1
|
Vasa DM, Wang SW, Dunn MF, Long E, Luthra SA. Molecular-properties based formulation guidance tree for amorphous and supersaturable mesoporous silica preparations of poorly soluble compounds. J Pharm Sci 2024:S0022-3549(24)00486-6. [PMID: 39481476 DOI: 10.1016/j.xphs.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
A huge majority of new chemical entities (NCEs) advancing through the drug discovery pipeline often have poor aqueous solubility. This requires formulation scientists to search for solubility enhancement strategies, within the constraints of time and material. To address these challenges, a strategic platform formulation is often required for a rapid compound screening to enable early exploratory PK and toxicology studies. Through this work, we present an option of a material-sparing, high yielding and solubility-enabling amorphous API and HPMCAS-L co-loaded mesoporous silica-based formulation. The usability of this platform formation strategy was assessed for a physico-chemically diverse set of eleven compounds. The formulation approach was successful in stabilizing the model compounds mesoporous silica. Additionally, through the presence of HPMCAS-L, the precipitation risk in supersaturable aqueous environment was significantly reduced. Finally, this manuscript provides fundamental, computational and experimental molecular-properties based formulation guidance tree to a priori gauge the (1) possibility of generating solid-state stable amorphous formulations and (2) sustaining in vitro supersaturation in extreme non-sink dissolution conditions. This unique and conceptual formulation guidance tree is believed to be extremely beneficial to drug discovery formulators to triage NCEs and streamline solubility-enabling formulation efforts.
Collapse
Affiliation(s)
- Dipy M Vasa
- Drug Product Design, Pfizer, Inc., Cambridge, Massachusetts, United States
| | - Shih-Wen Wang
- Drug Product Design, Pfizer, Inc., Cambridge, Massachusetts, United States; Present address: Non-Clinical development, Relay Therapeutics, Cambridge, Massachusetts, United States
| | - Matthew F Dunn
- Drug Product Design, Pfizer Worldwide research and development, Groton, Connecticut, United States
| | - Erica Long
- Drug Product Design, Pfizer Worldwide research and development, Groton, Connecticut, United States
| | - Suman A Luthra
- Drug Product Design, Pfizer, Inc., Cambridge, Massachusetts, United States; Present address: Discovery Pharmaceutical Sciences, Merck & Co., Inc., Boston, Massachusetts, United States
| |
Collapse
|
2
|
Liu Y, M Leonova A, Royall PG, Abdillah Akbar BVEB, Cao Z, Jones SA, Isreb A, Hawcutt DB, Alhnan MA. Laser-cutting: A novel alternative approach for point-of-care manufacturing of bespoke tablets. Int J Pharm 2023; 647:123518. [PMID: 37852311 DOI: 10.1016/j.ijpharm.2023.123518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
A novel subtractive manufacturing method to produce bespoke tablets with immediate and extended drug release is presented. This is the first report on applying fusion laser cutting to produce bespoke furosemide solid dosage forms based on pharmaceutical-grade polymeric carriers. Cylindric tablets of different sizes were produced by controlling the two-dimensional design of circles of the corresponding diameter. Immediate and extended drug release patterns were achieved by modifying the composition of the polymeric matrix. Thermal analysis and XRD indicated that furosemide was present in an amorphous form. The laser-cut tablets demonstrated no significant drug degradation (<2%) nor the formation of impurities were identified. Multi-linear regression was used to quantify the influences of laser-cutting process parameters (laser energy levels, scan speeds, and the number of laser applications) on the depth of the laser cut. The utility of this approach was exemplified by manufacturing tablets of accurate doses of furosemide. Unlike additive or formative manufacturing, the reported approach of subtractive manufacturing avoids the modification of the structure, e.g., the physical form of the drug or matrix density of the tablet during the production process. Hence, fusion laser cutting is less likely to modify critical quality attributes such as release patterns or drug contents. In a point-of-care manufacturing scenario, laser cutting offers a significant advantage of simplifying quality control and a real-time release of laser-cut products such as solid dosage forms and implants.
Collapse
Affiliation(s)
- Yujing Liu
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Anna M Leonova
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Paul G Royall
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Bambang V E B Abdillah Akbar
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Zhengge Cao
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Stuart A Jones
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Abdullah Isreb
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel B Hawcutt
- NIHR Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust, Liverpool, UK; Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, UK.
| |
Collapse
|
3
|
Morris S, Long M, Savage A, Owen A, Rannard S, Cauldbeck H. Ex vivo transdermal delivery of 3H-labelled atovaquone solid drug nanoparticles: a comparison of topical, intradermal injection and microneedle assisted administration. NANOSCALE ADVANCES 2023; 5:6400-6404. [PMID: 38024306 PMCID: PMC10662085 DOI: 10.1039/d3na00454f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Inherent barrier properties of the skin impose significant challenges to the transdermal delivery of drugs to systemic circulation. Here, the ex vivo transdermal permeation and deposition of an anti-malarial prophylactic atovaquone solid drug nanoformulation is radiometrically evaluated following application of a solid microneedle format.
Collapse
Affiliation(s)
- Sam Morris
- Radiomaterials Laboratory, Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - Mark Long
- Unilever Research Centre Port Sunlight, Quarry Road East, Bebington Wirral CH63 3JW UK
| | - Alison Savage
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
- Department of Pharmacology and Therapeutics, University of Liverpool Liverpool L7 3NY UK
| | - Steve Rannard
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
- Materials Innovation Factory, University of Liverpool Oxford Street Liverpool L7 3NY UK
| | - Helen Cauldbeck
- Radiomaterials Laboratory, Department of Chemistry, University of Liverpool Crown Street Liverpool L69 7ZD UK
- Centre of Excellence in Long-acting Therapeutics (CELT), University of Liverpool Liverpool L7 3NY UK
| |
Collapse
|
4
|
Muruganantham S, Krishnaswami V, Kandasamy R, Alagarsamy S. Potentiating the solubility of BCS class II drug zaltoprofen using nanodispersion technology. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2173224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Selvakumar Muruganantham
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | | | - Ruckmani Kandasamy
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Shanmugarathinam Alagarsamy
- Department of Pharmaceutical Technology, University College of Engineering, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
5
|
Kawamura S, Kawasaki R, Hino S, Yamana K, Okuno M, Eto T, Ikeda A. Formulation of water-dispersible hydrophobic compound nanocomplexes with polypeptides via a supramolecular approach using a high-speed vibration milling technique. RSC Adv 2022; 12:32012-32019. [PMID: 36380925 PMCID: PMC9641674 DOI: 10.1039/d2ra06054j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/02/2022] [Indexed: 09/08/2024] Open
Abstract
Polypeptides were used to solubilize functional hydrophobic molecules via a high-speed vibrational milling method. Poly-l-lysine and poly-γ-glutamic acid, which are polypeptides, were able to prepare more highly concentrated water-dispersible complexes of hydrophobic compounds, including fullerenes, organic dyes, and porphyrin derivatives, than conventional water solubilizers, such as cyclodextrins and pullulan. In addition, the polypeptide systems endowed the complexes with long-term stability and resistance against thermal stress, which is advantageous for industrial applications. Furthermore, complexes of polypeptides and porphyrin derivatives showed a photodynamic activity against cancer cells, and the current system improved the dispersibility and storability of guest molecules without compromising their functionality.
Collapse
Affiliation(s)
- Shogo Kawamura
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| | - Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| | - Shodai Hino
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST 1-8-31 Midorigaoka Ikeda 563-8577 Japan
| | - Keita Yamana
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| | - Masafumi Okuno
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| | - Takuro Eto
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| |
Collapse
|
6
|
Tamburini G, Canevali C, Ferrario S, Bianchi A, Sansonetti A, Simonutti R. Optimized Semi-Interpenetrated p(HEMA)/PVP Hydrogels for Artistic Surface Cleaning. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6739. [PMID: 36234079 PMCID: PMC9571715 DOI: 10.3390/ma15196739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The synthesis of hydrogels that are based on poly-hydroxyethyl methacrylate, p(HEMA), network semi-interpenetrated with linear polyvinylpyrrolidone (PVP) was optimized in order to allow both a fast preparation and a high cleaning effectiveness of artistic surfaces. For this purpose, the synthesis parameters of the gel with PVP having a high molecular weight (1300 kDa) that were reported in the literature, were modified in terms of temperature, time, and crosslinker amount. In addition, the gel composition was modified by using PVP with different molecular weights, by changing the initiator and by adding maleic anhydride. The modified gels were characterized in terms of equilibrium water content (EWC), water uptake, conversion grade, and thermal properties by differential scanning calorimetry (DSC). The cleaning effectiveness of the gels was studied through the removal of copper salts from laboratory-stained specimens. Cleaning materials were characterized by electron paramagnetic resonance (EPR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and inductively-coupled plasma-mass spectrometry (ICP-MS). Cleaning was assessed on marble specimens by color variation measurements. The gel synthesis is accelerated by using PVP 360 kDa. The addition of maleic anhydride in the p(HEMA)/PVP network allows the most effective removal of copper salt deposits from marble since it acts as a chelator towards copper ions.
Collapse
Affiliation(s)
- Giulia Tamburini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
| | - Carmen Canevali
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
- Institute for Heritage Science (ISPC), National Research Council (CNR), 20122 Milan, Italy
| | | | | | - Antonio Sansonetti
- Institute for Heritage Science (ISPC), National Research Council (CNR), 20122 Milan, Italy
| | - Roberto Simonutti
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
| |
Collapse
|
7
|
Jiang T, Han L, Lu E, He W, Du S, Sha X. Design and Characterization of HY-038 Solid Dispersions via Spray Drying Technology: In Vitro and In Vivo Evaluations. AAPS PharmSciTech 2021; 22:267. [PMID: 34750638 DOI: 10.1208/s12249-021-02135-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to prepare HY-038 solid dispersions (SDs) with single carrier at high drug loading and then forming a tablet to enhance solubility, dissolution, and bioavailability via spray drying technology. At the same time, we hope to develop a more convenient in vitro method to predict the absorption behavior of different formulations in vivo. Different solid dispersions, varying in drug/polymer ratios, were prepared. Infrared spectroscopy, differential scanning calorimetry, scanning electron microscope, and X-ray diffraction were used to perform solid-state characterizations of the pure drug and SDs. Contact angle of water, dissolution in pH = 6.8 phosphate buffer, and in vivo absorption in dogs were studied. As a result, solid-state characterization demonstrated the transformation of the crystalline HY-038 to an amorphous state in the solid dispersions, and the in vivo exposure followed with the trend of the dissolution curve combined with contact angle. Compared with the prototype formulation, the Cmax and AUC0-∞ of optimized formulation SD2 (HY-038-HPMCAS 3:1) increased by about 5 ~ 9 times at the same dose. More importantly, the SD2 formulation showed approximately linear increases in Cmax and AUC0-∞ as the dose increased from 50 to 100 mg, while the prototype formulation reached absorption saturation at 50 mg. SD2 (HY-038-HPMCAS 3:1) was selected as the best formulation for the downstream development.
Collapse
|
8
|
Quaternary enteric solid dispersion prepared by hot-melt extrusion to mask the bitter taste and enhance drug stability. Int J Pharm 2021; 597:120279. [PMID: 33540020 DOI: 10.1016/j.ijpharm.2021.120279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
To mask the bitterness of drug is profoundly important especially in children's medication. This study designed and investigated a quaternary enteric solid dispersion (QESD) by secondary hot-melt-extrusion. Erythromycin (EM) was chosen as a model drug. The optimal QESD contained enteric polymer HPMCP-55, plasticizer and water-soluble polymer copovidone VA64. Raman and Atomic force microscope has exploited that majority EM was distributed in VA64 matrix, nanometer-sized EM-VA64 system was entrapped within enteric continuous phase to form a solid emulsion-like structure. For the prepared QESD, EM released concentration was far less than bitterness threshold (7 μg/mL to 20 μg/mL) in artificial saliva within the first 30 s. And dissolution rate was increased by 10% in article intestine fluid, which dominated by water-soluble VA64. Stress testing after two months at high-humidity (75% RH) and high-temperature (60 °C) revealed, compared with traditional enteric SDs, the chemical degradation of EM was slowed down in QESD. Furthermore, hydrogen and salt bonds were respectively formed between EM and VA64 and between leaking EM and HPMCP-55, which increasing the system stability and taste-masking. The effect of masking bitter taste can be satisfied as well as enhance drug dissolution rate in the intestine, and formulation physicochemical stability during storage.
Collapse
|
9
|
Slámová M, Prausová K, Epikaridisová J, Brokešová J, Kuentz M, Patera J, Zámostný P. Effect of co-milling on dissolution rate of poorly soluble drugs. Int J Pharm 2021; 597:120312. [PMID: 33540023 DOI: 10.1016/j.ijpharm.2021.120312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/25/2023]
Abstract
Co-milling of a drug with a co-former is an efficient technique to improve the solubility of drugs. Besides the particle size reduction, the co-milling process induces a structural disorder and the creation of amorphous regions. The extent of drug solubility enhancement is dependent on the proper choice of co-milling co-former. The aim of this work was to compare the effects of different co-formers (meglumine and polyvinylpyrrolidone) on the dissolution rates of glass forming (indomethacin) and non-glass forming (mefenamic acid) model drugs. A positive impact of the co-milling on the dissolution behavior was observed in all co-milled mixtures, even if no substantial amorphization was observed. While meglumine exhibited pronounced effects on the dissolution rate of both drugs, the slightest enhancement was observed in mixtures with polyvinylpyrrolidone. The evaluation of specific release rate revealed the surface activation of drug particle is responsible for improving the dissolution rate of both drug types, but for the glass former, this surface activation could be persistent while maintaining a high dissolution rate even until a high fraction of drug is released. Our results, therefore, indicate that adequate co-former choice and consideration of drug glass forming ability are important for a successful co-milling approach to poorly water-soluble drugs.
Collapse
Affiliation(s)
- Michaela Slámová
- Department of Organic Technology, UCT Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic.
| | - Kateřina Prausová
- Department of Organic Technology, UCT Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Julie Epikaridisová
- Department of Organic Technology, UCT Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Jana Brokešová
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Charles University, Ak. Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharmaceutical Technology, Gründenstr. 40, CH-4132 Muttenz, Switzerland
| | - Jan Patera
- Department of Organic Technology, UCT Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| | - Petr Zámostný
- Department of Organic Technology, UCT Prague, Technická 5, 166 28 Prague 6, Dejvice, Czech Republic
| |
Collapse
|
10
|
Preparation, characterization and pharmacokinetic studies of sulfobutyl ether-β-cyclodextrin-toltrazuril inclusion complex. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.128969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Goscianska J, Olejnik A, Ejsmont A, Galarda A, Wuttke S. Overcoming the paracetamol dose challenge with wrinkled mesoporous carbon spheres. J Colloid Interface Sci 2020; 586:673-682. [PMID: 33223239 DOI: 10.1016/j.jcis.2020.10.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Paracetamol is the most commonly used antipyretic and analgesic drug in the world. The key challenge in paracetamol therapy is associated with the frequency of the dosing. Depending on the gastric filling within 10-20 min paracetamol is released and rapidly absorbed from the gastrointestinal tract. Therefore, it must be taken three or four times a day. To address the dose challenge it is desirable that the paracetamol release profile follows the zero-order kinetic model (constant rate of drug release per unit time). This goal can be achieved by using a suitable porous carrier system. Herein, non-toxic wrinkled mesoporous carbons with unique morphology were synthesized via the hard template method as new carriers for paracetamol. These particles can precisely modulate the release of paracetamol over 24 h in a simulated gastric fluid according to the zero-order kinetic model completely eliminating the initial burst release. Overall, these systems could significantly enhance the bioavailability of paracetamol and prolong its therapeutic effect in numerous diseases such as cold, flu, COVID-19, and severe pain.
Collapse
Affiliation(s)
- Joanna Goscianska
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Anna Olejnik
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Aleksander Ejsmont
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Aleksandra Galarda
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
12
|
Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) hydrogel membranes for encapsulated forms of drugs. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02335-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Goscianska J, Ejsmont A, Olejnik A, Ludowicz D, Stasiłowicz A, Cielecka-Piontek J. Design of Paracetamol Delivery Systems Based on Functionalized Ordered Mesoporous Carbons. MATERIALS 2020; 13:ma13184151. [PMID: 32961932 PMCID: PMC7560326 DOI: 10.3390/ma13184151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022]
Abstract
The oxidized ordered mesoporous carbons of cubic and hexagonal structure obtained by two templating methods (soft and hard) were applied for the first time as delivery systems for paracetamol—the most common antipyretic and analgesic drug in the world. The process of carbon oxidation was performed using an acidic ammonium persulfate solution at 60 °C for 6 h. The functionalization was found to reduce the specific surface area and pore volume of carbon materials, but it also led to an increasing number of acidic oxygen-containing functional groups. The most important element and the novelty of the presented study was the evaluation of adsorption and release ability of carbon carriers towards paracetamol. It was revealed that the sorption capacity and the drug release rate were mainly affected by the materials’ textural parameters and the total amount of surface functional groups, notably different in pristine and oxidized samples. The adsorption of paracetamol on the surface of ordered mesoporous carbons occurred according to different mechanisms: donor–acceptor complexes and hydrogen bond formation. The adsorption kinetics was assessed using pseudo-first- and pseudo-second-order models. The regression results indicated that the adsorption kinetics was more accurately represented by the pseudo-second-order model. Paracetamol was adsorbed onto the carbon materials studied following the Langmuir type isotherm. The presence of oxygen-containing functional groups on the surface of ordered mesoporous carbons enhanced the amount of paracetamol adsorbed and its release rate. The optimal drug loading capacity and expected release pattern exhibited oxidized ordered mesoporous carbon with a hexagonal structure obtained by the hard template method.
Collapse
Affiliation(s)
- Joanna Goscianska
- Department of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.E.); (A.O.)
- Correspondence: (J.G.); (J.C.-P.)
| | - Aleksander Ejsmont
- Department of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.E.); (A.O.)
| | - Anna Olejnik
- Department of Chemical Technology, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (A.E.); (A.O.)
| | - Dominika Ludowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Poznań University of Medical Sciences, Święcickiego 4, 61-781 Poznań, Poland; (D.L.); (A.S.)
| | - Anna Stasiłowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Poznań University of Medical Sciences, Święcickiego 4, 61-781 Poznań, Poland; (D.L.); (A.S.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznań University of Medical Sciences, Święcickiego 4, 61-781 Poznań, Poland; (D.L.); (A.S.)
- Correspondence: (J.G.); (J.C.-P.)
| |
Collapse
|
14
|
Franco P, De Marco I. The Use of Poly( N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers (Basel) 2020; 12:E1114. [PMID: 32414187 PMCID: PMC7285361 DOI: 10.3390/polym12051114] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/31/2022] Open
Abstract
Polyvinylpyrrolidone (PVP) is a hydrophilic polymer widely employed as a carrier in the pharmaceutical, biomedical, and nutraceutical fields. Up to now, several PVP-based systems have been developed to deliver different active principles, of both natural and synthetic origin. Various formulations and morphologies have been proposed using PVP, including microparticles and nanoparticles, fibers, hydrogels, tablets, and films. Its versatility and peculiar properties make PVP one of the most suitable and promising polymers for the development of new pharmaceutical forms. This review highlights the role of PVP in drug delivery, focusing on the different morphologies proposed for different polymer/active compound formulations. It also provides detailed information on active principles and used technologies, optimized process parameters, advantages, disadvantages, and final applications.
Collapse
Affiliation(s)
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy;
| |
Collapse
|
15
|
Bera S, Maity S, Ghosh B, Ghosh A, Giri TK. Development and Characterization of Solid Dispersion System for Enhancing the Solubility and Dissolution Rate of Dietary Capsaicin. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885514666190724143351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Capsaicin is a pungent component of chili peppers that suppresses the growth of various cancer cell lines including breast cancer. However, it shows extremely low oral bioavailability due to its poor water solubility.Objective:The objective of the present work was to improve the solubility and dissolution rate of capsaicin.Methods:Solid dispersions were prepared by the solvent evaporation method using different molar ratios of capsaicin and urea (1:1, 1:2, and 1:3). Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) study were used to characterize the solid dispersion. Solid dispersions were evaluated for solubility, dissolution rate and in vitro cytotoxicity in breast cancer cell lines.Results:XRD and DSC studies exhibited the reduced crystallinity of a drug in solid dispersion. Phase solubility study shows that the drug solubility increased by increasing carrier concentration. In vitro release study of the solid dispersion showed the faster dissolution of a drug with increasing carrier concentration. Solid dispersion formulation effectively inhibited the growth of MCF-7 human breast cancer and MDA-MB-231 triple negative human breast cancer cells in an MTT assay that measures metabolic activity, but only slightly decreased cell viability when compared to capsaicin alone.Conclusion:The present study demonstrated that solid dispersion of capsaicin in PEG 6000 overcomes the problems related to the poor aqueous solubility of this drug and improving its dissolution rate.
Collapse
Affiliation(s)
- Sumit Bera
- NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Subhasis Maity
- NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani (Hyderabad Campus), Hyderabad-500078, India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, India
| | - Tapan K. Giri
- NSHM Knowledge Campus, Kolkata-Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| |
Collapse
|
16
|
Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. Nanocarrier-Based Therapeutics and Theranostics Drug Delivery Systems for Next Generation of Liver Cancer Nanodrug Modalities. Int J Nanomedicine 2020; 15:1437-1456. [PMID: 32184597 PMCID: PMC7060777 DOI: 10.2147/ijn.s236927] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The development of therapeutics and theranostic nanodrug delivery systems have posed a challenging task for the current researchers due to the requirement of having various nanocarriers and active agents for better therapy, imaging, and controlled release of drugs efficiently in one platform. The conventional liver cancer chemotherapy has many negative effects such as multiple drug resistance (MDR), high clearance rate, severe side effects, unwanted drug distribution to the specific site of liver cancer and low concentration of drug that finally reaches liver cancer cells. Therefore, it is necessary to develop novel strategies and novel nanocarriers that will carry the drug molecules specific to the affected cancerous hepatocytes in an adequate amount and duration within the therapeutic window. Therapeutics and theranostic systems have advantages over conventional chemotherapy due to the high efficacy of drug loading or drug encapsulation efficiency, high cellular uptake, high drug release, and minimum side effects. These nanocarriers possess high drug accumulation in the tumor area while minimizing toxic effects on healthy tissues. This review focuses on the current research on nanocarrier-based therapeutics and theranostic drug delivery systems excluding the negative consequences of nanotechnology in the field of drug delivery systems. However, clinical developments of theranostics nanocarriers for liver cancer are considered outside of the scope of this article. This review discusses only the recent developments of nanocarrier-based drug delivery systems for liver cancer therapy and diagnosis. The negative consequences of individual nanocarrier in the drug delivery system will also not be covered in this review.
Collapse
Affiliation(s)
- Umme Ruman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Sharida Fakurazi
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra43400, Malaysia
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mas Jaffri Masarudin
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
- Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience Universiti, Putra43400, Malaysia
- Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor43400, Malaysia
| |
Collapse
|
17
|
Liu Y, Liu W, Xiong S, Luo J, Li Y, Zhao Y, Wang Q, Zhang Z, Chen X, Chen T. Highly stabilized nanocrystals delivering Ginkgolide B in protecting against the Parkinson’s disease. Int J Pharm 2020; 577:119053. [DOI: 10.1016/j.ijpharm.2020.119053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
|
18
|
Michalowski CB, Arbo MD, Altknecht L, Anciuti AN, Abreu ASG, Alencar LMR, Pohlmann AR, Garcia SC, Guterres SS. Oral Treatment of Spontaneously Hypertensive Rats with Captopril-Surface Functionalized Furosemide-Loaded Multi-Wall Lipid-Core Nanocapsules. Pharmaceutics 2020; 12:pharmaceutics12010080. [PMID: 31963659 PMCID: PMC7022513 DOI: 10.3390/pharmaceutics12010080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 11/16/2022] Open
Abstract
Multi-wall lipid-core nanocapsule (MLNC) functionalized with captopril and nanoencapsulating furosemide within the core was developed as a liquid formulation for oral administration. The nanocapsules had mean particle size below 200 nm, showing unimodal and narrow size distributions with moderate dispersity (laser diffraction and dynamic light scattering). Zeta potential was inverted from −14.3 mV [LNC-Fur(0,5)] to +18.3 mV after chitosan coating. Transmission electron microscopy and atomic force microscopy showed spherical structures corroborating the nanometric diameter of the nanocapsules. Regarding the systolic pressure, on the first day, the formulations showed antihypertensive effect and a longer effect than the respective drug solutions. When both drugs were associated, the anti-hypertensive effect was prolonged. On the fifth day, a time effect reduction was observed for all treatments, except for the nanocapsule formulation containing both drugs [Capt(0.5)-Zn(25)-MLNC-Fur(0.45)]. For diastolic pressure, only Capt(0.5)-Zn(25)-MLNC-Fur(0.45) presented a significant difference (p < 0.05) on the first day. On the fifth day, both Capt(0.5)-MLNC-Fur(0.45) and Capt(0.5)-Zn(25)-MLNC-Fur(0.45) had an effect lasting up to 24 h. The analysis of early kidney damage marker showed a potential protection in renal function by Capt(0.5)-Zn(25)-MLNC-Fur(0.45). In conclusion, the formulation Capt(0.5)-Zn(25)-MLNC-Fur(0.45) proved to be suitable for hypertension treatment envisaging an important innovation.
Collapse
Affiliation(s)
- Cecilia B Michalowski
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegr 90610-000, Brazil
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre 90610-000, Brazil
| | - Marcelo D Arbo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegr 90610-000, Brazil
- Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre 90610-000, Brazil
| | - Louise Altknecht
- Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre 90610-000, Brazil
| | - Andréia N Anciuti
- Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre 90035-003, Brazil
| | - Angélica S G Abreu
- Laboratório de Microscopia Avançada, Departamento de Física, Universidade Federal do Ceara, Campus do Pici, Fortaleza 60455-900, Brazil
| | - Luciana M R Alencar
- Laboratório de Microscopia Avançada, Departamento de Física, Universidade Federal do Ceara, Campus do Pici, Fortaleza 60455-900, Brazil
| | - Adriana R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegr 90610-000, Brazil
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, PBox 15003, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Solange C Garcia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegr 90610-000, Brazil
- Laboratório de Toxicologia (LATOX), Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre 90610-000, Brazil
| | - Sílvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegr 90610-000, Brazil
- Departamento de Produção e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto Alegre 90610-000, Brazil
| |
Collapse
|
19
|
Savage AC, Tatham LM, Siccardi M, Scott T, Vourvahis M, Clark A, Rannard SP, Owen A. Improving maraviroc oral bioavailability by formation of solid drug nanoparticles. Eur J Pharm Biopharm 2019; 138:30-36. [DOI: 10.1016/j.ejpb.2018.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/09/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
|
20
|
Shekhawat P, Bagul M, Edwankar D, Pokharkar V. Enhanced dissolution/caco-2 permeability, pharmacokinetic and pharmacodynamic performance of re-dispersible eprosartan mesylate nanopowder. Eur J Pharm Sci 2019; 132:72-85. [PMID: 30797937 DOI: 10.1016/j.ejps.2019.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Eprosartan mesylate is an angiotensin receptor blocker which suffers from extremely poor bioavailability owing to its poor solubility and poor permeability. The rationale of the present work was to design the drug delivery system capable of overcoming these constraints. Nanoformulation of eprosartan mesylate was developed using ultrasonic wave-assisted liquid-antisolvent technique. Nanoformulation was further freeze dried with the addition of 1% of mannitol resulting in formation of re-dispersible EPM nanopowder. To prove our proof of principle, the re-dispersed nanopowder with z-average particle size 165.2 ± 1.8 nm was evaluated enormously for in-vitro dissolution behaviour and permeability assay through Caco-2 cell model. In-vitro dissolution study was performed at pH 1.2, pH 4.5 and pH 6.8. Result demonstrates enhanced dissolution from EPM nanopowder with negligible pH dependence. Transport studies accomplished using validated Caco-2 based cell model showed 11-fold enhanced apparent permeability of redispersed nanopowder when compared to pure EPM and corresponding physical mixture (p < 0.0001). In-vivo study reveals, exceptionally strong variations in plasma concentration of EPM through nanopowder (62 mg/kg) formulation when compared with physical mixture and pure EPM (62 mg/kg) group. Moreover, study manifests that 5-fold lower dose (12.4 mg/kg) of developed formulation yields higher exposure (4600 ± 36 ng·mL-1·h) than pure EPM (2349 ± 34 ng·mL-1·h) and corresponding physical mixture (2456 ± 49 ng·mL-1·h) at therapeutic dose (62 mg/kg). Further, L-NAME induced hypertensive model was undertaken to investigate effect of reduced dose of EPM nanopowder on systolic blood pressure, biochemical analysis and histopathology of heart. Results revealed pronounced antihypertensive potential of re-dispersed EPM nanopowder at 5-fold lower dose (12.4 mg/kg). In conclusion, our study indicates that nanopowder delivery might be the promising approach for providing enhanced oral bioavailability at lower dose.
Collapse
Affiliation(s)
- Prachi Shekhawat
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune, India
| | - Milind Bagul
- Raptim Research Limited, Mahape, Navi Mumbai, Maharashtra, India
| | - Diptee Edwankar
- Raptim Research Limited, Mahape, Navi Mumbai, Maharashtra, India
| | - Varsha Pokharkar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune, India.
| |
Collapse
|
21
|
Kimura S, Kiriyama A, Nishimura E, Sakata S, Inoue D, Furubayashi T, Yutani R, Tanaka A, Kusamori K, Katsumi H, Iga K, Yamamoto A, Sakane T. Novel Strategy for the Systemic Delivery of Furosemide Based on a New Drug Transport Mechanism. Biol Pharm Bull 2018; 41:1769-1777. [DOI: 10.1248/bpb.b18-00315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shunsuke Kimura
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Akiko Kiriyama
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Erika Nishimura
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Shiori Sakata
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | | | | | - Reiko Yutani
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University
| | - Akiko Tanaka
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University
| | - Kosuke Kusamori
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | | | - Katsumi Iga
- Department of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University
| |
Collapse
|
22
|
Zhang L, Ren D, Zhou J, Peng G, Shu G, Yuan Z, Shi F, Zhao L, Yin L, Fan G, Liu C, Fu H. Toltrazuril mixed nanomicelle delivery system based on sodium deoxycholate–Brij C20 polyethylene ether–triton x100: Characterization, solubility, and bioavailability study. Colloids Surf B Biointerfaces 2018; 163:125-132. [DOI: 10.1016/j.colsurfb.2017.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
|
23
|
Baghel S, Cathcart H, O'Reilly NJ. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR. Int J Pharm 2017; 536:414-425. [PMID: 29183857 DOI: 10.1016/j.ijpharm.2017.11.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Abstract
In this study, the dissolution behaviour of dipyridamole (DPM) and cinnarizine (CNZ) spray-dried amorphous solid dispersions (ASDs) using polyvinyl pyrrolidone (PVP) and polyacrylic acid (PAA) as a carrier matrix were evaluated and compared. The drug concentrations achieved from the dissolution of PVP and PAA solid dispersions were significantly greater than the equilibrium solubility of crystalline DPM and CNZ in phosphate buffer pH 6.8 (PBS 6.8). The maximum drug concentration achieved by dissolution of PVP and PAA solid dispersions did not exceed the theoretically calculated apparent solubility of amorphous DPM and CNZ. However, the degree of supersaturation of DPM and CNZ increased considerably as the polymer weight fraction within the solid dispersion increased. In addition, the supersaturation profile of DPM and CNZ were studied in the presence and absence of the polymers. PAA was found to maintain a higher level of supersaturation compared to PVP. The enhanced drug solution concentration following dissolution of ASDs can be attributed to the reduced crystal growth rates of DPM and CNZ at an equivalent supersaturation. We have also shown that, for drugs having high crystallization tendency and weak drug-polymer interaction, the feasible way to increase dissolution might be increase the polymer weight fraction in the ASD. Solution 1H NMR spectra were used to understand dissolution mechanism and to identify drug-polymer interaction. The change in electron densities of proton attached to different groups in DPM and CNZ suggested drug-polymer interaction in solution. The relative intensities of peak shift and nature of interaction between drug and polymer in different systems are different. These different effects suggest that DPM and CNZ interacts in a different way with PVP and PAA in solution which goes some way towards explaining the different polymeric effect, particularly in terms of inhibition of drug recrystallization and dissolution of DPM and CNZ ASDs. These results established that the different drug/polymer interactions in the solid state and in solution give rise to the variation in dissolution profile observed for different systems.
Collapse
Affiliation(s)
- Shrawan Baghel
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Cork Road, Waterford, Ireland.
| | - Helen Cathcart
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | - Niall J O'Reilly
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Cork Road, Waterford, Ireland
| |
Collapse
|
24
|
Use of acidifier and solubilizer in tadalafil solid dispersion to enhance the in vitro dissolution and oral bioavailability in rats. Int J Pharm 2017; 526:77-87. [DOI: 10.1016/j.ijpharm.2017.04.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/05/2017] [Accepted: 04/22/2017] [Indexed: 11/23/2022]
|
25
|
B. Shekhawat P, B. Pokharkar V. Understanding peroral absorption: regulatory aspects and contemporary approaches to tackling solubility and permeability hurdles. Acta Pharm Sin B 2017; 7:260-280. [PMID: 28540164 PMCID: PMC5430883 DOI: 10.1016/j.apsb.2016.09.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/06/2016] [Accepted: 09/21/2016] [Indexed: 11/10/2022] Open
Abstract
Oral drug absorption is a process influenced by the physicochemical and biopharmaceutical properties of the drug and its inter-relationship with the gastrointestinal tract. Drug solubility, dissolution and permeability across intestinal barrier are the key parameters controlling absorption. This review provides an overview of the factors that affect drug absorption and the classification of a drug on the basis of solubility and permeability. The biopharmaceutical classification system (BCS) was introduced in early 90׳s and is a regulatory tool used to predict bioavailability problems associated with a new entity, thereby helping in the development of a drug product. Strategies to combat solubility and permeability issues are also discussed.
Collapse
Key Words
- ABC, ATP-binding cassette
- AP, absorption potential
- API, active pharmaceutical ingredient
- ATP, adenosine triphosphate
- AZT, azidothymidine
- BA/BE, bioavailability/bioequivalence
- BCRP, breast cancer resistance protein
- BCS
- BCS, biopharmaceutical classification system
- BDDS, biopharmaceutical drug disposition system
- BSP, bromosulfophthalein
- CD, cyclodextrin
- CDER, Centre for Drug Evaluation and Research
- CNT, Na+-dependent concentrative transporter
- CNT, concentrative nucleoside transporter
- CYP, cytochrome P450
- D:S, dose:solubility
- E217G, estradiol 17β-glucuronide
- EMEA, European Medicines Agency
- ENT, equilibrative nucleoside transporter
- FATP, fatty acid transporter protein
- FDA, U.S. Food and Drug Administration
- FIP, International Pharmaceutical Federation
- FaSSIF, fasted state simulated intestinal fluid
- Factors affecting absorption
- FeSSIF, fed state simulated intestinal fluid
- Formulation strategies
- GIS, gastrointestinal simulator
- GIT, gastrointestinal tract
- GITA, gastrointestinal transit and absorption
- GLUT, sodium-independent facilitated diffusion transporter
- GRAS, generally recognized as safe
- HIV, human immunodeficiency disease
- HPC-SL, LBDDS, lipid based drug delivery system
- HUGO, Human Genome Organization
- ICH, International Council of Harmonization
- IDR, intrinsic dissolution rate
- IR, immediate release
- ISBT, sodium dependent bile salt transporter
- MCT, monocarboxylate transporter
- MPP, 1-methyl-4-phenylpyridinium
- MRP, multidrug resistance associated protein
- NLC, nanostructured lipid carrier
- NME, new molecular entity
- NTCP, sodium-dependent taurocholate co-transporting polypeptide
- OAT, organic anion transporter
- OATP, organic anion transporting polypeptide
- OCT, organic cationic transporter
- OCTN, organic cationic/carnitine transporter
- OMM, ordered mesoporous material
- P-gp, P-glycoprotein
- PAH, p-aminohippurate
- PAMPA, parallel artificial membrane permeability assay
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PEPT, peptide transporter
- PGA, polyglycolic acid
- PLA, poly(lactic acid)
- PLGA, poly-d,l-lactide-co-glycoside
- PMAT, plasma membrane monoamine transport
- PSA, polar surface area
- PVDF, polyvinylidene difluoride
- Papp, apparent permeability
- Peff, effective permeability
- Permeability
- Psi, porous silicon
- RFC, reduced folate transporter
- SDS, sodium dodecyl sulphate
- SGLT, sodium dependent secondary active transporter
- SIF, simulated intestinal fluid
- SLC, solute carrier
- SLCO, solute carrier organic anion
- SLN, solid lipid nanoparticles
- SMVT, sodium dependent multivitamin transporter
- SPIP, single pass intestinal perfusion
- SUPAC, scale-up and post approval changes
- SVCT, sodium-dependent vitamin C transporter
- Solubility
- TEOS, tetraethylortho silicate
- UWL, unstirred water layer
- VDAD, volume to dissolve applied dose
- WHO, World Health Organization
- pMMA, polymethyl methacrylate
- vit. E TPGS, vitamin E tocopherol polyethylene glycol succinate
Collapse
|
26
|
Obaidat R, Alnaief M, Jaeger P. Significant solubility of carbon dioxide in Soluplus ® facilitates impregnation of ibuprofen using supercritical fluid technology. Pharm Dev Technol 2017; 23:697-705. [PMID: 28375669 DOI: 10.1080/10837450.2017.1315135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Treatment of Soluplus® with supercritical carbon dioxide allows promising applications in preparing dispersions of amorphous solids. Several characterization techniques were employed to reveal this effect, including CO2 gas sorption under high pressure and physicochemical characterizations techniques. A gravimetric method was used to determine the solubility of carbon dioxide in the polymer at elevated pressure. The following physicochemical characterizations were used: thermal analysis, X-ray diffraction, Fourier transform, infrared spectroscopy and scanning electron microscopy. Drug loading of the polymer with ibuprofen as a model drug was also investigated. The proposed treatment with supercritical carbon dioxide allows to prepare solid solutions of Soluplus® in less than two hours at temperatures that do not exceed 45 °C, which is a great advantage to be used for thermolabile drugs. The advantages of using this technology for Soluplus® formulations lies behind the high sorption capability of carbon dioxide inside the polymer. This will ensure rapid diffusion of the dissolved/dispersed drug inside the polymer under process conditions and rapid precipitation of the drug in the amorphous form during depressurization accompanied by foaming of the polymer.
Collapse
Affiliation(s)
- Rana Obaidat
- a Pharmaceutical Technology , Jordan University of Science and Technology , Irbid , Jordan
| | | | - Philip Jaeger
- c Technische Universitat Hamburg-Harburg , Hamburg , Germany
| |
Collapse
|
27
|
Mei L, Xie Y, Jing H, Huang Y, Chen J, Ran H, Pan X, Wu C. A novel design for stable self-assembly cubosome precursor-microparticles enhancing dissolution of insoluble drugs. Drug Dev Ind Pharm 2017; 43:1239-1243. [PMID: 28276277 DOI: 10.1080/03639045.2017.1304958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cubosomes have been presented to enhance dissolution of insoluble drugs, but their applications are limited by the practical hurdles associated with both preparation and storage instability, resulting in drug delivery failure. In the present study, an innovative cubosome precursor-microparticles (CPMs) spray dried from an aqua-free precursor solution was developed to improve cubosome stability during both preparation and storage as well as to enhance the dissolution of insoluble drugs. These CPMs spontaneously self-assembled in situ forming homogeneous cubosome dispersion by hydration and disintegration after exposure to the aqueous medium. The stable cubosome dispersion was obtained from self-assembly (SA) of CPMs after administration instead of fragmentation of bulk cubic phase gel into cubosomes, which settled the preparation instability due to avoidance of high energy fragmentation (e.g. ultrasonic effect, high speed shear and high pressure homogenization). Also, the subsequent storage instability issue can be excluded as the CPMs were stored in a solid stable form. The CPMs disintegration and cubosome SA were demonstrated by the notable morphology variation and the distinct microparticle size decrease from CPMs (10-20 μm) to SA-cubosomes (150-200 nm). The cumulative release of docetaxel (DTX, model insoluble drug) incorporated in CPMs increased to 96.4% within 120 minutes compared with only 75.2% for blank CPMs and DTX physical mixture, demonstrating that CPMs significantly enhanced the dissolution extent of insoluble drug. The SA-cubosomes possessed quite high drug entrapment efficiency (>95%) and an integrated drug dissolution content, which significantly increased the drug utilization rate.
Collapse
Affiliation(s)
- Liling Mei
- a School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China
| | - Yecheng Xie
- a School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China
| | - Hui Jing
- a School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China
| | - Ying Huang
- a School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China
| | - Jintian Chen
- a School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China
| | - Hao Ran
- a School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China
| | - Xin Pan
- a School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China
| | - Chuanbin Wu
- a School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
28
|
He J, Han Y, Xu G, Yin L, Ngandeu Neubi M, Zhou J, Ding Y. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Adv 2017. [DOI: 10.1039/c6ra28676c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We prepare celecoxib nanosuspensions using TPGS as stabilizer via high speed shear as a pre-treatment step, followed by HPH method; and the solidification of fresh nanosuspension was carried out by freeze-drying.
Collapse
Affiliation(s)
- Jiali He
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yue Han
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Gujun Xu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Lifang Yin
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - M. Ngandeu Neubi
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yang Ding
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
29
|
Improving the dissolution rate of a poorly water-soluble drug via adsorption onto pharmaceutical diluents. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Nanoformulation strategies for the enhanced oral bioavailability of antiretroviral therapeutics. Ther Deliv 2016; 6:469-90. [PMID: 25996045 DOI: 10.4155/tde.15.4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The oral delivery of drugs with poor aqueous solubility is challenging and often results in poor bioavailability. Various nanoformulation platforms have demonstrated improved oral bioavailability of a range of drugs for different indications. The focus of this review is to provide an overview of the application of nanomedicine to oral antiretroviral therapy and outline how the current short-falls of this life-long therapy may be resolved using nanotechnology. As well as highlighting the rationale for a nanomedicine-based approach, the review focuses on the various strategies used to enhance oral bioavailability and describes the mechanisms of particle absorption across the GI tract. The recent advances in the development of long-acting formulations for both HIV treatment and pre-exposure prophylaxis are also discussed.
Collapse
|
31
|
Fong SYK, Bauer-Brandl A, Brandl M. Oral bioavailability enhancement through supersaturation: an update and meta-analysis. Expert Opin Drug Deliv 2016; 14:403-426. [DOI: 10.1080/17425247.2016.1218465] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
32
|
Ma Q, Wang C, Li X, Guo H, Meng J, Liu J, Xu H. Fabrication of water-soluble polymer-encapsulated As4S4 to increase oral bioavailability and chemotherapeutic efficacy in AML mice. Sci Rep 2016; 6:29348. [PMID: 27383126 PMCID: PMC4935940 DOI: 10.1038/srep29348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/17/2016] [Indexed: 12/16/2022] Open
Abstract
Realgar (As4S4) has been demonstrated to be effective for the treatment of acute myeloid leukemia (AML); it has the advantages of no drug resistance and oral administration. Nevertheless, its poor solubility has been an obstacle to its bioavailability, requiring high-dose administration over a long period. We investigated whether crushing realgar crystals to the nanoscale and encapsulating the particles in a water-soluble polymer in one step using hot-melt extrusion would increase the bioavailability of As4S4. Raw As4S4 (r-As4S4) and water-soluble polymer were processed via co-rotating twin screw extrusion. The resulting product (e-As4S4) was characterized by SEM, XRD, and DLS. The cytotoxicity and therapeutic effects of e-As4S4 were evaluated in vivo and in vitro. The results show that e-As4S4 dissolved rapidly in water, forming a stable colloid solution. The average size of e-As4S4 particles was 680 nm, which was reduced by more than 40-fold compared with that of r-As4S4. The bioavailability of e-As4S4 was up to 12.6-fold higher than that of r-As4S4, and it inhibited the proliferation of HL-60 cells much more effectively than did r-As4S4, inducing apoptosis and significantly reducing the infiltration of HL-60 cells into the bone marrow, spleen, and liver. This in turn prolonged the survival of AML mice.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Chuan Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Xiaojin Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Hua Guo
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Jie Meng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Jian Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| | - Haiyan Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, P. R. China
| |
Collapse
|
33
|
Kim DS, Choi JS, Kim DW, Kim KS, Seo YG, Cho KH, Kim JO, Yong CS, Youn YS, Lim SJ, Jin SG, Choi HG. Comparison of solvent-wetted and kneaded l-sulpiride-loaded solid dispersions: Powder characterization and in vivo evaluation. Int J Pharm 2016; 511:351-358. [PMID: 27397868 DOI: 10.1016/j.ijpharm.2016.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/20/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to compare the powder properties, solubility, dissolution and oral absorption of solvent-wetted (SWSD) and kneaded (KNSD) l-sulpiride-loaded solid dispersions. The SWSD and KNSD were prepared with silicon dioxide, sodium laurylsulfate and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) using a spray dryer and high shear mixer, respectively. Their powder properties, solubility, dissolution and oral absorption were assessed compared to l-sulpiride powder. The drug in SWSD was in the amorphous state; however, in KNSD, it existed in the crystalline state. The SWSD with a drug/sodium laurylsulphate/TPGS/silicon dioxide ratio of 5/1/2/12 gave the higher drug solubility and dissolution compared to the KNSD with the same composition. The oral absorption of drug in the SWSD was 1.4 fold higher than the KNSD and 3.0 fold higher than the l-sulpiride powder (p<0.05) owing to better solubility and reduced crystallinity. Furthermore, the SWSD at the half dose was bioequivalent of commercial l-sulpiride-loaded product in rats. Thus, the SWSD with more improved oral absorption would be recommended as an alternative for the l-sulpiride-loaded oral administration.
Collapse
Affiliation(s)
- Dong Shik Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Jong Seo Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Dong Wuk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Kyeong Soo Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea
| | - Youn Gee Seo
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Kwan Hyung Cho
- College of Pharmacy, Inje University, Inje-ro 197, Gimhae 621-749, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and Biotechnology, Sejong University, Gunja-Dong, Seoul 143-747, South Korea
| | - Sung Giu Jin
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea.
| | - Han-Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, South Korea.
| |
Collapse
|
34
|
Santoveña A, Suárez-González J, Martín-Rodríguez C, Fariña JB. Formulation design of oral pediatric Acetazolamide suspension: dose uniformity and physico-chemical stability study. Pharm Dev Technol 2016; 22:191-197. [PMID: 27109383 DOI: 10.1080/10837450.2016.1175475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CONTEXT The formulation of an active pharmaceutical ingredient (API) as oral solution or suspension in pediatrics is a habitual practice, due to the non-existence of many commercialized medicines in pediatric doses. It is also the simplest way to prepare and administer them to this vulnerable population. The design of a formulation that assures the dose and the system stability depends on the physico-chemical properties of the API. OBJECTIVE In this study, we formulate a class IV API, Acetazolamide (AZM) as suspension for oral administration to pediatric population. The suspension must comply attributes of quality, safety and efficacy for this route of administration. MATERIALS AND METHODS We use simple compounding procedures, as well as fewer pure excipients, as recommended for children. Mass and uniformity content assays and physical and chemical stability studies were performed. To quantify the API an UPLC method was used. RESULTS AND DISCUSSION We verified the physico-chemical stability of the suspensions and that they passed the mass test of the European Pharmacopeia (EP), but not the dose uniformity test. CONCLUSIONS This reveals that AZM must be formulated as liquid forms with a more complex system of excipients (not usually indicated in pediatrics), or otherwise solid forms capable of assuring uniformity of mass and dose for every dosage unit.
Collapse
Affiliation(s)
- Ana Santoveña
- a Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Farmacia , Universidad de La Laguna , Tenerife , Spain
| | - Javier Suárez-González
- a Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Farmacia , Universidad de La Laguna , Tenerife , Spain
| | - Cristina Martín-Rodríguez
- a Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Farmacia , Universidad de La Laguna , Tenerife , Spain
| | - José B Fariña
- a Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Farmacia , Universidad de La Laguna , Tenerife , Spain
| |
Collapse
|
35
|
Yang CJ, Wang ZB, Mi YY, Gao MJ, Lv JN, Meng YH, Yang BY, Kuang HX. UHPLC-MS/MS Determination, Pharmacokinetic, and Bioavailability Study of Taxifolin in Rat Plasma after Oral Administration of its Nanodispersion. Molecules 2016; 21:494. [PMID: 27089318 PMCID: PMC6273324 DOI: 10.3390/molecules21040494] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
A rapid and sensitive LC-MS/MS method based on the Triple Quad system has been developed and validated for the determination and pharmacokinetics of taxifolin and its nanodispersion in rat plasma. Taxifolin plasma samples along with butylparaben (internal standard) were pre-treated by liquid-liquid extraction with ethyl acetate, and then separated on a SB-C18 RRHD column (150 mm × 2.1 mm × 1.8 μm) using isocratic elution with a run time of 3.0 min. The mobile phase was acetonitrile-water (90:10, v/v) containing 5 mM ammonium acetate at a flow rate of 0.4 mL/min. Quantification of taxifolin was performed by the electrospray ionization tandem mass spectrometry in the multiple reaction monitoring (MRM) mode with negative atmospheric ionization at m/z 303.0→285.0 for taxifolin and 193.1→92.0 for I.S., respectively. The calibration curve of taxifolin showed good linearity over a concentration range of 5.0-4280 ng/mL with a correlation coefficient of 0.9995. The limit of quantification (LLOQ) was 5.0 ng/mL. Intra-day, inter-day precision and accuracy (percent relative to standard deviation) were all within 8% at three concentration levels. A total recovery of taxifolin and I.S. was beyond 75%. The present LC-MS/MS method was successfully applied to pharmacokinetic studies of taxifolin after intravenous administration of taxifolin, oral administration of its physical mixture and nanodispersion. The absolute bioavailability of taxifolin was calculated as 0.75% for taxifolin nanodispersion and 0.49% for taxifolin, respectively.
Collapse
Affiliation(s)
- Chun-Juan Yang
- College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjang, China.
| | - Zhi-Bin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| | - Ying-Ying Mi
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| | - Ming-Jie Gao
- College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjang, China.
| | - Jin-Nan Lv
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| | - Yong-Hai Meng
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| |
Collapse
|
36
|
Characterisation of a novel, multifunctional, co-processed excipient and its effect on release profile of paracetamol from tablets prepared by direct compression. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Hot-melt extrusion of polyvinyl alcohol for oral immediate release applications. Int J Pharm 2015; 492:1-9. [DOI: 10.1016/j.ijpharm.2015.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 12/27/2022]
|
38
|
Zhang Y, Zhang H, Che E, Zhang L, Han J, Yang Y, Wang S, Zhang M, Gao C. Development of novel mesoporous nanomatrix-supported lipid bilayers for oral sustained delivery of the water-insoluble drug, lovastatin. Colloids Surf B Biointerfaces 2015; 128:77-85. [PMID: 25731096 DOI: 10.1016/j.colsurfb.2015.02.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/13/2014] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to investigate the effect of a core/shell structured nanocomposite, mesoporous nanomatrix-supported lipid bilayer (MN-SLB), as an oral drug nanocarrier, on the dissolution behavior and in vivo absorption of a water-insoluble drug, lovastatin (LOV). The formulation strategy was based on the use of drug-loaded mesoporous silica as the core for the fusion of liposomes. Field emission scanning electron microscopy (FESEM), cryogenic transmission electron microscopy (Cryo-TEM) and nitrogen adsorption were used to systematically characterize the drug carrier and drug-loaded MN-SLB formulation, confirming the successful inclusion of LOV into the nano-pores of MN-SLB. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) confirmed that the incorporated drug in the carrier was in an amorphous state. An in vitro dissolution study showed that LOV-loaded MN-SLB exhibited a sustained drug release behavior. Compared with the LOV-loaded mesoporous silica particles, LOV-loaded MN-SLB markedly suppressed the burst release. Furthermore, the pharmacokinetics and relative bioavailability of the LOV-loaded MN-SLB formulation was studied in beagle dogs after oral administration and using a commercially available immediate release formulation (Sandoz Lovastatin®) as a reference. It was found that the relative bioavailability of LOV and LOV β-hydroxy acid (LOVA) for the LOV-loaded MN-SLB formulation was 207.2% and 192.1%, respectively. In addition, MN-SLB exhibited negligible toxicity against Caco-2 and HT-29 cells in cytotoxicity assays. The results of this study indicate that the MN-SLB nanocomposite is a promising candidate as a novel oral drug delivery nanovehicle for controlling the dissolution rate and improving the oral absorption of water-insoluble drugs.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, China.
| | - Heran Zhang
- Centre for Pharmaceutical Preparations Technology & Research, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Erxi Che
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihua Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, China
| | - Jin Han
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, China
| | - Yihua Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Miao Zhang
- Pharmaceutical Division, Jiangsu Hengrui Medicine Co. Ltd., Lianyungang 222047, China
| | - Cunqiang Gao
- Pharmaceutical Division, Jiangsu Hengrui Medicine Co. Ltd., Lianyungang 222047, China
| |
Collapse
|
39
|
Zhang Y, Zhao Q, Zhu W, Zhang L, Han J, Lin Q, Ai F. Synthesis and evaluation of mesoporous carbon/lipid bilayer nanocomposites for improved oral delivery of the poorly water-soluble drug, nimodipine. Pharm Res 2015; 32:2372-83. [PMID: 25609013 DOI: 10.1007/s11095-015-1630-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/14/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE A novel mesoporous carbon/lipid bilayer nanocomposite (MCLN) with a core-shell structure was synthesized and characterized as an oral drug delivery system for poorly water-soluble drugs. The objective of this study was to investigate the potential of MCLN-based formulation to modulate the in vitro release and in vivo absorption of a model drug, nimodipine (NIM). METHODS NIM-loaded MCLN was prepared by a procedure involving a combination of thin-film hydration and lyophilization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area analysis, differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were employed to characterize the NIM-loaded MCLN formulation. The effect of MCLN on cell viability was assessed using the MTT assay. In addition, the oral bioavailability of NIM-loaded MCLN in beagle dogs was compared with that of the immediate-release formulation, Nimotop®. RESULTS Our results demonstrate that the NIM-loaded MCLN formulation exhibited a typical sustained release pattern. The NIM-loaded MCLN formulation achieved a greater degree of absorption and longer lasting plasma drug levels compared with the commercial formulation. The relative bioavailability of NIM for NIM-loaded MCLN was 214%. MCLN exhibited negligible toxicity. CONCLUSION The data reported herein suggest that the MCLN matrix is a promising carrier for controlling the drug release rate and improving the oral absorption of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, P.O. Box 62, No. 209, Tongshan Road, Xuzhou, 221004, China,
| | | | | | | | | | | | | |
Collapse
|
40
|
Rasekh M, Karavasili C, Soong YL, Bouropoulos N, Morris M, Armitage D, Li X, Fatouros DG, Ahmad Z. Electrospun PVP–indomethacin constituents for transdermal dressings and drug delivery devices. Int J Pharm 2014; 473:95-104. [DOI: 10.1016/j.ijpharm.2014.06.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/30/2014] [Indexed: 12/19/2022]
|
41
|
Zhang Y, Che E, Zhang M, Sun B, Gao J, Han J, Song Y. Increasing the dissolution rate and oral bioavailability of the poorly water-soluble drug valsartan using novel hierarchical porous carbon monoliths. Int J Pharm 2014; 473:375-83. [PMID: 25051114 DOI: 10.1016/j.ijpharm.2014.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/18/2014] [Indexed: 01/17/2023]
Abstract
In the present study, a novel hierarchical porous carbon monolith (HPCM) with three-dimensionally (3D) ordered macropores (∼ 400 nm) and uniform accessible mesopores (∼ 5.2 nm) was synthesized via a facile dual-templating technique using colloidal silica nanospheres and Poloxamer 407 as templates. The feasibility of the prepared HPCM for oral drug delivery was studied. Valsartan (VAL) was chosen as a poorly water-soluble model drug and loaded into the HPCM matrix using the solvent evaporation method. Scanning electron microscopy (SEM) and specific surface area analysis were employed to characterize the drug-loaded HPCM-based formulation, confirming the successful inclusion of VAL into the nanopores of HPCM. Powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) demonstrated that the incorporated drug in the HPCM matrix was in an amorphous state and the VAL formulation exhibited good physical stability for up to 6 months. In vitro tests showed that the dissolution rate of HPCM-based formulation was increased significantly compared with that of crystalline VAL or VAL-loaded 3D ordered macroporous carbon monoliths (OMCMs). Furthermore, a pharmacokinetic study in rats demonstrated about 2.4-fold increase in oral bioavailability of VAL in the case of HPCM-based formulation compared with the commercially available VAL preparation (Valzaar(®)). These results therefore suggest that HPCM is a promising carrier able to improve the dissolution rate and oral bioavailability of the poorly water-soluble drug VAL.
Collapse
Affiliation(s)
- Yanzhuo Zhang
- School of Pharmacy, Xuzhou Medical College, Xuzhou 221004, China.
| | - Erxi Che
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Miao Zhang
- Pharmaceutical Division, Jiangsu Hengrui Pharma,Lianyungang 222047, China
| | - Baoxiang Sun
- Pharmaceutical Division, Jiangsu Hengrui Pharma,Lianyungang 222047, China
| | - Jian Gao
- School of Pharmacy, Xuzhou Medical College, Xuzhou 221004, China
| | - Jin Han
- School of Pharmacy, Xuzhou Medical College, Xuzhou 221004, China
| | - Yaling Song
- School of Pharmacy, Xuzhou Medical College, Xuzhou 221004, China
| |
Collapse
|
42
|
An improved method for the characterization of supersaturation and precipitation of poorly soluble drugs using pulsatile microdialysis (PMD). Int J Pharm 2014; 468:64-74. [DOI: 10.1016/j.ijpharm.2014.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/12/2014] [Accepted: 04/03/2014] [Indexed: 01/05/2023]
|
43
|
Mohammadi G, Hemati V, Nikbakht MR, Mirzaee S, Fattahi A, Ghanbari K, Adibkia K. In vitro and in vivo evaluation of clarithromycin–urea solid dispersions prepared by solvent evaporation, electrospraying and freeze drying methods. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Abstract
Nanotechnology in drug delivery has been manifested into nanoparticles that can have unique properties both in vitro and in vivo, especially in targeted drug delivery to tumors. Numerous nanoparticle formulations have been designed and tested to great effect in small animal models, but the translation of the small animal results to clinical success has been limited. Successful translation requires revisiting the meaning of nanotechnology in drug delivery, understanding the limitations of nanoparticles, identifying the misconceptions pervasive in the field, and facing inconvenient truths. Nanoparticle approaches can have real impact in improving drug delivery by focusing on the problems at hand, such as enhancing their drug loading capacity, affinity to target cells, and spatiotemporal control of drug release.
Collapse
Affiliation(s)
- Kinam Park
- Departments of Biomedical Engineering and Pharmaceutics, Purdue University , West Lafayette, Indiana 47906, United States
| |
Collapse
|