1
|
Bąk U, Krupa A. Challenges and Opportunities for Celecoxib Repurposing. Pharm Res 2023; 40:2329-2345. [PMID: 37552383 PMCID: PMC10661717 DOI: 10.1007/s11095-023-03571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Drug repositioning, also known as drug repurposing, reprofiling, or rediscovery, is considered to be one of the most promising strategies to accelerate the development of new original drug products. Multiple examples of successful rediscovery or therapeutic switching of old molecules that did not show clinical benefits or safety in initial trials encourage the following of the discovery of new therapeutic pathways for them. This review summarizes the efforts that have been made, mostly over the last decade, to identify new therapeutic targets for celecoxib. To achieve this goal, records gathered in MEDLINE PubMed and Scopus databases along with the registry of clinical trials by the US National Library of Medicine at the U.S. National Institutes of Health were explored. Since celecoxib is a non-steroidal anti-inflammatory drug that represents the class of selective COX-2 inhibitors (coxibs), its clinical potential in metronomic cancer therapy, the treatment of mental disorders, or infectious diseases has been discussed. In the end, the perspective of a formulator, facing various challenges related to unfavorable physicochemical properties of celecoxib upon the development of new oral dosage forms, long-acting injectables, and topical formulations, including the latest trends in the pharmaceutical technology, such as the application of mesoporous carriers, biodegradable microparticles, lipid-based nanosystems, or spanlastics, was presented.
Collapse
Affiliation(s)
- Urszula Bąk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Cracow, Poland.
| |
Collapse
|
2
|
Celecoxib Nanoformulations with Enhanced Solubility, Dissolution Rate, and Oral Bioavailability: Experimental Approaches over In Vitro/In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15020363. [PMID: 36839685 PMCID: PMC9964073 DOI: 10.3390/pharmaceutics15020363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Celecoxib (CXB) is a Biopharmaceutical Classification System (BCS) Class II molecule with high permeability that is practically insoluble in water. Because of the poor water solubility, there is a wide range of absorption and limited bioavailability following oral administration. These unfavorable properties can be improved using dry co-milling technology, which is an industrial applicable technology. The purpose of this study was to develop and optimize CXB nanoformulations prepared by dry co-milling technology, with a quality by design approach to maintain enhanced solubility, dissolution rate, and oral bioavailability. The resulting co-milled CXB composition using povidone (PVP), mannitol (MAN) and sodium lauryl sulfate (SLS) showed the maximum solubility and dissolution rate in physiologically relevant media. Potential risk factors were determined with an Ishikawa diagram, important risk factors were selected with Plackett-Burman experimental design, and CXB compositions were optimized with Central Composite design (CCD) and Bayesian optimization (BO). Physical characterization, intrinsic dissolution rate, solubility, and stability experiments were used to evaluate the optimized co-milled CXB compositions. Dissolution and permeability studies were carried out for the resulting CXB nanoformulation. Oral pharmacokinetic studies of the CXB nanoformulation and reference product were performed in rats. The results of in vitro and in vivo studies show that the CXB nanoformulations have enhanced solubility (over 4.8-fold (8.6 ± 1.06 µg/mL vs. 1.8 ± 0.33 µg/mL) in water when compared with celecoxib pure powder), and dissolution rate (at least 85% of celecoxib is dissolved in 20 min), and improved oral pharmacokinetic profile (the relative bioavailability was 145.2%, compared to that of Celebrex®, and faster tmax 3.80 ± 2.28 h vs. 6.00 ± 3.67 h, indicating a more rapid absorption rate).
Collapse
|
3
|
Preparation and evaluation of ibrutinib lipid-based formulations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Design and Optimization of Pioglitazone Hydrochloride Self-Nanoemulsifying Drug Delivery System (SNEDDS) Incorporated into an Orally Disintegrating Tablet. Pharmaceutics 2022; 14:pharmaceutics14020425. [PMID: 35214157 PMCID: PMC8880587 DOI: 10.3390/pharmaceutics14020425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pioglitazone Hydrochloride (PGZ) suffers from poor aqueous solubility. The aim of this research was to design orally disintegrating tablets with self-nanoemulsifying properties (T-SNEDDS) to improve the Pioglitazone solubility and dissolution rate. Three liquid self-nanoemulsifying systems (L-SNEDDS) were formulated and evaluated for transmittance percentage, emulsification time, particle size, Poly dispersity index (PDI), percentage of content, solubility and stability. The optimum L-SNEDDS formula was converted to a solidified self-nanoemulsifying drug delivery system (S-SNEDDS) by adsorption on Syloid (SYL). Powder characterization tests, such as flowability tests, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM), were performed for the selected S-SNEDDS formulation. Orally disintegrating tablets (ODT) were formulated by blending S-SNEDDS with tableting excipients. The ODT tablet batch composed of Prosolv was selected for tablet quality control tests, such as hardness, friability, disintegration time, content uniformity, weight variation, in vitro release, in vivo studies and accelerated stability studies. ODT tablets showed accepted mechanical properties and rapid disintegration time (<30 s). No drug degradation was observed at 3 months into the accelerated stability study. The optimized L-SNEDDS, S-SNEDDS and ODT (T-SNEDDS), showed significant enhancement of PGZ in vitro dissolution profiles compared to the pure drug (p > 0.05). In vivo pharmacokinetic and pharmacodynamic evaluation of ODTs showed better behavior compared to the raw drug suspension and the commercial tablet (p > 0.05). Orally disintegrating tablets revealed a promising potential to improve Pioglitazone poor aqueous solubility, dissolution profile and bioavailability.
Collapse
|
5
|
Meola TR, Joyce P, Wignall A, Bremmell KE, Prestidge CA. Harnessing the potential of nanostructured formulations to mimic the food effect of lurasidone. Int J Pharm 2021; 608:121098. [PMID: 34534629 DOI: 10.1016/j.ijpharm.2021.121098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023]
Abstract
Lurasidone is an important antipsychotic drug indicated for the treatment of schizophrenia and bipolar disorder, with an oral bioavailability of 9-19% owing to its poor aqueous solubility. Additionally, lurasidone exhibits a 2-fold positive food effect, such that patients must administer their medication with a meal, leading to significant non-compliance. The aim of this research was to evaluate the in vitro and in vivo performance of lurasidone when engineered as nanostructured systems. Specifically, a nanosuspension, nano-emulsion and silica-lipid hybrid (SLH) microparticles were formulated and the influence of composition and nanostructure on the mechanism of solubilisation was compared. Formulations were shown to enhance fasted state solubilisation levels in vitro by up to 5.9-fold, compared to pure drug. Fed- and fasted-state solubilisation profiles revealed that in contrast to the nanosuspension and nano-emulsion, lurasidone SLH mitigated the positive pharmaceutical effect of lurasidone. In vivo pharmacokinetic evaluations revealed that the nanosuspension, nano-emulsion and SLH enhanced the bioavailability of lurasidone by 3-fold, 2.4-fold and 8.8-fold, respectively, compared to pure drug after oral administration. For lurasidone, the combination of lipid-based nanostructure and porous silica nanostructure (SLH) led to optimal fasted state bioavailability which can ultimately result in enhanced treatment efficacy, easier dosing regimens and improved patient outcomes.
Collapse
Affiliation(s)
- Tahlia R Meola
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, South Australia 5000, Australia
| | - Paul Joyce
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, South Australia 5000, Australia
| | - Anthony Wignall
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, South Australia 5000, Australia
| | - Kristen E Bremmell
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia; ARC Centre for Excellence in Bio-Nano Science and Technology, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
6
|
Xu Y, Michalowski CB, Beloqui A. Advances in lipid carriers for drug delivery to the gastrointestinal tract. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101414] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Ilie AR, Griffin BT, Vertzoni M, Kuentz M, Cuyckens F, Wuyts K, Kolakovic R, Holm R. Toward simplified oral lipid-based drug delivery using mono-/di-glycerides as single component excipients. Drug Dev Ind Pharm 2020; 46:2051-2060. [PMID: 33124918 DOI: 10.1080/03639045.2020.1843475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to systematically explore compositional effects for a series of lipid systems, on the in vitro drug solubilization and in vivo bioavailability of three poorly water-soluble drugs with different physico-chemical properties. SIGNIFICANCE While many lipid-based drug products have successfully reached the market, there is still a level of uncertainty on the design guidelines for such drug products with limited understanding on the influence of composition on in vitro and in vivo performance. METHODS AND RESULTS Lipid-based drug delivery systems were prepared using either single excipient systems based on partially digested triglycerides (i.e. mono- and/or di-glycerides) or increasingly complex systems by incorporating surfactants and/or triglycerides. These lipid systems were evaluated for both in vitro and in vivo behavior. Results indicated that simple single component long chain lipid systems are more beneficial for the absorption of the weak acid celecoxib and the weak base cinnarizine compared to equivalent single component medium chain lipid systems. Similarly, a two-component system produced by incorporating small amount of hydrophilic surfactant yields similar overall pharmacokinetic effects. The lipid drug delivery systems based on medium chain lipid excipients improved the in vivo exposure of the neutral drug JNJ-2A. The higher in vivo bioavailability of long chain lipid systems compared to medium chain lipid systems was in agreement with in vitro dilution and dispersion studies for celecoxib and cinnarizine. CONCLUSIONS The present study demonstrated the benefits of using mono-/di-glycerides as single component excipients in LBDDS to streamline formulation screening and improve oral bioavailability for the three tested poorly water-soluble drugs.
Collapse
Affiliation(s)
- Alexandra-Roxana Ilie
- Drug Product Development, Janssen Research and Development, Beerse, Belgium.,School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Filip Cuyckens
- Drug Metabolism & Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Koen Wuyts
- Drug Metabolism & Pharmacokinetics, Janssen Research and Development, Beerse, Belgium
| | - Ruzica Kolakovic
- Drug Product Development, Janssen Research and Development, Beerse, Belgium
| | - René Holm
- Drug Product Development, Janssen Research and Development, Beerse, Belgium.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
8
|
Therapeutic effects of celecoxib polymeric systems in rat models of inflammation and adjuvant-induced rheumatoid arthritis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111042. [DOI: 10.1016/j.msec.2020.111042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023]
|
9
|
Schultz HB, Wignall AD, Thomas N, Prestidge CA. Enhancement of abiraterone acetate oral bioavailability by supersaturated-silica lipid hybrids. Int J Pharm 2020; 582:119264. [PMID: 32278053 DOI: 10.1016/j.ijpharm.2020.119264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/05/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
Abiraterone acetate (AbA) has an oral bioavailability of <10% due to its poor water solubility. Here we investigate the performance of silica-lipid hybrids (SLH) and supersaturated SLH (super-SLH) in improving oral bioavailability of AbA. Specifically, we investigate the influence of lipid type and AbA saturation level of the equilibrium solubility in the lipid (Seq), and explore in vitro-in vivo correlation (IVIVC). An oral pharmacokinetic study was conducted in fasted Sprague-Dawley rats. Suspensions of the formulations were administered via oral gavage at an AbA dose of 25 mg/kg. Plasma samples were collected and analyzed for drug content. SLH with a saturation level of 90% Seq enhanced the oral bioavailability of unformulated AbA by 31-fold, and super-SLH with saturation levels of 150, 200 and 250% Seq, enhanced the bioavailability by 11, 10 and 7-fold, respectively. In comparison with the commercial product Zytiga, SLH (90% Seq) increased the oral bioavailability 1.43-fold whereas super-SLH showed no improvement. A reasonable IVIVC existed between the performance of unformulated AbA, SLH and super-SLH, in the in vitro lipolysis and in vivo oral pharmacokinetic studies. SLH and super-SLH significantly enhanced the oral bioavailability of AbA. Additionally, supersaturation of SLH improved drug loading but did not correlate with enhanced AbA bioavailability.
Collapse
Affiliation(s)
- Hayley B Schultz
- University of South Australia Cancer Research Institute, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia
| | - Anthony D Wignall
- University of South Australia Cancer Research Institute, Adelaide, South Australia 5000, Australia
| | - Nicky Thomas
- University of South Australia Cancer Research Institute, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia
| | - Clive A Prestidge
- University of South Australia Cancer Research Institute, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia.
| |
Collapse
|
10
|
Meola TR, Schultz HB, Peressin KF, Prestidge CA. Enhancing the oral bioavailability of simvastatin with silica-lipid hybrid particles: The effect of supersaturation and silica geometry. Eur J Pharm Sci 2020; 150:105357. [PMID: 32446169 DOI: 10.1016/j.ejps.2020.105357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
Silica-lipid hybrid (SLH) microparticles are a solidified lipid-based drug delivery system under investigation for their aptitude to enhance the oral bioavailability of poorly water-soluble drugs. The cholesterol-lowering agent, simvastatin (SIM), is poorly water-soluble and undergoes extensive first pass metabolism, resulting in a low oral bioavailability of approximately 5%. Hence, the current pre-clinical studies investigated the application of SLH technology to SIM with a supersaturation approach, aiming to enhance bioavailability and drug loading capacity. Additionally, the effect of silica was explored by evaluating the performance of SLH fabricated with silica of different particle geometries. SLH microparticles with supersaturated SIM loading levels ranging from 100% to 400% above the equilibrium solubility were successfully fabricated using either Aerosil® 300 or Syloid® 244 silica. All SLH formulations existed as white free-flowing powders, consisting of spherical porous microparticles for Aerosil® 300, and aggregated irregular microparticles for Syloid® 244. During in vitro dissolution in pH 7.0 media, the SLH formulations performed up to 4.4-fold greater than pure SIM powder. Furthermore, in vivo oral pharmacokinetics in male Sprague-Dawley rats revealed that the SLH formulations enhanced the oral bioavailability of SIM up to 6.1-fold and 2.9-fold, in comparison to pure SIM powder and a commercially available formulation (Simvastatin Sandoz®), respectively. The greatest in vivo performance enhancement was observed for the SLH formulation manufactured with Syloid® 244 silica with a supersaturation level of 200%. SLH technology demonstrated to be a successful formulation strategy to significantly improve the oral bioavailability of SIM in rodents and therefore, has a strong potential to also improve the oral bioavailability of SIM in humans.
Collapse
Affiliation(s)
- Tahlia R Meola
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia
| | - Hayley B Schultz
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia
| | - Karl F Peressin
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Sciences, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
11
|
Schultz HB, Meola TR, Thomas N, Prestidge CA. Oral formulation strategies to improve the bioavailability and mitigate the food effect of abiraterone acetate. Int J Pharm 2020; 577:119069. [PMID: 31981706 DOI: 10.1016/j.ijpharm.2020.119069] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023]
Abstract
Abiraterone acetate, marketed as Zytiga®, is an antiandrogen medication used in the treatment of prostate cancer. Abiraterone acetate is a BCS Class IV compound associated with several oral delivery challenges. Its low solubility and high lipophilicity lead to poor oral bioavailability (<10%) and a dramatic positive food effect (5-10-fold). Hence, a large dose of abiraterone acetate (1000 mg per day) is prescribed to patients who must fast for at least 1 h before and 2 h after administration. The recent expiry of Zytiga®s' patent has led to the emergence of publications describing improved oral formulation strategies for abiraterone acetate. This review aims to discuss the characteristics of abiraterone acetate that lead to its unfavorable oral delivery, examine the oral formulation strategies that have been applied, and to describe potential alternative oral formulation strategies that have been used for other BCS Class IV drugs, to determine the most valuable strategies to develop novel and improved alternatives to the current commercial product. Specific emphasis of this review is placed on enabling oral formulation strategies that can improve solubilization and bioavailability, reduce the clinical dose and remove the pharmaceutical food effect to ultimately provide prostate cancer patients with a more efficient formulation with greater patient compliance.
Collapse
Affiliation(s)
- Hayley B Schultz
- University of South Australia Cancer Research Institute, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia.
| | - Tahlia R Meola
- University of South Australia Cancer Research Institute, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia.
| | - Nicky Thomas
- University of South Australia Cancer Research Institute, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia.
| | - Clive A Prestidge
- University of South Australia Cancer Research Institute, Adelaide, South Australia 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia.
| |
Collapse
|
12
|
Nanomedicine for the effective and safe delivery of non-steroidal anti-inflammatory drugs: A review of preclinical research. Eur J Pharm Biopharm 2019; 142:179-194. [DOI: 10.1016/j.ejpb.2019.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
13
|
Alhasani KF, Kazi M, Ibrahim MA, Shahba AA, Alanazi FK. Self-nanoemulsifying ramipril tablets: a novel delivery system for the enhancement of drug dissolution and stability. Int J Nanomedicine 2019; 14:5435-5448. [PMID: 31409997 PMCID: PMC6645612 DOI: 10.2147/ijn.s203311] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Ramipril (RMP) suffers from poor aqueous solubility along with sensitivity to mechanical stress, heat, and moisture. The aim of the current study is to improve RMP solubility and stability by designing solid self-nanoemulsifying drug delivery system (S-SNEDDS) as tablet. Methods: The drug was initially incorporated in different liquid formulations (L-SNEDDS) which were evaluated by equilibrium solubility, droplet size, and zeta potential studies. The optimized formulation was solidified into S-SNEDDS powder by the adsorbent Syloid® and compressed into a self-nanoemulsifying tablet (T-SNEDDS). The optimized tablet was evaluated by drug content uniformity, hardness, friability, disintegration, and dissolution tests. Furthermore, pure RMP, optimized L-SNEDDS, and T-SNEDDS were enrolled in accelerated and long-term stability studies. Results: Among various liquid formulations, F5 L-SNEDDS [capmul MCM/transcutol/HCO-30 (25/25/50%w/w)] showed relatively high drug solubility, nano-scaled droplet size, and high negative zeta potential value. The optimized SNEDDS solidification with Syloid® at ratio (1:1) resulted in a compressible powder with an excellent flowability. The optimized tablet (T-SNEDDS) showed accepted content uniformity, hardness, friability, and disintegration time (<15 minutes). The optimized L-SNEDDS, S-SNEDDS, and T-SNEDDS showed superior enhancement of RMP dissolution compared to the pure drug. Most importantly, T-SNEDDS showed significant (P<0.05) improvement of RMP stability compared to the pure drug and L-SNEDDS in both accelerated and long-term stability studies. Conclusion: RMP-loaded T-SNEDDS offers a potential oral dosage form that provides combined improvement of RMP dissolution and chemical stability.
Collapse
Affiliation(s)
- Khalid F Alhasani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.,Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohamed Abbas Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Ahmad A Shahba
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.,Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Fars K Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.,Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Han C, Zhang S, Huang H, Dong Y, Sui X, Jian B, Zhu W. In Vitro and In Vivo Evaluation of Core-Shell Mesoporous Silica as a Promising Water-Insoluble Drug Delivery System: Improving the Dissolution Rate and Bioavailability of Celecoxib With Needle-Like Crystallinity. J Pharm Sci 2019; 108:3225-3232. [PMID: 31226426 DOI: 10.1016/j.xphs.2019.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023]
Abstract
The objective of our study was to prepare mesoporous silica nanoparticles with a core-shell structure (CSMSNs) and improve the dissolution and bioavailability of celecoxib (Cxb), a water-insoluble drug, by changing its needle-like crystal form. CSMSNs are prepared by a core-shell segmentation self-assembly method. The SBET and Vt of CSMSNs were 890.65 m2/g and 1.23 cm3/g, respectively. Cxb was incorporated into CSMSNs by the solvent evaporation method. The gastrointestinal irritancy of the CSMSNs was evaluated by a gastric mucosa irritation test. In vitro dissolution and in vivo pharmacokinetic tests were carried out to study the improvement in the dissolution behavior and oral bioavailability of Cxb. In conclusion, gastric mucosa irritation study indicated the good biocompatibility of CSMSNs. The cumulative dissolution of CSMSNs-Cxb is 86.2% within 60 min in SIF solution, which may be ascribed to the crystal form change caused by control of the nanochannel for CSMSNs. Moreover, CSMSNs could enhance the 9.9-fold AUC of Cxb. The cumulative dissolution and bioavailability of Cxb were both significantly enhanced by CSMSNs. CSMSNs with a core-shell structure are suitable as a carrier for a poorly water-soluble drug (Cxb).
Collapse
Affiliation(s)
- Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Shanqiang Zhang
- Basic Medical Sciences College, Qiqihar Medical University, Qiqihar, China
| | - Haitao Huang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Yan Dong
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xiaoyu Sui
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Baiyu Jian
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
15
|
Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv Drug Deliv Rev 2019; 142:102-117. [PMID: 30529138 DOI: 10.1016/j.addr.2018.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
Abstract
Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a solubilised state during gastrointestinal transit. However, the promising biopharmaceutical benefits of liquid lipid formulations has not translated into widespread commercial success, due to their susceptibility to long term storage and in vivo precipitation issues. One strategy that has emerged to overcome such limitations, is to combine the solubilisation and dissolution enhancing properties of lipids with the stabilising effects of solid carrier materials. The development of intelligent hybrid drug formulations has presented new opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for lipophilic therapeutics. Specific emphasis of this review is placed on the impact of solidification approaches and excipients on the biopharmaceutical performance of self-emulsifying lipids, with findings highlighting the key design considerations that should be implemented when developing hybrid lipid-based formulations.
Collapse
|
16
|
Vithani K, Jannin V, Pouton CW, Boyd BJ. Colloidal aspects of dispersion and digestion of self-dispersing lipid-based formulations for poorly water-soluble drugs. Adv Drug Deliv Rev 2019; 142:16-34. [PMID: 30677448 DOI: 10.1016/j.addr.2019.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 01/15/2023]
Abstract
Self-dispersing lipid-based formulations, particularly self-microemulsifying drug delivery systems (SMEDDS) have gained an increased interest in recent times as a means to enhance the oral bioavailability of poorly water-soluble lipophilic drugs. Upon dilution, SMEDDS self-emulsify in an aqueous fluid and usually form a kinetically stable oil-in-water emulsion or in some rare cases a true thermodynamically stable microemulsion. The digestion of the formulation leads to the production of amphiphilic digestion products that interact with endogenous amphiphilic components and form self-assembled colloidal phases in the aqueous environment of the intestine. The formed colloidal phases play a pivotal role in maintaining the lipophilic drug in the solubilised state during gastrointestinal transit prior to absorption. Thus, this review describes the structural characterisation techniques employed for SMEDDS and the recent literature studies that elucidated the colloidal aspects during dispersion and digestion of SMEDDS and solid SMEDDS. Possible future studies are proposed to gain better understanding on the colloidal aspects of SMEDDS and solid SMEDDS.
Collapse
|
17
|
Schultz HB, Kovalainen M, Peressin KF, Thomas N, Prestidge CA. Supersaturated Silica-Lipid Hybrid Oral Drug Delivery Systems: Balancing Drug Loading and In Vivo Performance. J Pharmacol Exp Ther 2018; 370:742-750. [DOI: 10.1124/jpet.118.254466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
|
18
|
Huang J, Qian A, Sun R, Xia Q. Preparation and characterization of coenzyme Q10 loaded solid lipid-based formulations for enhancement of gastrointestinal solubilization. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2018.1515023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Juan Huang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, P. R. China
| | - Airui Qian
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, P. R. China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, P. R. China
- Collaborative Innovation Center, Suzhou Nano Science and Technology, Suzhou, P. R. China
| | - Rui Sun
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, P. R. China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, P. R. China
- Collaborative Innovation Center, Suzhou Nano Science and Technology, Suzhou, P. R. China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, P. R. China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, P. R. China
- Collaborative Innovation Center, Suzhou Nano Science and Technology, Suzhou, P. R. China
| |
Collapse
|
19
|
Joyce P, Gustafsson H, Prestidge CA. Engineering intelligent particle-lipid composites that control lipase-mediated digestion. Adv Colloid Interface Sci 2018; 260:1-23. [PMID: 30119842 DOI: 10.1016/j.cis.2018.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
Nanostructured particle-lipid composites have emerged as state-of-the-art carrier systems for poorly water-soluble bioactive molecules due to their ability to control and enhance the lipase-mediated hydrolysis of encapsulated triglycerides, leading to a subsequent improvement in the solubilisation and absorption of encapsulated species. The first generation of particle-lipid composites (i.e. silica-lipid hybrid (SLH) microparticles) were designed and fabricated by spray drying a silica nanoparticle-stabilised Pickering emulsion, to create a novel three-dimensional architecture, whereby lipid droplets were encapsulated within a porous matrix support. The development of SLH microparticles has acted as a solid foundation for the synthesis of several next generation particle-lipid composites, including polymer-lipid hybrid (PLH) and clay-lipid hybrid systems (CLH), which present lipase with unique lipid microenvironments for optimised lipolysis. This review details the methods utilised to engineer lipid hybrid particles and the strategic investigations that have been performed to determine the influence of key material characteristics on digestion enzyme activity. In doing so, this provides insight into manipulating the mechanism of lipase action through the intelligent design of lipid-based biomaterials for their use in drug delivery formulations and novel functional foods.
Collapse
|
20
|
Tan X, Liu X, Zhang Y, Zhang H, Lin X, Pu C, Gou J, He H, Yin T, Zhang Y, Tang X. Silica nanoparticles on the oral delivery of insulin. Expert Opin Drug Deliv 2018; 15:805-820. [DOI: 10.1080/17425247.2018.1503250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinyi Tan
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaolin Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Zhang
- Department of Chemistry, Normal College, Shenyang University, Shenyang, China
| | - Hongjuan Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyang Lin
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Chenguang Pu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian Yin
- Department of Wine, School of Functional food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
21
|
He J, Han Y, Xu G, Yin L, Ngandeu Neubi M, Zhou J, Ding Y. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Adv 2017. [DOI: 10.1039/c6ra28676c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We prepare celecoxib nanosuspensions using TPGS as stabilizer via high speed shear as a pre-treatment step, followed by HPH method; and the solidification of fresh nanosuspension was carried out by freeze-drying.
Collapse
Affiliation(s)
- Jiali He
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yue Han
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Gujun Xu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - M. Ngandeu Neubi
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yang Ding
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
22
|
Bala V, Rao S, Prestidge CA. Facilitating gastrointestinal solubilisation and enhanced oral absorption of SN38 using a molecularly complexed silica-lipid hybrid delivery system. Eur J Pharm Biopharm 2016; 105:32-9. [DOI: 10.1016/j.ejpb.2016.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 01/16/2023]
|
23
|
Orsi D, Guzmán E, Liggieri L, Ravera F, Ruta B, Chushkin Y, Rimoldi T, Cristofolini L. 2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces. Sci Rep 2015; 5:17930. [PMID: 26658474 PMCID: PMC4674700 DOI: 10.1038/srep17930] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/06/2015] [Indexed: 12/26/2022] Open
Abstract
We investigate the interfacial dynamics of a 2D self-organized mixed layer made of silica nanoparticles interacting with phospholipid (DPPC) monolayers at the air/water interface. This system has biological relevance, allowing investigation of toxicological effects of nanoparticles on model membranes and lung surfactants. It might also provide bio-inspired technological solutions, exploiting the self-organization of DPPC to produce a non-trivial 2D structuration of nanoparticles. The characterization of interfacial dynamics yields information on the effects of NPs on the mechanical properties, important to improve performances of systems such as colloidosomes, foams, creams. For this, we combine micro-tracking in real-space with measurement in momentum-space via x-ray photon-correlation spectroscopy and Digital Fourier Microscopy. Using these complementary techniques, we extend the spatial range of investigation beyond the limits of each one. We find a dynamical transition from Brownian diffusion to an arrested state driven by compression, characterized by intermittent rearrangements, compatible with a repulsive glass phase. The rearrangement and relaxation of the monolayer structure results dramatically hindered by the presence of NPs, which is relevant to explain some the mechanical features observed for the dynamic surface pressure response of these systems and which can be relevant for the respiratory physiology and for future drug-delivery composite systems.
Collapse
Affiliation(s)
- Davide Orsi
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma, Italy
| | - Eduardo Guzmán
- Consiglio Nazionale delle Ricerche - Istituto per l’Energetica e le Interfasi, U.O.S. Genova (CNR IENI), Genova (Italy)
| | - Libero Liggieri
- Consiglio Nazionale delle Ricerche - Istituto per l’Energetica e le Interfasi, U.O.S. Genova (CNR IENI), Genova (Italy)
| | - Francesca Ravera
- Consiglio Nazionale delle Ricerche - Istituto per l’Energetica e le Interfasi, U.O.S. Genova (CNR IENI), Genova (Italy)
| | - Beatrice Ruta
- ESRF- The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France
| | - Yuriy Chushkin
- ESRF- The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France
| | - Tiziano Rimoldi
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma, Italy
| | - Luigi Cristofolini
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Parma, Parma, Italy
- Consiglio Nazionale delle Ricerche - Istituto per l’Energetica e le Interfasi, U.O.S. Genova (CNR IENI), Genova (Italy)
| |
Collapse
|
24
|
Rao S, Richter K, Nguyen TH, Boyd BJ, Porter CJH, Tan A, Prestidge CA. Pluronic-Functionalized Silica–Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases. Mol Pharm 2015; 12:4424-33. [DOI: 10.1021/acs.molpharmaceut.5b00622] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shasha Rao
- School
of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia
| | - Katharina Richter
- Ian
Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Tri-Hung Nguyen
- Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Ben J. Boyd
- Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Christopher J. H. Porter
- Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Angel Tan
- Ian
Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Clive A Prestidge
- School
of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia
| |
Collapse
|
25
|
Dening TJ, Rao S, Thomas N, Prestidge CA. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems. AAPS JOURNAL 2015; 18:23-40. [PMID: 26354801 DOI: 10.1208/s12248-015-9824-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/23/2015] [Indexed: 12/20/2022]
Abstract
Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.
Collapse
Affiliation(s)
- Tahnee J Dening
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Nicky Thomas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
26
|
Mechanism of generation of drug nanocrystals in celecoxib: mannitol nanocrystalline solid dispersion. Int J Pharm 2015; 495:132-139. [PMID: 26327627 DOI: 10.1016/j.ijpharm.2015.08.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 12/22/2022]
Abstract
Objective of this work was to understand the mechanism of formation of celecoxib nanocrystals in celecoxib: mannitol nanocrystalline solid dispersion (NSD). Solution of celecoxib and mannitol was spray dried in 1:1 (g:g) proportion to obtain NSD, with average crystallite size of 214.07 ± 45.27 nm. Solubility parameters of celecoxib and mannitol were 23.1 MPa(1/2) and 38.5 MPa(1/2), respectively, hinting their immiscibility. Formation of nanocrystals during NanoCrySP proceeds via intermediate amorphous form of the drug. Earlier work from our lab on hesperetin-mannitol system, had underlined the role of plasticization of amorphous drug by excipient in the formation of nanocrystals. However, in present case, mannitol failed to plasticize amorphous celecoxib and Tg of amorphous celecoxib (56.8°C) showed a negligible change (54.8°C) in presence of mannitol. However, DSC data also suggested crystallization inducing potential of mannitol on amorphous celecoxib. Polarized light microscopy provided evidence that, mannitol facilitated heterogeneous nucleation of amorphous celecoxib at their interface. Transmission electron microscopy analysis suggested that, mannitol acted as a physical barrier to crystal growth of celecoxib crystallites. Thus, though mannitol did not plasticize amorphous celecoxib, it aided in nanocrystal generation by heterogeneous nucleation and providing physical barrier to crystal growth.
Collapse
|
27
|
Shete G, Modi SR, Bansal AK. Effect of Mannitol on Nucleation and Crystal Growth of Amorphous Flavonoids: Implications on the Formation of Nanocrystalline Solid Dispersion. J Pharm Sci 2015; 104:3789-3797. [PMID: 26183113 DOI: 10.1002/jps.24586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/16/2015] [Accepted: 06/26/2015] [Indexed: 12/14/2022]
Abstract
In this work, we studied crystallization kinetics of amorphous hesperetin (HRN) and naringenin (NRN) alone, and in 1:1 proportion with mannitol at Tg + 15 K. Crystallization rate of NRN was found to be significantly higher than HRN. Mannitol accelerated crystallization of HRN as well as NRN. NRN exhibited higher crystallization rate than HRN, in presence of mannitol, as well. Finke-Watzky model was used to deconvolute the crystallization kinetics data into nucleation and crystal growth rate constant. HRN alone had 9.56 × 10(9) times faster nucleation rate and 1.88 times slower crystal growth than NRN alone. Mannitol increased nucleation and crystal growth rate of HRN as well as NRN. In presence of mannitol, HRN possessed 1.34 × 10(10) times faster nucleation rate and 1.70 times slower crystal growth rate than NRN. Differences in crystallization behavior of HRN and NRN were explained by their thermodynamic properties.
Collapse
Affiliation(s)
- Ganesh Shete
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab 160 062, India
| | - Sameer R Modi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab 160 062, India
| | - Arvind Kumar Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Punjab 160 062, India.
| |
Collapse
|
28
|
Cooper DL, Harirforoosh S. Effect of formulation variables on preparation of celecoxib loaded polylactide-co-glycolide nanoparticles. PLoS One 2014; 9:e113558. [PMID: 25502102 PMCID: PMC4264745 DOI: 10.1371/journal.pone.0113558] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022] Open
Abstract
Polymer based nanoparticle formulations have been shown to increase drug bioavailability and/or reduce drug adverse effects. Nonsteroidal anti-inflammatory drugs (e.g. celecoxib) reduce prostaglandin synthesis and cause side effects such as gastrointestinal and renal complications. The aim of this study was to formulate celecoxib entrapped poly lactide-co-glycolide based nanoparticles through a solvent evaporation process using didodecyldimethylammonium bromide or poly vinyl alcohol as stabilizer. Nanoparticles were characterized for zeta potential, particle size, entrapment efficiency, and morphology. Effects of stabilizer concentration (0.1, 0.25, 0.5, and 1% w/v), drug amount (5, 10, 15, and 20 mg), and emulsifier (lecithin) on nanoparticle characterization were examined for formula optimization. The use of 0.1, 0.25, and 0.5% w/v didodecyldimethylammonium bromide resulted in a more than 5-fold increase in zeta potential and a more than 1.5-fold increase in entrapment efficiency with a reduction in particle size over 35%, when compared to stabilizer free formulation. Nanoparticle formulations were also highly influenced by emulsifier and drug amount. Using 0.25% w/v didodecyldimethylammonium bromide NP formulations, peak zeta potential was achieved using 15 mg celecoxib with emulsifier (17.15±0.36 mV) and 20 mg celecoxib without emulsifier (25.00±0.18 mV). Peak NP size reduction and entrapment efficiency was achieved using 5 mg celecoxib formulations with (70.87±1.24 nm and 95.55±0.66%, respectively) and without (92.97±0.51 nm and 95.93±0.27%, respectively) emulsifier. In conclusion, formulations using 5 mg celecoxib with 0.25% w/v didodecyldimethylammonium bromide concentrations produced nanoparticles exhibiting enhanced size reduction and entrapment efficiency. Furthermore, emulsifier free formulations demonstrated improved zeta potential when compared to formulations containing emulsifier (p<0.01). Therefore, our results suggest the use of emulsifier free 5 mg celecoxib drug formulations containing 0.25% w/v didodecyldimethylammonium bromide for production of polymeric NPs that demonstrate enhanced zeta potential, small particle size, and high entrapment efficiency.
Collapse
Affiliation(s)
- Dustin L. Cooper
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
29
|
Formulation, characterization, and in vivo evaluation of celecoxib-PVP solid dispersion nanoparticles using supercritical antisolvent process. Molecules 2014; 19:20325-39. [PMID: 25486246 PMCID: PMC6271652 DOI: 10.3390/molecules191220325] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to develop celecoxib-polyvinylpyrrolidone (PVP) solid dispersion nanoparticles with and without surfactant using the supercritical antisolvent (SAS) process. The effect of different surfactants such as gelucire 44/14, poloxamer 188, poloxamer 407, Ryoto sugar ester L1695, and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) on nanoparticle formation and dissolution as well as oral absorption of celecoxib-PVP K30 solid dispersion nanoparticles was investigated. Spherical celecoxib solid dispersion nanoparticles less than 300 nm in size were successfully developed using the SAS process. Analysis by differential scanning calorimetry and powder X-ray diffraction showed that celecoxib existed in the amorphous form within the solid dispersion nanoparticles fabricated using the SAS process. The celecoxib-PVP-TPGS solid dispersion nanoparticles significantly enhanced in vitro dissolution and oral absorption of celecoxib relative to that of the unprocessed form. The area under the concentration-time curve (AUC0→24 h) and peak plasma concentration (Cmax) increased 4.6 and 5.7 times, respectively, with the celecoxib-PVP-TPGS formulation. In addition, in vitro dissolution efficiency was well correlated with in vivo pharmacokinetic parameters. The present study demonstrated that formulation of celecoxib-PVP-TPGS solid dispersion nanoparticles using the SAS process is a highly effective strategy for enhancing the bioavailability of poorly water-soluble celecoxib.
Collapse
|
30
|
Rao S, Tan A, Boyd BJ, Prestidge CA. Synergistic role of self-emulsifying lipids and nanostructured porous silica particles in optimizing the oral delivery of lovastatin. Nanomedicine (Lond) 2014; 9:2745-59. [DOI: 10.2217/nnm.14.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To investigate the role of self-emulsifying lipids and porous silica particles in enhancing supersaturated drug loading and biopharmaceutical performance of nanostructured silica–lipid hybrid (SLH) systems. Materials & methods: Two lovastatin (LOV)-SLHs were engineered from self-emulsifying lipid (Gelucire® 44/14; Gattefossé, Lyon, France) and Aerosil® 380 (SLH-A; Evonik Industries, Essen, Germany) or Syloid® 244FP silica (SLH-S; Grace Davison Discovery Sciences, Rowville, Australia). Results & discussion: The LOV-SLHs encapsulated LOV at 10% w/w, which is ≥3-fold higher than typical lipid formulations in the absence of porous silica. The LOV-SLHs retained self-emulsifying lipid-associated solubilization benefits and improved drug solubilization by twofold in simulated intestinal condition. SLH-S, with larger surface area (299 m2/g), was superior to SLH-A (184 m2/g) in optimizing oral bioavailability, suggesting a critical role of the silica geometry. Bioavailability of SLH-S was 2.8- and 1.3-fold higher than pure drug and drug suspension in Gelucire 44/14, respectively. Conclusion: In conclusion, SLHs profit from advantages associated with both self-emulsifying lipids and porous silica, and provide potentially improved therapy against coronary artery disease.
Collapse
Affiliation(s)
- Shasha Rao
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, Australia, 5095
| | - Angel Tan
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, Australia, 5095
| | - Ben J Boyd
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria, Australia, 3052
| | - Clive A Prestidge
- Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, Australia, 5095
| |
Collapse
|
31
|
Tan A, Colliat-Dangus P, Whitby CP, Prestidge CA. Controlling the enzymatic digestion of lipids using hybrid nanostructured materials. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15363-71. [PMID: 25116477 DOI: 10.1021/am5038577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Solid nanoparticle-lipid hybrids have been engineered by using spray drying to assemble monodisperse hydrophilic silica nanoparticles and submicron lipid (triglyceride) emulsions together into composite microparticles, which have specific activity toward enzymes. The influence of silica particle size (100-1000 nm) and emulsifier type (anionic and cationic) on the three-dimensional structure of the composite particles was investigated. The nanostructure of the hybrid particles, which is controlled by the size of the voids between the closely packed silica particles, plays a critical role in lipase action and hence lipid digestion kinetics. Confining lipid droplets within the nanostructured silica aggregates led to 2- to 15-fold enhanced rate of lipolysis in comparison with dispersed coarse oil droplets. The composite particles were tailored to enhance, retain or sustain the lipolysis kinetics of submicron lipid emulsions. The presence of repulsive nanoparticle-droplet interactions favored aqueous redispersion and fast lipolysis of the hybrid composite materials, while attractive interactions hindered redispersion and delayed lipolysis of the confined lipid droplets. Such hybrid nanomaterials can be exploited to control the gastrointestinal enzymatic action and promisingly form the basis for the next generation of foods and medicines.
Collapse
Affiliation(s)
- Angel Tan
- Ian Wark Research Institute, University of South Australia , Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia
| | | | | | | |
Collapse
|
32
|
Yasmin R, Tan A, Bremmell KE, Prestidge CA. Lyophilized Silica Lipid Hybrid (SLH) Carriers for Poorly Water‐Soluble Drugs: Physicochemical and In Vitro Pharmaceutical Investigations. J Pharm Sci 2014; 103:2950-2959. [DOI: 10.1002/jps.23914] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/14/2022]
|
33
|
Cooper DL, Conder CM, Harirforoosh S. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin Drug Deliv 2014; 11:1661-80. [PMID: 25054316 DOI: 10.1517/17425247.2014.938046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Over the past few decades, nanoparticles (NPs) have gained immeasurable interest in the field of drug delivery. Various NP formulations have been disseminated in drug development in an attempt to increase efficacy, safety and tolerability of incorporated drugs. In this context, NP formulations that increase solubility, control release, and/or affect the in vivo disposition of drugs, were developed to improve the pharmacokinetic and pharmacodynamic properties of encapsulated drugs. AREAS COVERED In this article, important properties related to NP function such as particle size, surface charge and shape are disseminated. Also, the current understanding of how NP characteristics affect particle uptake and targeted delivery is elucidated. Selected NP systems currently used in delivery of drugs in biological systems and their production methods are discussed as well. Emphasis is placed on current NP formulations that are shown to reduce drug-induced adverse renal complications. EXPERT OPINION Formulation designs utilizing NP-encapsulated drugs offer alternative pharmacotherapy options with improved safety profiles for current and emerging drugs. NPs have been shown to increase the therapeutic index of several entrapped drugs mostly by decreasing drug localization and side effects on organs. Recent studies on NP-encapsulated chemotherapeutic and antibiotic medications show enhanced therapeutic outcomes by altering drug degradation, increasing systemic circulation and/or enhancing cell specific targeting. They may also reduce the distribution of encapsulated drugs into the kidneys and attenuate drug-associated adverse renal complications. The usefulness of NP formulation in reducing the nephrotoxicity of nonsteroidal anti-inflammatory drugs is an under explored territory that deserves more attention.
Collapse
Affiliation(s)
- Dustin L Cooper
- East Tennessee State University, Gatton College of Pharmacy, Department of Pharmaceutical Sciences , Johnson City, TN 37614 , USA
| | | | | |
Collapse
|
34
|
Perspective and potential of oral lipid-based delivery to optimize pharmacological therapies against cardiovascular diseases. J Control Release 2014; 193:174-87. [PMID: 24852093 DOI: 10.1016/j.jconrel.2014.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) remain the major cause of morbidity and mortality globally. Despite the large number of cardiovascular drugs available for pharmacological therapies, factors limiting the efficient oral use are identified, including low water solubility, pre-systemic metabolism, food intake effects and short half-life. Numerous in vivo proof-of-concepts studies are presented to highlight the viability of lipid-based delivery to optimize the oral delivery of cardiovascular drugs. In particular, the key performance enhancement roles of oral lipid-based drug delivery systems (LBDDSs) are identified, which include i) improving the oral bioavailability, ii) sustaining/controlling drug release, iii) improving drug stability, iv) reducing food intake effect, v) targeting to injured sites, and vi) potential for combination therapy. Mechanisms involved in achieving these features, range of applicability, and limits of available systems are detailed. Future research and development efforts to address these issues are discussed, which is of significant value in directing future research work in fostering translation of lipid-based formulations into clinical applications to reduce the prevalence of CVDs.
Collapse
|
35
|
Emerging integrated nanohybrid drug delivery systems to facilitate the intravenous-to-oral switch in cancer chemotherapy. J Control Release 2014; 176:94-103. [DOI: 10.1016/j.jconrel.2013.12.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 12/31/2022]
|
36
|
Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid). RESULTS IN PHARMA SCIENCES 2013; 3:7-14. [PMID: 25755999 PMCID: PMC3940118 DOI: 10.1016/j.rinphs.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/12/2022]
Abstract
Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs.
Collapse
|
37
|
First in man bioavailability and tolerability studies of a silica–lipid hybrid (Lipoceramic) formulation: a Phase I study with ibuprofen. Drug Deliv Transl Res 2013; 4:212-21. [DOI: 10.1007/s13346-013-0172-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Verma G, Hassan PA. Self assembled materials: design strategies and drug delivery perspectives. Phys Chem Chem Phys 2013; 15:17016-28. [DOI: 10.1039/c3cp51207j] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|