1
|
Hafeez S, Islam A, Durrani AK, Butt MTZ, Rehmat S, Khurshid A, Khan SM. Fabrication of pectin-based stimuli responsive hydrogel for the controlled release of ceftriaxone. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Bilal M, Nunes LV, Duarte MTS, Ferreira LFR, Soriano RN, Iqbal HMN. Exploitation of Marine-Derived Robust Biological Molecules to Manage Inflammatory Bowel Disease. Mar Drugs 2021; 19:md19040196. [PMID: 33808253 PMCID: PMC8067156 DOI: 10.3390/md19040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Naturally occurring biological entities with extractable and tunable structural and functional characteristics, along with therapeutic attributes, are of supreme interest for strengthening the twenty-first-century biomedical settings. Irrespective of ongoing technological and clinical advancement, traditional medicinal practices to address and manage inflammatory bowel disease (IBD) are inefficient and the effect of the administered therapeutic cues is limited. The reasonable immune response or invasion should also be circumvented for successful clinical translation of engineered cues as highly efficient and robust bioactive entities. In this context, research is underway worldwide, and researchers have redirected or regained their interests in valorizing the naturally occurring biological entities/resources, for example, algal biome so-called "treasure of untouched or underexploited sources". Algal biome from the marine environment is an immense source of excellence that has also been demonstrated as a source of bioactive compounds with unique chemical, structural, and functional features. Moreover, the molecular modeling and synthesis of new drugs based on marine-derived therapeutic and biological cues can show greater efficacy and specificity for the therapeutics. Herein, an effort has been made to cover the existing literature gap on the exploitation of naturally occurring biological entities/resources to address and efficiently manage IBD. Following a brief background study, a focus was given to design characteristics, performance evaluation of engineered cues, and point-of-care IBD therapeutics of diverse bioactive compounds from the algal biome. Noteworthy potentialities of marine-derived biologically active compounds have also been spotlighted to underlying the impact role of bio-active elements with the related pathways. The current review is also focused on the applied standpoint and clinical translation of marine-derived bioactive compounds. Furthermore, a detailed overview of clinical applications and future perspectives are also given in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Correspondence: or (M.B.); (H.M.N.I.)
| | - Leonardo Vieira Nunes
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora-MG 36036-900, Brazil;
| | | | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil;
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, Aracaju-Sergipe 49032-490, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares-MG 35010-180, Brazil;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Correspondence: or (M.B.); (H.M.N.I.)
| |
Collapse
|
3
|
Sohail M, Mudassir, Minhas MU, Khan S, Hussain Z, de Matas M, Shah SA, Khan S, Kousar M, Ullah K. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Deliv Transl Res 2019; 9:595-614. [PMID: 29611113 DOI: 10.1007/s13346-018-0512-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory disease of the colon that severely affects the quality of life of patients and usually responds well to anti-inflammatory agents for symptomatic relief; however, many patients need colectomy, a surgical procedure to remove whole or part of the colon. Though various types of pharmacological agents have been employed for the management of UC, the lack of effectiveness is usually predisposed to various reasons including lack of target-specific delivery of drugs and insufficient drug accumulation at the target site. To overcome these glitches, many researchers have designed and characterized various types of versatile polymeric biomaterials to achieve target-specific delivery of drugs via oral route to optimize their targeting efficiency to the colon, to improve drug accumulation at the target site, as well as to ameliorate off-target effects of chemotherapy. Therefore, the aim of this review was to summarize and critically discuss the pharmaceutical significance and therapeutic feasibility of a wide range of natural and synthetic biomaterials for efficient drug targeting to colon and rationalized treatment of UC. Among various types of biomaterials, natural and synthetic polymer-based hydrogels have shown promising targeting potential due to their innate pH responsiveness, sustained and controlled release characteristics, and microbial degradation in the colon to release the encapsulated drug moieties. These characteristic features make natural and synthetic polymer-based hydrogels superior to conventional pharmacological strategies for the management of UC.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan.
| | - Mudassir
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Muhammad Usman Minhas
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Lower Dir, KPK, Pakistan
| | - Zahid Hussain
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300, Bandar Puncak Alam, Selangor, Malaysia
| | - Marcel de Matas
- SEDA Pharmaceutical Development Services, The BioHub at Alderley Park, Cheshire, UK
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Samiullah Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| | - Kaleem Ullah
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060, Pakistan
| |
Collapse
|
4
|
Novel biodegradable pH-sensitive hydrogels: An efficient controlled release system to manage ulcerative colitis. Int J Biol Macromol 2019; 136:83-96. [PMID: 31195039 DOI: 10.1016/j.ijbiomac.2019.06.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 01/31/2023]
Abstract
The aim of this study was to develop and characterize a pH sensitive, biodegradable, interpenetrating polymeric network (IPNs) for colon specific delivery of sulfasalazine in ulcerative colitis. It also entailed in-vitro and in-vivo evaluations to optimize colon targeting efficiency, improve drug accumulation at the target site, and ameliorate the off-target effects of chemotherapy. Pectin was grafted with polyethylene glycol (PEG) and methacrylic acid (MAA) by free radical polymerization. Fourier transformed infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), energy dispersion X-ray (EDX) and powder X-ray diffraction (XRD) results confirmed the development of stable pectin-g-(PEG-co-MAA) hydrogels. The swelling and release studies exhibited that the hydrogels were capable of releasing drug specifically at colonic pH (pH 7.4). The toxicological potential of polymers, monomers and hydrogel was investigated using the Balb/c animal model, that confirmed the safety of the hydrogels. In vitro degradation of the hydrogel was evaluated using pectinase enzyme in various simulated fluids and the results showed that the hydrogels were susceptible to biodegradation by the natural microflora of the colon. In-vivo study was performed using Dextran sulphate sodium (DSS) rat model proved the hydrogels to be effective in the management of UC.
Collapse
|
5
|
Kumar P, Choonara YE, Pillay V. In silico analytico-mathematical interpretation of biopolymeric assemblies: Quantification of energy surfaces and molecular attributes via atomistic simulations. Bioeng Transl Med 2018; 3:222-231. [PMID: 30377662 PMCID: PMC6195908 DOI: 10.1002/btm2.10105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 01/11/2023] Open
Abstract
Static-lattice atomistic simulations, in vacuum and solvent phase, have been recently employed to quantify the "in vitro-in vivo-in silico" performance-correlation profile of various drug delivery systems and biomaterial scaffolds. The reactional profile of biopolymers was elucidated by exploring the spatial disposition of the molecular components with respect to the formulation conditions and the final release medium. This manuscript provides a brief overview of recently completed and published studies related to molecular tectonics of: (a) the nanoformation and solvation properties of the surfactant-emulsified polymeric systems; (b) the formation and chemistry of polyelectrolyte complexes; (c) the effect of a plasticizer and/or drug on the physicomechanical properties of biomedical archetypes; (d) the molecular modeling templates to predict stimuli- and environmentally esponsive systems; and (e) the polymer-mucopeptide complexes and intermacromolecular networks. Furthermore, this report provides a detailed account of the role of molecular mechanics energy relationships toward the interpretation and understanding of the mechanisms that control the formation, fabrication, selection, design, performance, complexation, interaction, stereospecificity, and preference of various biopolymeric systems for biomedical applications.
Collapse
Affiliation(s)
- Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and PharmacologySchool of Therapeutic Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and PharmacologySchool of Therapeutic Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburgSouth Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and PharmacologySchool of Therapeutic Sciences, Faculty of Health Sciences, University of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
6
|
Neufeld L, Bianco-Peled H. Pectin–chitosan physical hydrogels as potential drug delivery vehicles. Int J Biol Macromol 2017; 101:852-861. [DOI: 10.1016/j.ijbiomac.2017.03.167] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
|
7
|
Moodley K, Choonara YE, Kumar P, du Toit LC, Pillay V. In silico mechanistic disposition and in vivo evaluation of zero-order drug release from a novel triple-layered tablet matrix. Expert Opin Drug Deliv 2014; 12:693-713. [PMID: 25534542 DOI: 10.1517/17425247.2015.989208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The purpose of this study was to formulate novel triple-layered tablet (TLT) matrices employing modified polyamide 6,10 (mPA6,10) and salted-out poly(lactic-co-glycolic acid) (s-PLGA) in an attempt to achieve stratified zero-order drug release. METHODS mPA6,10 and s-PLGA were employed as the outer drug-carrier matrices, whereas poly(ethylene oxide) (PEO) was used as the middle-layer drug matrix. Diphenhydramine HCl, ranitidine HCl and promethazine were selected as model drugs to pre-optimize the TLT, whereas atenolol, acetylsalicylic acid and simvastatin were employed as a comparable fixed dose combination to test the TLT prototype in vitro and in vivo (Large White Pig model). A total of 17 formulations that varied in terms of polymer stoichiometry, salt addition and polymer-polymer ratios were generated using a Box-Behnken experimental design. RESULTS The in vitro drug release analysis revealed that release from the mPA6,10 layer was relatively linear with a burst release, which upon addition of sodium sulfate was reduced. Furthermore, formulations with higher quantities of mPA6,10 provided more controlled zero-order drug release and increased the matrix hardness. The addition of PEO to the s-PLGA layer significantly reduced the initial burst release that occurred when s-PLGA was used alone. CONCLUSIONS The formulation with a lower s-PLGA:PEO ratio displayed superior zero-order release. Relatively, linear drug release was achieved from the middle-layer. The in vivo results proved the applicability of optimized TLT formulation in a therapeutic cardiovascular drug treatment regimen.
Collapse
Affiliation(s)
- Kovanya Moodley
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, 7 York Road, Parktown, 2193 , South Africa
| | | | | | | | | |
Collapse
|