEI), L-PEI showed cytotoxicity and non-specific gene silencing. Additionally, DMAE-PRXs with cytocleavable capabilities were found to enhance gene silencing, in comparison with non-cleavable DMAE-PRX. Thus, the cytocleavable cationic PRXs are suggested to be attractive supermolecules for the delivery of therapeutic siRNAs.
Collapse
Affiliation(s)
- Atsushi Tamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
33
|
|