1
|
Tyubaeva PM, Gasparyan KG, Romanov RR, Kolesnikov EA, Martirosyan LY, Larkina EA, Tyubaev MA. Biomimetic Materials Based on Poly-3-hydroxybutyrate and Chlorophyll Derivatives. Polymers (Basel) 2023; 16:101. [PMID: 38201766 PMCID: PMC10780539 DOI: 10.3390/polym16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Electrospinning of biomimetic materials is of particular interest due to the possibility of producing flexible layers with highly developed surfaces from a wide range of polymers. Additionally, electrospinning is characterized by a high simplicity of implementation and the ability to modify the produced fibrous materials, which resemble structures found in living organisms. This study explores new electrospun materials based on polyhydroxyalkanoates, specifically poly-3-hydroxybutyrate, modified with chlorophyll derivatives. The research investigates the impact of chlorophyll derivatives on the morphology, supramolecular structure, and key properties of nonwoven materials. The obtained results are of interest for the development of new flexible materials with low concentrations of chlorophyll derivatives.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| | - Kristina G. Gasparyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| | - Roman R. Romanov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Evgeny A. Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology (MISIS), 119991 Moscow, Russia;
| | - Levon Y. Martirosyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
| | - Ekaterina A. Larkina
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Mikhail A. Tyubaev
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| |
Collapse
|
2
|
Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced Permeability and Retention Effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther 2022; 39:102915. [PMID: 35597441 DOI: 10.1016/j.pdpdt.2022.102915] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Exploring the enhanced permeability and retention (EPR) effect through therapeutic nanoparticles has been a subject of considerable interest in tumor biology. This passive targeting based phenomenon exploits the leaky blood vasculature and the defective lymphatic drainage system of the heterogeneous tumor microenvironment resulting in enhanced preferential accumulation of the nanoparticles within the tumor tissues. This article reviews the fundamental studies to assess how the EPR effect plays an essential role in passive targeting. Further, it summarizes various therapeutic modalities of nanoformulation including chemo-photodynamic therapy, intravascular drug release, and photothermal immunotherapy to combat cancer using enhanced EPR effect in neoplasia region.
Collapse
Affiliation(s)
- Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | | | - Surya Prakash Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
3
|
Hao X, Wu J, Xiang D, Yang Y. Recent Advance of Nanomaterial-Mediated Tumor Therapies in the Past Five Years. Front Pharmacol 2022; 13:846715. [PMID: 35250598 PMCID: PMC8896221 DOI: 10.3389/fphar.2022.846715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer has posed a major threat to human life and health with a rapidly increasing number of patients. The complexity and refractory of tumors have brought great challenges to tumor treatment. In recent years, nanomaterials and nanotechnology have attracted more attention and greatly improved the efficiency of tumor therapies and significantly prolonged the survival period, whether for traditional tumor treatment methods such as radiotherapy, or emerging methods, such as phototherapy and immunotherapy, sonodynamic therapy, chemodynamic therapy and RNA interference therapeutics. Various monotherapies have obtained positive results, while combination therapies are further proposed to prevent incomplete eradication and recurrence of tumors, strengthen tumor killing efficacy with minimal side effects. In view of the complementary promotion effects between different therapies, it is vital to utilize nanomaterials as the link between monotherapies to achieve synergistic performance. Further development of nanomaterials with efficient tumor-killing effect and better biosafety is more in line with the needs of clinical treatment. In a word, the development of nanomaterials provides a promising way for tumor treatment, and here we will review the emerging nanomaterials towards radiotherapy, phototherapy and immunotherapy, and summarized the developed nanocarriers applied for the tumor combination therapies in the past 5 years, besides, the advances of some other novel therapies such as sonodynamic therapy, chemodynamic therapy, and RNA interference therapeutics have also been mentioned.
Collapse
Affiliation(s)
- Xinyan Hao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Junyong Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - DaXiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yongyu Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Yongyu Yang,
| |
Collapse
|
4
|
Liu W, Zhang J, Ding L, Ni W, Yuan J, Xiao H, Zhang J. RBC-derived nanosystem with enhanced ferroptosis triggered by oxygen-boosted phototherapy for synergized tumor treatment. Biomater Sci 2021; 9:7228-7236. [PMID: 34585181 DOI: 10.1039/d1bm00175b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photodynamic and ferroptosis therapies for cancer treatment are restricted by the scarcity of oxygen and Fe in cancer cells, and the complicated structure of delivery systems. Herein, a red blood cell-derived vehicle (RDV) inherently enriched with hemoglobin co-delivers a photosensitizer, Ce6, and a ferroptosis promoter, sorafenib (SRF) into cancer cells for boosting oxygen and providing iron, which leads to enhanced PDT and stronger ferroptosis therapy. Damage to the RDV membrane under local irradation leads to SRF release at the tumor site for tumor-targeted therapy. The lipid membrane of the RDV could also improve the drug delivery efficiency in vitro and in vivo. The novel nanosystem exhibited enhanced tumor killing efficacy and improved safety compared with traditional PDT and ferroptosis therapy.
Collapse
Affiliation(s)
- Wenjun Liu
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus/Shanghai Fengxian District Central Hospital, Shanghai 201499, China.
| | - Jieyuan Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, China
| | - Liang Ding
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus/Shanghai Fengxian District Central Hospital, Shanghai 201499, China.
| | - Weifeng Ni
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus/Shanghai Fengxian District Central Hospital, Shanghai 201499, China.
| | - Junjie Yuan
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus/Shanghai Fengxian District Central Hospital, Shanghai 201499, China.
| | - Haijun Xiao
- Department of Orthopedics, Southern Medical University Affiliated Fengxian Hospital/Shanghai Fengxian District Central Hospital, China.
| | - Jingwei Zhang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus/Shanghai Fengxian District Central Hospital, Shanghai 201499, China.
| |
Collapse
|
5
|
Dash BS, Das S, Chen JP. Photosensitizer-Functionalized Nanocomposites for Light-Activated Cancer Theranostics. Int J Mol Sci 2021; 22:6658. [PMID: 34206318 PMCID: PMC8268703 DOI: 10.3390/ijms22136658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Photosensitizers (PSs) have received significant attention recently in cancer treatment due to its theranostic capability for imaging and phototherapy. These PSs are highly responsive to light source of a suitable wavelength for image-guided cancer therapy from generated singlet oxygen and/or thermal heat. Various organic dye PSs show tremendous attenuation of tumor cells during cancer treatment. Among them, porphyrin and chlorophyll-based ultraviolet-visible (UV-Vis) dyes are employed for photodynamic therapy (PDT) by reactive oxygen species (ROS) and free radicals generated with 400-700 nm laser lights, which have poor tissue penetration depth. To enhance the efficacy of PDT, other light sources such as red light laser and X-ray have been suggested; nonetheless, it is still a challenging task to improve the light penetration depth for deep tumor treatment. To overcome this deficiency, near infrared (NIR) (700-900 nm) PSs, indocyanine green (ICG), and its derivatives like IR780, IR806 and IR820, have been introduced for imaging and phototherapy. These NIR PSs have been used in various cancer treatment modality by combining photothermal therapy (PTT) and/or PDT with chemotherapy or immunotherapy. In this review, we will focus on the use of different PSs showing photothermal/photodynamic response to UV-Vis or NIR-Vis light. The emphasis is a comprehensive review of recent smart design of PS-loaded nanocomposites for targeted delivery of PSs in light-activated combination cancer therapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (S.D.)
| | - Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (S.D.)
- Craniofacial Research Center, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
6
|
Obata M, Masuda S, Takahashi M, Yazaki K, Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Safar Sajadi SM, Khoee S. The simultaneous role of porphyrins' H- and J- aggregates and host-guest chemistry on the fabrication of reversible Dextran-PMMA polymersome. Sci Rep 2021; 11:2832. [PMID: 33531578 PMCID: PMC7854723 DOI: 10.1038/s41598-021-82256-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/18/2021] [Indexed: 01/11/2023] Open
Abstract
Aggregation-induced quenching of porphyrin molecules as photosensitizer significantly reduces the quantum yield of the singlet oxygen generation, and it is able to decrease the efficacy of photodynamic therapy. We utilized amphiphilic copolymers in this work to precisely control porphyrin H-type and J-type aggregations in water. The amphiphilic copolymer bearing azobenzene, β-cyclodextrin, and porphyrin was successfully synthesized by the atom transfer radical polymerization technique. The azobenzene and β-cyclodextrin complex, as a host-guest supramolecular interaction, has great potential in the design of light-responsive nanocarriers. The amphiphilic block copolymer can be self-assembled into polymersomes, whose application in the generation of singlet oxygen has been also tested. We further demonstrate that, due to the stable H- and J-aggregates of porphyrin, which act as noncovalent cross-linking points, the structure of polymersomes can be reversible under light-stimulus. This formation method has the advantage of allowing for both the encapsulation of hydrophilic and hydrophobic molecules and release upon external light without any distinguishable changes in the structure. Furthermore, the morphology and particle size distribution of the polymersomes were also investigated by using transition electron microscopy, dynamic light scattering, and field emission scanning electron microscopy.
Collapse
Affiliation(s)
- Seyed Milad Safar Sajadi
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran.
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, PO Box 14155 6455, Tehran, Iran.
| |
Collapse
|
8
|
Zhang Y, Wang B, Zhao R, Zhang Q, Kong X. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111099. [PMID: 32600703 DOI: 10.1016/j.msec.2020.111099] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/06/2019] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is an emerging cancer treatment combining light, oxygen, and a photosensitizer (PS) to produce highly cytotoxic reactive oxygen species that cause cancer cell death. However, most PSs are hydrophobic molecules that have poor water solubility and cannot target tumor tissues, causing damage to normal tissues and cells during PDT. Thus, there is a substantial demand for the development of nanocarrier systems to achieve targeted delivery of PSs into tumor tissues and cells. This review summarizes the research progress in PS delivery systems for PDT treatment of tumors and focuses on the recent design and development of multifunctional nanoparticles as PS delivery carriers for enhanced PDT. These multifunctional nanoparticles possess unique properties, including tunable particle size, changeable shape, stimuli-responsive PS activation, controlled PS release, and hierarchical targeting capability. These properties can increase tumor accumulation, penetration, and cellular internalization of nanoparticles to achieve PS activation and/or release in cancer cells for enhanced PDT. Finally, recent developments in multifunctional nanoparticles for tumor-targeted PS delivery and their future prospects in PDT are discussed.
Collapse
Affiliation(s)
- Yonghe Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Beilei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ruibo Zhao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Quan Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Xiangdong Kong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China; Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
9
|
Polymeric micelles with aggregation-induced emission based on microbial ε-polylysine for doxorubicin delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109355] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Aljarrah K, Al-Akhras MA, Al-Khalili DJ, Ababneh Z. The feasibility of using Saffron to reduce the photosensitivity reaction of selected photosensitizers using red blood cells and staphylococcusAureus bacteria as targets. Photodiagnosis Photodyn Ther 2019; 29:101590. [PMID: 31689512 DOI: 10.1016/j.pdpdt.2019.101590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND The photosensitivity reaction which appears after a Photodynamic therapy treatment session is a challenge that needs further investigation. The goal of this research is to evaluate the possibility of using saffron to reduce or control this photosensitivity reaction and to present mathematical modeling of the cell survival curves and their dependency on saffron concentration. METHODS Red blood cells (RBC) and Staphylococcus aureus Bacteria (STB) were used as targets in this study. The Photosensitivity of Rose Bengali, Methylene Blue, and Photofrin independently and incorporated with saffron was investigated for continued irradiation at different Saffron concentrations. Gompertz's function was used to fit the survival curve parameters. The 50% cell survival rate was fit to an empirical formula based on Saffron concentrations. RESULTS Saffron inhibits the photosensitivity reaction of the three photosensitizers and causes a significant increase in the 50% survival rate time (t50) for RBC`s and STB. Saffron didn't show phototoxicity when incubated alone with RBC`s and STB. The survival curve parameters of the RBCs and STB showed a good fit to the Gompertz function. Saffron concentration is related to the RBC`s t50 based on power dependency of 0.56, 0.38 and 0.31 for Photofrin, Methylene Blue and Rose Bengali respectively and 0.1 on STB for Rose Bengali. CONCLUSION Saffron can efficiently be used to reduce the photosensitivity reaction of Photosensitizers after a PDT treatment session. Gompertz function was found to be an appropriate mathematical model for survival rate curves. The t50 and the saffron concentration are well related through a power dependence empirical formula.
Collapse
Affiliation(s)
- Khaled Aljarrah
- Bio-Medical Physics Laboratory, Department of Physics, Jordan University of Science & Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan.
| | - M-Ali Al-Akhras
- Bio-Medical Physics Laboratory, Department of Physics, Jordan University of Science & Technology (JUST), P.O. Box 3030, Irbid 22110, Jordan
| | | | - Zaid Ababneh
- Physics Department, Yarmouk University, Irbid 211-63, Jordan
| |
Collapse
|
11
|
Luo L, Zhang Q, Luo Y, He Z, Tian X, Battaglia G. Thermosensitive nanocomposite gel for intra-tumoral two-photon photodynamic therapy. J Control Release 2019; 298:99-109. [DOI: 10.1016/j.jconrel.2019.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/03/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
|
12
|
Jia HR, Zhu YX, Xu KF, Wu FG. Turning Toxicants into Safe Therapeutic Drugs: Cytolytic Peptide-Photosensitizer Assemblies for Optimized In Vivo Delivery of Melittin. Adv Healthc Mater 2018; 7:e1800380. [PMID: 29931753 DOI: 10.1002/adhm.201800380] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/20/2018] [Indexed: 11/08/2022]
Abstract
Melittin (MEL) is recognized as a highly potent therapeutic peptide for treating various human diseases including cancer. However, the clinical applications of MEL are largely restricted by its severe hemolytic activity and nonspecific cytotoxicity. Here, it is found that MEL can form a stable supramolecular nanocomplex of ≈60 nm with the photosensitizer chlorin e6 (Ce6), which after hyaluronic acid (HA) coating can achieve robust, safe, and imaging-guided tumor ablation. The as-designed nanocomplex (denoted as MEL/Ce6@HA) shows largely reduced hemolysis and selective cytolytic activity toward cancer cells. Upon laser irradiation, the loaded photosensitive Ce6 can synergistically facilitate the membrane-lytic efficiency of melittin and greatly increase the tumor penetration depth of the complexes in multicellular tumor spheroids. In vivo experiments reveal that MEL/Ce6@HA can realize enhanced tumor accumulation, reduced liver deposition, and rapid body clearance, which are beneficial for highly efficient and safe chemo-photodynamic dual therapy. This work develops a unique supramolecular strategy for optimized in vivo delivery of melittin and may have implications for the development of peptide-based theranostics.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|
13
|
Sahoo K, Karumuri S, Hikkaduwa Koralege RS, Flynn NH, Hartson S, Liu J, Ramsey JD, Kalkan AK, Pope C, Ranjan A. Molecular and Biocompatibility Characterization of Red Blood Cell Membrane Targeted and Cell-Penetrating-Peptide-Modified Polymeric Nanoparticles. Mol Pharm 2017; 14:2224-2235. [PMID: 28505457 DOI: 10.1021/acs.molpharmaceut.7b00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Red blood cells (RBCs) express a variety of immunomodulatory markers that enable the body to recognize them as self. We have shown that RBC membrane glycophorin A (GPA) receptor can mediate membrane attachment of protein therapeutics. A critical knowledge gap is whether attaching drug-encapsulated nanoparticles (NPs) to GPA and modification with cell-penetrating peptide (CPP) will impact binding, oxygenation, and the induction of cellular stress. The objective of this study was to formulate copolymer-based NPs containing model fluorescent-tagged bovine serum albumin (BSA) with GPA-specific targeting ligands such as ERY1 (ENPs), single-chain variable antibody (scFv TER-119, SNPs), and low-molecular-weight protamine-based CPP (LNPs) and to determine their biocompatibility using a variety of complementary high-throughput in vitro assays. Experiments were conducted by coincubating NPs with RBCs at body temperature, and biocompatibility was evaluated by Raman spectroscopy, hemolysis, complement lysis, and oxidative stress assays. Data suggested that LNPs effectively targeted RBCs, conferring 2-fold greater uptake in RBCs compared to ENPs and SNPs. Raman spectroscopy results indicated no adverse effect of NP attachment or internalization on the oxygenation status of RBCs. Cellular stress markers such as glutathione, malondialdehyde, and catalase were within normal limits, and complement-mediated lysis due to NPs was negligible in RBCs. Under the conditions tested, our data demonstrates that molecular targeting of the RBC membrane is a feasible translational strategy for improving drug pharmacokinetics and that the proposed high-throughput assays can prescreen diverse NPs for preclinical and clinical biocompatibility.
Collapse
Affiliation(s)
- Kaustuv Sahoo
- Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Sriharsha Karumuri
- Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Rangika S Hikkaduwa Koralege
- Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Nicholas H Flynn
- Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Steve Hartson
- Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Jing Liu
- Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Joshua D Ramsey
- Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - A Kaan Kalkan
- Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Carey Pope
- Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Ashish Ranjan
- Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| |
Collapse
|
14
|
Abbas M, Zou Q, Li S, Yan X. Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605021. [PMID: 28060418 DOI: 10.1002/adma.201605021] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/18/2016] [Indexed: 05/20/2023]
Abstract
Tremendous interest in self-assembly of peptides and proteins towards functional nanomaterials has been inspired by naturally evolving self-assembly in biological construction of multiple and sophisticated protein architectures in organisms. Self-assembled peptide and protein nanoarchitectures are excellent promising candidates for facilitating biomedical applications due to their advantages of structural, mechanical, and functional diversity and high biocompability and biodegradability. Here, this review focuses on the self-assembly of peptides and proteins for fabrication of phototherapeutic nanomaterials for antitumor photodynamic and photothermal therapy, with emphasis on building blocks, non-covalent interactions, strategies, and the nanoarchitectures of self-assembly. The exciting antitumor activities achieved by these phototherapeutic nanomaterials are also discussed in-depth, along with the relationships between their specific nanoarchitectures and their unique properties, providing an increased understanding of the role of peptide and protein self-assembly in improving the efficiency of photodynamic and photothermal therapy.
Collapse
Affiliation(s)
- Manzar Abbas
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
15
|
Zhou Q, Xu L, Liu F, Zhang W. Construction of reduction-responsive photosensitizers based on amphiphilic block copolymers and their application for photodynamic therapy. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Sahoo K, Koralege RSH, Flynn N, Koteeswaran S, Clark P, Hartson S, Liu J, Ramsey JD, Pope C, Ranjan A. Nanoparticle Attachment to Erythrocyte Via the Glycophorin A Targeted ERY1 Ligand Enhances Binding without Impacting Cellular Function. Pharm Res 2016; 33:1191-203. [PMID: 26812966 DOI: 10.1007/s11095-016-1864-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/19/2016] [Indexed: 01/28/2023]
Abstract
PURPOSE Nanoparticle (NP) attachment to biocompatible secondary carriers such as red blood cell (RBC) can prolong blood residence time of drug molecules and help create next-generation nanotherapeutics. However, little is known about the impact of RBC-targeted NPs on erythrocyte function. METHODS The objectives of this study were to develop and characterize in vitro a novel poly-L-lysine (PLL) and polyethylene glycol (PEG) copolymer-based NP containing fluorescent-tagged bovine serum albumin (BSA), and conjugated with ERY1, a 12 amino acid peptide with high affinity for the RBC membrane protein glycophorin A (ENP). RESULTS Confocal and flow cytometry data suggest that ENPs efficiently and irreversibly bind to RBC, with approximately 70% of erythrocytes bound after 24 h in a physiologic flow loop model compared to 10% binding of NPs without ERY1. Under these conditions, synthesized ENPs were not toxic to the RBCs. The rheological parameters at the applied shear. (0-15 Pa) were not influenced by ENP attachment to the RBCs. However, at high concentration, the strong affinity of ENPs to the glycophorin-A reduced the deformability of the RBC. CONCLUSIONS ENPs can be efficiently attached to the RBCs without adversely affecting cellular function, and this may potentially enhance circulatory half-life of drug molecules.
Collapse
Affiliation(s)
- Kaustuv Sahoo
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | | | - Nicholas Flynn
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Samyukta Koteeswaran
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Peter Clark
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Steve Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Jing Liu
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Carey Pope
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Ashish Ranjan
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, 74078, USA.
- Laboratory of Nanomedicine and Targeted Therapy, Center for Veterinary Health Sciences, Oklahoma State University, 169 McElroy Hall, Stillwater, Oklahoma, 74074, USA.
| |
Collapse
|
17
|
Chen Y, Rui L, Liu L, Zhang W. Redox-responsive supramolecular amphiphiles based on a pillar[5]arene for enhanced photodynamic therapy. Polym Chem 2016. [DOI: 10.1039/c6py00505e] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular amphiphiles based on a pillar[5]arene with enhanced photodynamic therapy have been fabricated.
Collapse
Affiliation(s)
- Ye Chen
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Leilei Rui
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Lichao Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
18
|
Shi H, Sun W, Liu C, Gu G, Ma B, Si W, Fu N, Zhang Q, Huang W, Dong X. Tumor-targeting, enzyme-activated nanoparticles for simultaneous cancer diagnosis and photodynamic therapy. J Mater Chem B 2015; 4:113-120. [PMID: 32262814 DOI: 10.1039/c5tb02041g] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Specific targeting towards tumors and the on-site activation of photosensitizers to diagnose tumors and reduce side effects for patients are currently the main challenges for photodynamic therapy (PDT) in the clinic. Herein, uniform diiodostyryl bodipy conjugated hyaluronic acid nanoparticles (DBHA-NPs) were successfully synthesized. The evaluation of their PDT effect at both a cellular level and in animal models of tumor-bearing mice shows that the DBHA-NPs present a remarkable suppression of tumorous growth due to their specific targeting and enhanced permeability and retention (EPR) effect. More importantly, the enzyme-activated "self-assembly and disaggregation" behavior in tumors can lead to the on-site activation of DBHA-NPs, which can diagnose the tumor exactly and reduce the side effects for patients significantly. These findings confirm that DBHA-NPs have significant potential for photodynamically activated cancer theranostics in a clinical setting.
Collapse
Affiliation(s)
- Huaxia Shi
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fourier transform infrared spectroscopy (FTIR) characterization of the interaction of anti-cancer photosensitizers with dendrimers. Anal Bioanal Chem 2015; 408:535-44. [DOI: 10.1007/s00216-015-9125-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/02/2015] [Accepted: 10/16/2015] [Indexed: 11/25/2022]
|
20
|
Shimada N, Kinoshita H, Tokunaga S, Umegae T, Kume N, Sakamoto W, Maruyama A. Inter-polyelectrolyte nano-assembly induces folding and activation of functional peptides. J Control Release 2015; 218:45-52. [PMID: 26435456 DOI: 10.1016/j.jconrel.2015.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 10/23/2022]
Abstract
Insufficient solubility, fragile folding structure and short half-life frequently hamper use of peptides as biological reagents or therapies. To enhance the peptide function, the effect of complexation of the peptides with ionic graft copolymers with water-soluble graft chains was tested in this study. Amphiphilic anionic peptide E5 acquires membrane disrupting activity at acidic pH due to folding from the random coil state to an ordered α-helical structure. Aggregation and imprecise folding of the peptide limited membrane disrupting activity of the peptide. In the presence of a cationic graft copolymer, E5 and its analogs adopted an ordered conformation without aggregation. The mixture of the peptides and the copolymer functioned more efficiently than peptide alone at not only acidic pH but also neutral pH at which the peptide alone had no activity. Similarly, a cationic peptide was successfully folded and activated by an anionic graft copolymer. Thus, our analysis indicated that spontaneous nano-assembly of ionic peptides with graft copolymers having opposite ionic charges triggers the folding of peptides without loss of solubility, leading to enhanced bioactivity.
Collapse
Affiliation(s)
- Naohiko Shimada
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Hirotaka Kinoshita
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Shuichi Tokunaga
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Takuma Umegae
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Nozomi Kume
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Wakako Sakamoto
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan
| | - Atsushi Maruyama
- Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 B-57, Nagatsuta, Midori, Yokohama 226-8501, Japan.
| |
Collapse
|
21
|
Guan M, Qin T, Ge J, Zhen M, Xu W, Chen D, Li S, Wang C, Su H, Shu C. Amphiphilic trismethylpyridylporphyrin-fullerene (C70) dyad: an efficient photosensitizer under hypoxia conditions. J Mater Chem B 2015; 3:776-783. [DOI: 10.1039/c4tb01314j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic trismethylpyridylporphyrin-C70(PC70) dyad with improved photosensitization has been successfully prepared.
Collapse
|
22
|
Xu L, Zhang W, Cai H, Liu F, Wang Y, Gao Y, Zhang W. Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles. J Mater Chem B 2015; 3:7417-7426. [DOI: 10.1039/c5tb01363a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A light-controlled porphyrinic photosensitizer release system was developed based on host–guest TPP–Azo/PEG–β-CD supramolecular amphiphiles, which could significantly enhance the efficiency of photodynamic therapy.
Collapse
Affiliation(s)
- Lei Xu
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Wenyan Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Haibo Cai
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Feng Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemistry and Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
23
|
Luk B, Zhang L. Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21859-73. [PMID: 25014486 PMCID: PMC4278687 DOI: 10.1021/am5036225] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 07/11/2014] [Indexed: 05/05/2023]
Abstract
Nanotheranostics is a relatively new, fast-growing field that combines the advantages of treatment and diagnosis via a single nanoscale carrier. The ability to bundle both therapeutic and diagnostic capabilities into one package offers exciting prospects for the development of novel nanomedicine. Nanotheranostics can deliver treatment while simultaneously monitoring therapy response in real-time, thereby decreasing the potential of over- or under-dosing patients. Polymer-based nanomaterials, in particular, have been used extensively as carriers for both therapeutic and bioimaging agents and thus hold great promise for the construction of multifunctional theranostic formulations. Herein, we review recent advances in polymer-based systems for nanotheranostics, with a particular focus on their applications in cancer research. We summarize the use of polymer nanomaterials for drug delivery, gene delivery, and photodynamic therapy, combined with imaging agents for magnetic resonance imaging, radionuclide imaging, and fluorescence imaging.
Collapse
Affiliation(s)
- Brian
T. Luk
- Department
of NanoEngineering
and Moores Cancer Center, University of
California, San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Department
of NanoEngineering
and Moores Cancer Center, University of
California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
24
|
Monge-Fuentes V, Muehlmann LA, de Azevedo RB. Perspectives on the application of nanotechnology in photodynamic therapy for the treatment of melanoma. NANO REVIEWS 2014; 5:24381. [PMID: 25317253 PMCID: PMC4152551 DOI: 10.3402/nano.v5.24381] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/14/2023]
Abstract
Malignant melanoma is the most aggressive form of skin cancer and has been traditionally considered difficult to treat. The worldwide incidence of melanoma has been increasing faster than any other type of cancer. Early detection, surgery, and adjuvant therapy enable improved outcomes; nonetheless, the prognosis of metastatic melanoma remains poor. Several therapies have been investigated for the treatment of melanoma; however, current treatment options for patients with metastatic disease are limited and non-curative in the majority of cases. Photodynamic therapy (PDT) has been proposed as a promising minimally invasive therapeutic procedure that employs three essential elements to induce cell death: a photosensitizer, light of a specific wavelength, and molecular oxygen. However, classical PDT has shown some drawbacks that limit its clinical application. In view of this, the use of nanotechnology has been considered since it provides many tools that can be applied to PDT to circumvent these limitations and bring new perspectives for the application of this therapy for different types of diseases. On that ground, this review focuses on the potential use of developing nanotechnologies able to bring significant benefits for anticancer PDT, aiming to reach higher efficacy and safety for patients with malignant melanoma.
Collapse
Affiliation(s)
- Victoria Monge-Fuentes
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| | - Luis Alexandre Muehlmann
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| | - Ricardo Bentes de Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
| |
Collapse
|
25
|
A genetically-encoded KillerRed protein as an intrinsically generated photosensitizer for photodynamic therapy. Biomaterials 2013; 35:500-8. [PMID: 24112805 DOI: 10.1016/j.biomaterials.2013.09.075] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/23/2013] [Indexed: 01/15/2023]
Abstract
Photodynamic therapy (PDT) has received considerable attention as a therapeutic treatment for cancer and other diseases; however, it is frequently accompanied by prolonged phototoxic reaction of the skin due to slow clearance of synthetic photosensitizers (PSs) administered externally. This study was designed to investigate the genetic use of pKillerRed-mem, delivered using complexes of chitosan (CS) and poly(γ-glutamic acid) (γPGA), to intracellularly express a membrane-targeted KillerRed protein that can be used as a potential PS for PDT. Following transfection with CS/pKillerRed/γPGA complexes, a red fluorescence protein of KillerRed was clearly seen at the cellular membranes. When exposed to green-light irradiation, the KillerRed-positive cells produced an excessive amount of reactive oxygen species (ROS) in a time-dependent manner. Data from viability assays indicate that ROS have an important role in mediating KillerRed-induced cytotoxicity, apoptosis, and anti-proliferation, suggesting that KillerRed can be used as an intrinsically generated PS for PDT treatments. Notably, the phototoxic reaction of KillerRed toward cells gradually became negligible over time, presumably because of its intracellular degradability. These experimental results demonstrate that this genetically encoded KillerRed is biodegradable and has potential for PDT-induced destruction of diseased cells.
Collapse
|