1
|
Shaheen N, Shaheen A, Osama M, Nashwan AJ, Bharmauria V, Flouty O. MicroRNAs regulation in Parkinson's disease, and their potential role as diagnostic and therapeutic targets. NPJ Parkinsons Dis 2024; 10:186. [PMID: 39369002 PMCID: PMC11455891 DOI: 10.1038/s41531-024-00791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/15/2024] [Indexed: 10/07/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by binding to target messenger RNA (mRNA) molecules and promoting their degradation or blocking their translation. Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. There is increasing evidence to suggest that miRNAs play a role in the pathogenesis of PD. Studies have identified several miRNAs that are dysregulated in the brains of PD patients, and animal models of the disease. MiRNA expression dysregulation contributes to the onset and progression of PD by modulating neuroinflammation, oxidative stress, and protein aggregation genes. Moreover, miRNAs have emerged as potential therapeutic targets for PD. This review elucidates the changes in miRNA expression profiles associated with PD, emphasising their potential as diagnostic biomarkers and therapeutic targets, and detailing specific miRNAs implicated in PD and their downstream targets. Integrated Insights into miRNA Function, Microglial Activation, Diagnostic, and Treatment Prospects in PD Note: This figure is an original figure created by the authors.
Collapse
Affiliation(s)
- Nour Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Ahmed Shaheen
- Alexandria University, Alexandria Faculty of Medicine, Alexandria, Egypt
| | - Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
| | | | - Vishal Bharmauria
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
- Center for Vision Research and Center for Integrative and Applied Neuroscience, York University, Toronto, ON, Canada
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA.
- Tampa Human Neurophysiology Lab, Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
2
|
Song R, Zhang L. MicroRNAs and therapeutic potentials in acute and chronic cardiac disease. Drug Discov Today 2024:104179. [PMID: 39276921 DOI: 10.1016/j.drudis.2024.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
microRNAs (miRNAs) are small regulatory RNAs implicated in various cardiac disorders. In this review, the role of miRNAs is discussed in relation to acute myocardial infarction and chronic heart failure. In both settings, miRNAs are altered, contributing to injury and adverse remodeling. Notably, miRNA profiles differ between acute ischemic injury and progressive heart failure. Owing to miRNA variabilities between disease stages and delivery difficulties, translation of animal studies to the clinic remains challenging. The identification of distinct miRNA signatures could lead to the development of miRNA therapies tailored to different disease stages. Here, we summarize the current understanding of miRNAs in acute and chronic cardiac diseases, identify knowledge gaps and discuss progress in developing miRNA-based treatment strategies.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
3
|
Jiang H, Xia W, Xia T, Jiang L, Yu J, Zhu X, Lin C, Lou C, Wang W, Chai Y, Wan R, Wang J, Xue X, Pan X. Chemotactic recruitment of genetically engineered cell membrane-camouflaged metal-organic framework nanoparticles for ischemic osteonecrosis treatment. Acta Biomater 2024; 185:410-428. [PMID: 39029641 DOI: 10.1016/j.actbio.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Ischemic osteonecrosis, particularly glucocorticoid-induced osteonecrosis of the femoral head (GIONFH), is primarily due to the dysfunction of osteogenesis and angiogenesis. miRNA, as a therapeutic system with immense potential, plays a vital role in the treatment of various diseases. However, due to the unique microenvironmental structure of bone tissue, especially in the case of GIONFH, where there is a deficiency in the vascular system, it is challenging to effectively target and deliver to the ischemic osteonecrosis area. A drug delivery system assisted by genetically engineered cell membranes holds promise in addressing the challenge of targeted miRNA delivery. Herein, we leverage the potential of miR-21 in modulating osteogenesis and angiogenesis to design an innovative biomimetic nanoplatform system. First, we employed metal-organic frameworks (MOFs) as the core structure to load miR-21-m (miR-21-m@MOF). The nanoparticles were further coated with the membrane of bone marrow mesenchymal stem cells overexpressing CXCR4 (CM-miR-21-m@MOF), enhancing their ability to target ischemic bone areas via the CXCR4-SDF1 axis. These biomimetic nanocomposites possess both bone-targeting and ischemia-guiding capabilities, actively targeting GIONFH lesions to release miR-21-m into target cells, thereby silencing PTEN gene and activating the PI3K-AKT signaling pathway to regulate osteogenesis and angiogenesis. This innovative miRNA delivery system provides a promising therapeutic avenue for GIONFH and potentially other related ischemic bone diseases. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weijie Xia
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tian Xia
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China
| | - Liting Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiachen Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinyi Zhu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yingqian Chai
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jilong Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, People's Republic of China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Wang Y, Li F, Gao X, Yu H, Du Z, Li L, Du Y, Hu C, Qin Y. miR-181d-5p ameliorates hypercholesterolemia by targeting PCSK9. J Endocrinol 2024; 262:e230402. [PMID: 38940622 PMCID: PMC11301420 DOI: 10.1530/joe-23-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Hypercholesterolemia is an independent risk factor for cardiovascular disease and lowering circulating levels of low-density lipoprotein cholesterol (LDL-C) can prevent and reduce cardiovascular events. MicroRNA-181d (miR-181d) can reduce the levels of triglycerides and cholesterol esters in cells. However, it is not known whether miR-181d-5p can lower levels of circulating LDL-C. Here, we generated two animal models of hypercholesterolemia to analyze the potential relationship between miR-181d-5p and LDL-C. In hypercholesterolemia model mice, adeno-associated virus (AAV)-mediated liver-directed overexpression of miR-181d-5p decreased the serum levels of cholesterol and LDL-C and the levels of cholesterol and triglyceride in the liver compared with control mice. Target Scan 8.0 indicated Proprotein convertase subtilisin/kexin type 9 (PCSK9) to be a possible target gene of miR-181d-5p, which was confirmed by in vitro experiments. miR-181d-5p could directly interact with both the PCSK9 3'-UTR and promoter to inhibit PCSK9 translation and transcription. Furthermore, Dil-LDL uptake assays in PCSK9 knockdown Huh7 cells demonstrated that miR-181d-5p promotion of LDL-C absorption was dependent on PCSK9. Collectively, our findings show that miR-181d-5p targets the PCSK9 3'-UTR to inhibit PCSK9 expression and to reduce serum LDL-C. miR-181d-5p is therefore a new therapeutic target for the development of anti-hypercholesterolemia drugs.
Collapse
Affiliation(s)
- Yu Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Fan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoqian Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huahui Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhiyong Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Linyi Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yunhui Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chaowei Hu
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yanwen Qin
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Cardiovascular Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Han S, Liu X, Zhang X, Ma H, Li W, Sun X, Yu T, Li Y, Guo M. miR-1290 induces endothelial-to-mesenchymal transition and promotes vascular restenosis after angioplasty by targeting FGF2. Atherosclerosis 2024; 396:118527. [PMID: 39126770 DOI: 10.1016/j.atherosclerosis.2024.118527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND AIMS Endothelial-to-mesenchymal transition (EndMT) is an important reason for restenosis but the underlying mechanisms need to be further explored. Therefore, the purpose of this study is to screen significantly different microRNAs (miRNAs) and assess their functions and downstream pathways. METHODS This study screened several miRNAs with significant differences between human arterial segments from restenosis patients and healthy volunteers using whole transcriptome resequencing and real-time quantitative reverse transcription PCR (qRT-PCR). We explored the correlation between miR-1290 and EndMT using Western blot, qRT-PCR, Pearson correlation analysis and further functional gain and loss experiments. Subsequently, we identified the direct downstream target of miR-1290 by bioinformatics analysis, RNA pull-down, double Luciferase reporter gene and other functional experiments. Finally, rat carotid artery balloon injury model demonstrated the therapeutic potential of miR-1290 regulator. RESULTS We screened 129 differentially expressed miRNAs. Among them, miR-1290 levels were significantly higher in restenosis arteries than in healthy arteries, and as expected, EndMT was functionally enhanced with miR-1290 overexpression and comparatively weakened when miR-1290 was knocked down. In addition, fibroblast growth factor-2 (FGF2) was established as the downstream target of miR-1290. Finally, we utilized an animal model and found that low miR-1290 levels could alleviate EndMT and the progression of restenosis. CONCLUSIONS Our study demonstrated the strong regulatory effects of miR-1290 on EndMT, endometrial hyperplasia and restenosis, which could be useful as biomarker and therapeutic target for stent implantation in patients with arterial occlusive disease of the lower extremities.
Collapse
Affiliation(s)
- Shuning Han
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiangyu Liu
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xueying Zhang
- Department of clinical laboratory, Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266071, China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Wei Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaozhi Sun
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, 266021, China
| | - Yongxin Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Mingjin Guo
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
6
|
Ellakwa DES, Mushtaq N, Khan S, Jabbar A, Abdelmalek MA, Wadan AHS, Ellakwa TE, Raza A. Molecular functions of microRNAs in colorectal cancer: recent roles in proliferation, angiogenesis, apoptosis, and chemoresistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5617-5630. [PMID: 38619588 DOI: 10.1007/s00210-024-03076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
MiRNAs (microRNAs) constitute a group of diminutive molecules of non-coding RNA intricately involved in regulating gene expression. This regulation is primarily accomplished through the binding of miRNAs to complementary sequences situated in the 3'-UTR of the messenger RNA (mRNA) target; as a result, they are degraded or repressed. The multifaceted biogenesis of miRNAs is characterized by a meticulously orchestrated sequence of events encompassing transcription, processing, transportation, and decay. Colorectal cancer stands as a pervasive and formidable ailment, afflicting millions across the globe. Colorectal cancer is not well diagnosed early, and metastasis rates are high, which results in low survival rates in advanced stages. The genesis and progression of colorectal cancer are subject to the influence of genetic and epigenetic factors, among which miRNAs play a pivotal role. When it comes to colorectal cancer, miRNAs have a dual character, depending on the genes they target, functioning as either tumor suppressors or oncogenes and the prevailing cellular milieu. Their impact extends to modulating critical facets of colorectal cancer pathogenesis, including proliferation, angiogenesis, apoptosis, chemoresistance, and radiotherapy response. The discernible potential of miRNAs which are used as biomarkers to diagnose colorectal cancer, prognosis, and treatment response has come to the forefront. Notably, miRNAs are easily found and detected readily in a variety of biological fluids, including saliva, blood, urine, and feces. This prominence is attributed to the inherent advantages of miRNAs over conventional biomarkers, including heightened stability, specificity, sensitivity, and accessibility. Various investigations have pinpointed miRNA signatures or panels capable of differentiating colorectal cancer patients from their healthy counterparts, predicting colorectal cancer stage and survival, and monitoring colorectal cancer recurrence and therapy response. Although there has been research on miRNAs in various diseases, there has been less research on miRNAs in cancer. Moreover, updated results of preclinical and clinical studies on miRNA biomarkers and drugs are required. Nevertheless, the integration of miRNAs as biomarkers for colorectal cancer is not devoid of challenges and limitations. These encompass the heterogeneity prevalent among colorectal cancer subtypes and stages, the variability in miRNA expression across different tissues and individuals, the absence of standardized methodologies for miRNA detection and quantification, and the imperative for validation through extensive clinical trials. Consequently, further research is imperative to conclusively establish the clinical utility and reliability of miRNAs as colorectal cancer biomarkers. MiR-21 demonstrates carcinogenic characteristics by targeting several tumor suppressor genes, which encourages cell division, invasion, and metastasis. On the other hand, by controlling the Wnt/β-catenin pathway, the tumor suppressor miRNA miR-34a prevents CRC cell proliferation, migration, and invasion. Furthermore, in colorectal cancer, the miR-200 family increases chemotherapy sensitivity while suppressing epithelial-mesenchymal transition (EMT). As an oncogene, the miR-17-92 cluster targets elements of the TGF-β signaling pathway to encourage the growth of CRC cells. Finally, miR-143/145, which is downregulated in CRC, influences apoptosis and the progression of the cell cycle. These miRNAs affect pathways like Wnt, TGF-β, PI3K-AKT, MAPK, and EMT, making them potential clinical biomarkers and therapeutic targets. This review summarizes recent research related to miRNAs, their role in tumor progression and metastasis, and their potential as biomarkers and therapeutic targets in colorectal cancer. In addition, we combined miRNAs' roles in tumorigenesis and development with the therapy of CRC patients, leading to novel perspectives on colorectal cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt.
| | - Nadia Mushtaq
- Department of Life Sciences, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sahrish Khan
- Center for Applied Molecular Biology (CAMB), University of Punjab, Lahore, Pakistan
| | - Abdul Jabbar
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | | | - Takwa E Ellakwa
- Physical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ali Raza
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
7
|
Abou Madawi NA, Darwish ZE, Omar EM. Targeted gene therapy for cancer: the impact of microRNA multipotentiality. Med Oncol 2024; 41:214. [PMID: 39088082 PMCID: PMC11294399 DOI: 10.1007/s12032-024-02450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Cancer is a life-threatening disease and its management is difficult due to its complex nature. Cancer is characterized by genomic instability and tumor-associated inflammation of the supporting stoma. With the advances in omics science, a treatment strategy for cancer has emerged, which is based on targeting cancer-driving molecules, known as targeted therapy. Gene therapy, a form of targeted therapy, is the introduction of nucleic acids into living cells to replace a defective gene, promote or repress gene expression to treat a disease. MicroRNAs (miRNAs) are non-coding RNAs (ncRNAs) that regulate gene expression and thus are involved in physiological processes like cell proliferation, differentiation, and cell death. miRNAs control the actions of many genes. They are deregulated in cancer and their abnormal expression influences genetic and epigenetic alterations inducing carcinogenesis. In this review, we will explain the role of miRNAs in normal and abnormal gene expression and their usefulness in monitoring cancer patients. Besides, we will discuss miRNA-based therapy as a method of gene therapy and its impact on the success of cancer management.
Collapse
Affiliation(s)
- Nourhan A Abou Madawi
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt.
| | - Zeinab E Darwish
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| | - Enas M Omar
- Oral Pathology Department, Faculty of Dentistry, Alexandria University, Champollion Street, Azarita, 21521, Alexandria, Egypt
| |
Collapse
|
8
|
Liu Y, Hu S, Shi B, Yu B, Luo W, Peng S, Du X. The Role of Iron Metabolism in Sepsis-associated Encephalopathy: a Potential Target. Mol Neurobiol 2024; 61:4677-4690. [PMID: 38110647 DOI: 10.1007/s12035-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction secondary to infection, and the severity can range from mild delirium to deep coma. Disorders of iron metabolism have been proven to play an important role in a variety of neurodegenerative diseases by inducing cell damage through iron accumulation in glial cells and neurons. Recent studies have found that iron accumulation is also a potential mechanism of SAE. Systemic inflammation can induce changes in the expression of transporters and receptors on cells, especially high expression of divalent metal transporter1 (DMT1) and low expression of ferroportin (Fpn) 1, which leads to iron accumulation in cells. Excessive free Fe2+ can participate in the Fenton reaction to produce reactive oxygen species (ROS) to directly damage cells or induce ferroptosis. As a result, it may be of great help to improve SAE by treatment of targeting disorders of iron metabolism. Therefore, it is important to review the current research progress on the mechanism of SAE based on iron metabolism disorders. In addition, we also briefly describe the current status of SAE and iron metabolism disorders and emphasize the therapeutic prospect of targeting iron accumulation as a treatment for SAE, especially iron chelator. Moreover, drug delivery and side effects can be improved with the development of nanotechnology. This work suggests that treating SAE based on disorders of iron metabolism will be a thriving field.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengnan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
9
|
Liu X, Xu X, Lai Y, Zhou X, Chen L, Wang Q, Jin Y, Luo D, Ding X. Tetrahedral framework nucleic acids-based delivery of MicroRNA-22 inhibits pathological neovascularization and vaso-obliteration by regulating the Wnt pathway. Cell Prolif 2024; 57:e13623. [PMID: 38433462 PMCID: PMC11216936 DOI: 10.1111/cpr.13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
The objective of this study was to investigate the effects and molecular mechanisms of tetrahedral framework nucleic acids-microRNA22 (tFNAs-miR22) on inhibiting pathological retinal neovascularization (RNV) and restoring physiological retinal vessels. A novel DNA nanocomplex (tFNAs-miR22) was synthesised by modifying microRNA-22 (miR22) through attachment onto tetrahedral frame nucleic acids (tFNAs), which possess diverse biological functions. Cell proliferation, wound healing, and tube formation were employed for in vitro assays to investigate the angiogenic function of cells. Oxygen-induced retinopathy (OIR) model was utilised to examine the effects of reducing pathological neovascularization (RNV) and inhibiting vascular occlusion in vivo. In vitro, tFNAs-miR22 demonstrated the ability to penetrate endothelial cells and effectively suppress cell proliferation, tube formation, and migration in a hypoxic environment. In vivo, tFNAs-miR22 exhibited promising results in reducing RNV and promoting the restoration of normal retinal blood vessels in OIR model through modulation of the Wnt pathway. This study provided a theoretical basis for the further understanding of RNV, and highlighted the innovative and potential of tFNAs-miR22 as a therapeutic option for ischemic retinal diseases.
Collapse
Affiliation(s)
- Xinyu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Xiaoxiao Xu
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yanting Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Xiaodi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Limei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qiong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yili Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Delun Luo
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
10
|
Duraloglu C, Baysal I, Yabanoglu-Ciftci S, Arica B. Nintedanib and miR-29b co-loaded lipoplexes in idiopathic pulmonary fibrosis: formulation, characterization, and in vitro evaluation. Drug Dev Ind Pharm 2024; 50:671-686. [PMID: 39099436 DOI: 10.1080/03639045.2024.2387166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE This study was aimed to develop a cationic lipoplex formulation loaded with Nintedanib and miR-29b (LP-NIN-miR) as an alternative approach in the combination therapy of idiopathic pulmonary dibrosis (IPF) by proving its additive anti-fibrotic therapeutic effects through in vitro lung fibrosis model. SIGNIFICANCE This is the first research article reported that the LP-NIN-MIR formulations in the treatment of IPF. METHODS To optimize cationic liposomes (LPs), quality by design (QbD) approach was carried out. Optimized blank LP formulation was prepared with DOTAP, CHOL, DOPE, and DSPE-mPEG 2000 at the molar ratio of 10:10:1:1. Nintedanib loaded LP (LPs-NIN) were produced by microfluidization method and were incubated with miR-29b at room temperature for 30 min to obtain LP-NIN-miR. To evaluate the cellular uptake of LP-NIN-miR, NIH/3T3 cells were treated with 20 ng.mL-1 transforming growth factor-β1 (TGF-β1) for 96 h to establish the in vitro IPF model and incubated with LP-NIN-miR for 48 h. RESULTS The hydrodynamic diameter, polydispersity index (PDI), and zeta potential of the LP-NIN-miR were 87.3 ± 0.9 nm, 0.184 ± 0.003, and +24 ± 1 mV, respectively. The encapsulation efficiencies of Nintedanib and miR-29b were 99.8% ± 0.08% and 99.7% ± 1.2%, respectively. The results of the cytotoxicity study conducted with NIH/3T3 cells indicated that LP-NIN-miR is a safe delivery system. CONCLUSIONS The outcome of the transfection study proved the additive anti-fibrotic therapeutic effect of LP-NIN-miR and suggested that lipoplexes are effective delivery systems for drug and nucleic acid to the NIH/3T3 cells in the treatment of IPF.
Collapse
Affiliation(s)
- Ceren Duraloglu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ipek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara, Turkey
| | | | - Betul Arica
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Shen J, Su X, Wang Q, Ke Y, Zheng T, Mao Y, Wang Z, Dong J, Duan S. Current and future perspectives on the regulation and functions of miR-545 in cancer development. CANCER PATHOGENESIS AND THERAPY 2024; 2:142-154. [PMID: 39027151 PMCID: PMC11252520 DOI: 10.1016/j.cpt.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 07/20/2024]
Abstract
Micro ribonucleic acids (miRNAs) are a highly conserved class of single-stranded non-coding RNAs. Within the miR-545/374a cluster, miR-545 resides in the intron of the long non-coding RNA (lncRNA) FTX on Xq13.2. The precursor form, pre-miR-545, is cleaved to generate two mature miRNAs, miR-545-3p and miR-545-5p. Remarkably, these two miRNAs exhibit distinct aberrant expression patterns in different cancers; however, their expression in colorectal cancer remains controversial. Notably, miR-545-3p is affected by 15 circular RNAs (circRNAs) and 10 long non-coding RNAs (lncRNAs), and it targets 27 protein-coding genes (PCGs) that participate in the regulation of four signaling pathways. In contrast, miR-545-5p is regulated by one circRNA and five lncRNAs, it targets six PCGs and contributes to the regulation of one signaling pathway. Both miR-545-3p and miR-545-5p affect crucial cellular behaviors, including cell cycle, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and migration. Although low miR-545-3p expression is associated with poor prognosis in three cancer types, studies on miR-545-5p are yet to be reported. miR-545-3p operates within a diverse range of regulatory networks, thereby augmenting the efficacy of cancer chemotherapy, radiotherapy, and immunotherapy. Conversely, miR-545-5p enhances immunotherapy efficacy by inhibiting T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) expression. In summary, miR-545 holds immense potential as a cancer biomarker and therapeutic target. The aberrant expression and regulatory mechanisms of miR-545 in cancer warrant further investigation.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yufei Ke
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Tianyu Zheng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jingyin Dong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| |
Collapse
|
12
|
Sánchez-Meza LV, Bello-Rios C, Eloy JO, Gómez-Gómez Y, Leyva-Vázquez MA, Petrilli R, Bernad-Bernad MJ, Lagunas-Martínez A, Medina LA, Serrano-Bello J, Organista-Nava J, Illades-Aguiar B. Cationic Liposomes Carrying HPV16 E6-siRNA Inhibit the Proliferation, Migration, and Invasion of Cervical Cancer Cells. Pharmaceutics 2024; 16:880. [PMID: 39065577 PMCID: PMC11279637 DOI: 10.3390/pharmaceutics16070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The E6 and E7 oncoproteins of high-risk types of human papillomavirus (HR-HPV) are crucial for the development of cervical cancer (CC). Small interfering RNAs (siRNAs) are explored as novel therapies that silence these oncogenes, but their clinical use is hampered by inefficient delivery systems. Modification (pegylation) with polyethylene glycol (PEG) of liposomal siRNA complexes (siRNA lipoplexes) may improve systemic stability. We studied the effect of siRNA targeting HPV16 E6, delivered via cationic liposomes (lipoplexes), on cellular processes in a cervical carcinoma cell line (CaSki) and its potential therapeutic use. Lipoplexes-PEG-HPV16 E6, composed of DOTAP, Chol, DOPE, and DSPE-PEG2000 were prepared. The results showed that pegylation (5% DSPE-PEG2000) provided stable siRNA protection, with a particle size of 86.42 ± 3.19 nm and a complexation efficiency of over 80%; the siRNA remained stable for 30 days. These lipoplexes significantly reduced HPV16 E6 protein levels and restored p53 protein expression, inhibiting carcinogenic processes such as proliferation by 25.74%, migration (95.7%), and cell invasion (97.8%) at concentrations of 20 nM, 200 nM, and 80 nM, respectively. In conclusion, cationic lipoplexes-PEG-HPV16 E6 show promise as siRNA carriers for silencing HPV16 E6 in CC.
Collapse
Affiliation(s)
- Luz Victoria Sánchez-Meza
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Ciresthel Bello-Rios
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Josimar O. Eloy
- Department of Pharmacy, Dentistry and Nursing, Faculty of Pharmacy, Federal University of Ceará, 1210 Pastor Samuel Munguba Street, Fortaleza 60430-160, CE, Brazil;
| | - Yazmín Gómez-Gómez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Marco Antonio Leyva-Vázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção 62790-000, CE, Brazil;
| | | | - Alfredo Lagunas-Martínez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Luis Alberto Medina
- Instituto de Física, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04510, Mexico;
- Unidad de Investigación Biomédica en Cáncer INCan/UNAM, Instituto Nacional de Cancerología, Actualmente Hospital Ángeles Puebla, Ciudad de Mexico 14080, Mexico
| | - Janeth Serrano-Bello
- Facultad de Odontología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04360, Mexico;
| | - Jorge Organista-Nava
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Berenice Illades-Aguiar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| |
Collapse
|
13
|
Candido P, Pimenta R, Maluf FC, Chiovatto C, Romão P, Baldavira CM, Ghazarian V, Camargo JA, Guimarães VR, Santos GAD, Silva IA, Nascimento B, Hallak J, Capelozzi VL, Srougi M, Nahas WC, Viana NI, Leite KR, Reis ST. MicroRNA-29b attenuates fibrosis in a rat model of Peyronie's disease. Andrology 2024. [PMID: 38925608 DOI: 10.1111/andr.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Peyronie's disease is characterized by the formation of fibrotic plaques in the penile tunica albuginea. Effective treatments are limited, warranting the investigation of new promising therapies, such as the application of microRNAs that regulate fibrosis-related genes. OBJECTIVE We aimed to investigate the therapeutic potential of mimicking microRNA-29b in a fibrin-induced rat model of Peyronie's disease. MATERIAL/METHODS The study was designed in two phases. To establish an optimal Peyronie's disease model, rats received either human fibrin and thrombin or saline solutions into the tunica albuginea on days 0 and 5. The animal model validation was done through expression and histopathological analyses, the latest by an experienced uropathologist. After validation, we performed microRNA-29b treatment on days 14, 21, and 28 of the study. This phase had control (normal saline) and scramble (microRNA scramble) groups. The mid-penile shaft was removed on day 30 for histological examination and molecular analyses in both study stages. RESULTS The control group displayed typical tunica albuginea histologic architecture in the animal model validation. In Peyronie's disease group, the Hematoxylin and eosin and Masson Trichrome staining methods demonstrated an interstitial inflammatory process with concomitant dense fibrotic plaques as well as disarrangement of collagen fibers. Additionally, we found out that reduced microRNA-29b (p = 0.05) was associated with significantly increased COL1A1 and transforming growth factor β1 genes and proteins (p > 0.05) in the Peyronie's disease group. After treatment with mimic microRNA-29b stimulation, the Hematoxylin & eosin and Masson Trichrome staining revealed a discrete and less dense fibrotic plaque. This result was associated with significantly decreasing expression of COL1A1, COL3A1, and transforming growth factor β1 genes and proteins (p < 0.05). DISCUSSION The fibrin-induced animal model showed significant histopathological and molecular changes compared to the Control group, suggesting that our model was appropriate. Previous findings have shown that increased expression of microRNA-29b was associated with decreased pathological fibrosis. In the present study, treatment with microRNA-29b decreased the gene and protein expression of collagens and transforming growth factor β1. This study reveals the therapeutic potential for Peyronie's disease involving molecular targets. CONCLUSION MicroRNA-29b application on the rat's tunica albuginea attenuated fibrosis, arising as a novel potential strategy for Peyronie's disease management.
Collapse
Affiliation(s)
- Patrícia Candido
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Moriah Institute of Science and Education (MISE), Hospital Moriah, Sao Paulo, Brazil
| | - Ruan Pimenta
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Department of Immunology and Immunotherapy and Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Feres Camargo Maluf
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Department of Urology, University of California San Francisco, San Francisco, California, USA
| | - Caroline Chiovatto
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Centro Universitário São Camilo, Sao Paulo, Brazil
| | - Poliana Romão
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Camila Machado Baldavira
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Vitória Ghazarian
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Juliana A Camargo
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Vanessa R Guimarães
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Gabriel A Dos Santos
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Iran A Silva
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Bruno Nascimento
- Division of Urology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Sao Paulo, Brazil
| | - Jorge Hallak
- Division of Urology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Sao Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Miguel Srougi
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Centro Universitário São Camilo, Sao Paulo, Brazil
| | - William C Nahas
- Urology Department, Uro-Oncology Group, University of São Paulo Medical School and Institute of Cancer Estate of São Paulo (ICESP), Sao Paulo, Brazil
| | - Nayara I Viana
- Universidade do Estado de Minas Gerais - UEMG, Passos, Brazil
| | - Katia R Leite
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
| | - Sabrina T Reis
- Urology Department, Laboratory of Medical Investigation (LIM55), Faculdade de Medicina da Universidade de São Paulo (FMUSP), Sao Paulo, Brazil
- Moriah Institute of Science and Education (MISE), Hospital Moriah, Sao Paulo, Brazil
| |
Collapse
|
14
|
Wang Z, Yin X, Yang P, Gong B, Liu H. miR-1202 regulates BPH-1 cell proliferation, apoptosis, and epithelial-to-mesenchymal transition through targeting HMGCL. Acta Biochim Biophys Sin (Shanghai) 2024; 56:675-687. [PMID: 38551020 PMCID: PMC11177111 DOI: 10.3724/abbs.2024001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/02/2023] [Indexed: 05/31/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is the expansion of the prostate gland that results in urinary symptoms. Both the epithelial-to-mesenchymal transition (EMT) and the Wnt signaling pathway are associated with BPH pathology. In this study, we find that miR-1202 is increased in BPH samples. Overexpression of miR-1202 in TGF-β-treated BPH-1 cells enhances cell survival and DNA synthesis and inhibits cell apoptosis, whereas miR-1202 inhibition partially abolishes the effects of TGF-β on BPH-1 cells. miR-1202 overexpression reduces E-cadherin level but elevates vimentin, N-cadherin, and snail levels, whereas miR-1202 inhibition partially attenuates the effects of TGF-β on EMT markers. Regarding the Wnt/β-catenin pathway, miR-1202 overexpression significantly enhances, whereas miR-1202 inhibition partially decreases, the promotive effects of TGF-β on Wnt1, c-Myc, and cyclin D1 proteins. 3-Hydroxy-3-methylglutaryl-CoA lyase (HMGCL) is a direct downstream target of miR-1202, and miR-1202 inhibits HMGCL expression through binding to its 3'UTR. Overexpression of HMGCL significantly reduces the effect of miR-1202 overexpression on the phenotypes of BPH-1 cells by inhibiting cell survival and promoting apoptosis. Similarly, HMGCL overexpression has the opposite effects on EMT markers and the Wnt/β-catenin signaling, and markedly alleviates the effects of miR-1202 overexpression. Finally, in the BPH rat model, Ki67 and vimentin levels are elevated, but E-cadherin and HMGCL levels are reduced. In conclusion, miR-1202 is upregulated in benign prostatic hyperplasia; miR-1202 enhances epithelial cell proliferation, suppresses cell apoptosis, and promotes EMT by targeting HMGCL. The Wnt/β-catenin pathway may participate in the miR-1202/HMGCL axis-mediated regulation of BPH-1 cell phenotypes.
Collapse
Affiliation(s)
- Zhenting Wang
- />Department of UrologyAffiliated Haikou Hospital of Xiangya Medical SchoolCentral South UniversityHaikou570208China
| | - Xianlai Yin
- />Department of UrologyAffiliated Haikou Hospital of Xiangya Medical SchoolCentral South UniversityHaikou570208China
| | - Peng Yang
- />Department of UrologyAffiliated Haikou Hospital of Xiangya Medical SchoolCentral South UniversityHaikou570208China
| | - Binghao Gong
- />Department of UrologyAffiliated Haikou Hospital of Xiangya Medical SchoolCentral South UniversityHaikou570208China
| | - Haifang Liu
- />Department of UrologyAffiliated Haikou Hospital of Xiangya Medical SchoolCentral South UniversityHaikou570208China
| |
Collapse
|
15
|
Cen Q, Chen J, Guo J, Chen M, Wang H, Wu S, Zhang H, Xie X, Li Y. CLPs-miR-103a-2-5p inhibits proliferation and promotes cell apoptosis in AML cells by targeting LILRB3 and Nrf2/HO-1 axis, regulating CD8 + T cell response. J Transl Med 2024; 22:278. [PMID: 38486250 PMCID: PMC10938737 DOI: 10.1186/s12967-024-05070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND LILRB3, a member of the leukocyte immunoglobulin-like receptor B (LILRB) family, has immunosuppressive functions and directly regulates cancer development, which indicates that LILRB3 is an attractive target for cancer diagnosis and therapy. Novel therapeutic treatments for acute myeloid leukemia (AML) are urgent and important, and RNA therapeutics including microRNAs (miRNAs) could be an effective option. Here, we investigate the role of dysregulated miRNA targeting LILRB3 in the AML microenvironment. METHODS Potential miRNAs binding to the 3'-untranslated region (3'-UTR) of the LILRB3 mRNA were predicted by bioinformatics websites. Then, we screened miRNAs targeting LILRB3 by quantitative real-time PCR, and the dual luciferase reporter assay. The expression of LILRB3 and microRNA (miR)-103a-2-5p in AML were determined and then their interactions were also analyzed. In vitro, the effects of miR-103a-2-5p were determined by CCK8, colony formation assay, and transwell assay, while cell apoptosis and cell cycle were analyzed by flow cytometry. Cationic liposomes (CLPs) were used for the delivery of miR-103a-2-5p in the AML mouse model, which was to validate the potential roles of miR-103a-2-5p in vivo. RESULTS LILRB3 was upregulated in AML cells while miR-103a-2-5p was dramatically downregulated. Thus, a negative correlation was found between them. MiR-103a-2-5p directly targeted LILRB3 in AML cells. Overexpressed miR-103a-2-5p significantly suppressed the mRNA and protein levels of LILRB3, thereby inhibiting AML cell growth and reducing CD8 + T cell apoptosis. In addition, overexpressed miR-103a-2-5p reduced both the relative expression of Nrf2/HO-1 pathway-related proteins and the ratio of GSH/ROS, leading to the excessive intracellular ROS that may promote AML cell apoptosis. In the mouse model, the delivery of miR-103a-2-5p through CLPs could inhibit tumor growth. CONCLUSIONS MiR-103a-2-5p serves as a tumor suppressor that could inhibit AML cell proliferation and promote their apoptosis by downregulating LILRB3 expression, suppressing the Nrf2/HO-1 axis, and reducing the ratio of GSH/ROS. Besides, our findings indicate that miR-103a-2-5p may enhance the CD8 + T cell response by inhibiting LILRB3 expression. Therefore, the delivery of miR-103a-2-5p through CLPs could be useful for the treatment of AML.
Collapse
Affiliation(s)
- Qingyan Cen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Jiaxin Guo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Mu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Suwan Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China.
| | - Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
17
|
Sun M, Zhang H, Liu J, Chen J, Cui Y, Wang S, Zhang X, Yang Z. Extracellular Vesicles: A New Star for Gene Drug Delivery. Int J Nanomedicine 2024; 19:2241-2264. [PMID: 38465204 PMCID: PMC10924919 DOI: 10.2147/ijn.s446224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Recently, gene therapy has become a subject of considerable research and has been widely evaluated in various disease models. Though it is considered as a stand-alone agent for COVID-19 vaccination, gene therapy is still suffering from the following drawbacks during its translation from the bench to the bedside: the high sensitivity of exogenous nucleic acids to enzymatic degradation; the severe side effects induced either by exogenous nucleic acids or components in the formulation; and the difficulty to cross the barriers before reaching the therapeutic target. Therefore, for the successful application of gene therapy, a safe and reliable transport vector is urgently needed. Extracellular vesicles (EVs) are the ideal candidate for the delivery of gene drugs owing to their low immunogenicity, good biocompatibility and low toxicity. To better understand the properties of EVs and their advantages as gene drug delivery vehicles, this review covers from the origin of EVs to the methods of EVs generation, as well as the common methods of isolation and purification in research, with their pros and cons discussed. Meanwhile, the engineering of EVs for gene drugs is also highlighted. In addition, this paper also presents the progress in the EVs-mediated delivery of microRNAs, small interfering RNAs, messenger RNAs, plasmids, and antisense oligonucleotides. We believe this review will provide a theoretical basis for the development of gene drugs.
Collapse
Affiliation(s)
- Man Sun
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Jiayi Liu
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Xiangyu Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310020, People’s Republic of China
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
18
|
Gaál Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int J Mol Sci 2024; 25:1942. [PMID: 38339220 PMCID: PMC10856342 DOI: 10.3390/ijms25031942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are 19-23 nucleotide long, evolutionarily conserved noncoding RNA molecules that regulate gene expression at the post-transcriptional level. In this review, involvement of miRNAs is summarized in the differentiation and function of immune cells, in anti-infective immune responses, immunodeficiencies and autoimmune diseases. Roles of miRNAs in anticancer immunity and in the transplantation of solid organs and hematopoietic stem cells are also discussed. Major focus is put on the translational clinical applications of miRNAs, including the establishment of noninvasive biomarkers for differential diagnosis and prediction of prognosis. Patient selection and response prediction to biological therapy is one of the most promising fields of application. Replacement or inhibition of miRNAs has enormous therapeutic potential, with constantly expanding possibilities. Although important challenges still await solutions, evaluation of miRNA fingerprints may contribute to an increasingly personalized management of immune dysregulation with a remarkable reduction in toxicity and treatment side effects. More detailed knowledge of the molecular effects of physical exercise and nutrition on the immune system may facilitate self-tailored lifestyle recommendations and advances in prevention.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, 4032 Debrecen, Hungary
| |
Collapse
|
19
|
Gareev I, Beylerli O, Zhao B. MiRNAs as potential therapeutic targets and biomarkers for non-traumatic intracerebral hemorrhage. Biomark Res 2024; 12:17. [PMID: 38308370 PMCID: PMC10835919 DOI: 10.1186/s40364-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/20/2024] [Indexed: 02/04/2024] Open
Abstract
Non-traumatic intracerebral hemorrhage (ICH) is the most common type of hemorrhagic stroke, most often occurring between the ages of 45 and 60. Hypertension is most often the cause of ICH. Less often, atherosclerosis, blood diseases, inflammatory changes in cerebral vessels, intoxication, vitamin deficiencies, and other reasons cause hemorrhages. Cerebral hemorrhage can occur by diapedesis or as a result of a ruptured vessel. This very dangerous disease is difficult to treat, requires surgery and can lead to disability or death. MicroRNAs (miRNAs) are a class of non-coding RNAs (about 18-22 nucleotides) that are involved in a variety of biological processes including cell differentiation, proliferation, apoptosis, etc., through gene repression. A growing number of studies have demonstrated miRNAs deregulation in various cardiovascular diseases, including ICH. In addition, given that computed tomography (CT) and/or magnetic resonance imaging (MRI) are either not available or do not show clear signs of possible vessel rupture, accurate and reliable analysis of circulating miRNAs in biological fluids can help in early diagnosis for prevention of ICH and prognosis patient outcome after hemorrhage. In this review, we highlight the up-to-date findings on the deregulated miRNAs in ICH, and the potential use of miRNAs in clinical settings, such as therapeutic targets and non-invasive diagnostic/prognostic biomarker tools.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Ozal Beylerli
- Bashkir State Medical University, Ufa, 450008, Russia
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, 150001, China.
- Harbin Medical University No, 157, Baojian Road, Nangang District, Harbin, 150001, China.
| |
Collapse
|
20
|
Li Z, Zhao W, Wang M, Hussain MZ, Mahjabeen I. Role of microRNAs deregulation in initiation of rheumatoid arthritis: A retrospective observational study. Medicine (Baltimore) 2024; 103:e36595. [PMID: 38241560 PMCID: PMC10798721 DOI: 10.1097/md.0000000000036595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a joint disorder and is considered an important public health concern nowadays. So, identifying novel biomarkers and treatment modalities is urgently needed to improve the health standard of RA patients. Factors involved in RA pathogenesis are genetic/epigenetic modification, environment, and lifestyle. In the case of epigenetic modification, the expression deregulation of microRNAs and the role of histone deacetylase (HDAC) in RA is an important aspect that needs to be addressed. The present study is designed to evaluate the expression pattern of microRNAs related to the HDAC family. Five microRNAs, miR-92a-3p, miR-455-3p, miR-222, miR-140, and miR-146a related to the HDAC family were selected for the present study. Real-time polymerase chain reaction was used to estimate the level of expression of the above-mentioned microRNAs in 150 patients of RA versus 150 controls. Oxidative stress level and histone deacetylation status were measured using the enzyme-linked immunosorbent assay. Statistical analysis showed significant downregulation (P < .0001) of selected microRNAs in RA patients versus controls. Significantly raised level of HDAC (P < .0001) and 8-hydroxy-2'-deoxyguanosine (P < .0001) was observed in patients versus controls. A good diagnostic potential of selected microRNAs in RA was shown by the receiver operating curve analysis. The current study showed a significant role of deregulated expression of the above-mentioned microRNAs in RA initiation and can act as an excellent diagnostic marker for this disease.
Collapse
Affiliation(s)
- Zengxin Li
- Department of Bone Surgery, Department of Orthopaedic Surgery Ⅱ, Affiliated Hospital of Beihua University, Jilin, China
| | - Wen Zhao
- Department of Orthopaedics, The first Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province, China
| | - Mengchang Wang
- Department of Rehabilitation Medicine, Traditional Chinese Medical Hospital of HuZhou, Huzhou, Zhejiang, China
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
21
|
Hu S, Liang Y, Chen J, Gao X, Zheng Y, Wang L, Jiang J, Zeng M, Luo M. Mechanisms of hydrogel-based microRNA delivery systems and its application strategies in targeting inflammatory diseases. J Tissue Eng 2024; 15:20417314241265897. [PMID: 39092451 PMCID: PMC11292707 DOI: 10.1177/20417314241265897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Hydrogels, composed of three-dimensional polymer networks, are excellent delivery carriers and have been extensively employed in the biomedical field. Inflammation acts as a protective mechanism to prevent harmful substances from entering living organisms, but chronic, long-lasting inflammation can cause oxidative stress, which damages tissue and organs and adversely affects patients' quality of life. The aberrant expression of microRNAs (miRNAs) has been found to play a significant part in the etiology and progression of inflammatory diseases, as suggested by growing evidence. Numerous hydrogels that can act as gene carriers for the intracellular delivery of miRNA have been described during ongoing research into innovative hydrogel materials. MiRNA hydrogel delivery systems, which are loaded with exogenous miRNA inhibitors or mimics, enable targeted miRNA intervention in inflammatory diseases and effectively prevent environmental stressors from degrading or inactivating miRNA. In this review, we summarize the classification of miRNA hydrogel delivery systems, the basic strategies and mechanisms for loading miRNAs into hydrogels, highlight the biomedical applications of miRNA hydrogel delivery systems in inflammatory diseases, and share our viewpoints on potential opportunities and challenges in the promising region of miRNA delivery systems. These findings may provide a new theoretical basis for the prevention and treatment of inflammation-related diseases and lay the foundation for clinical translation.
Collapse
Affiliation(s)
- Shaorun Hu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinxiang Chen
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Xiaojun Gao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Liqun Wang
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| |
Collapse
|
22
|
Klees C, Alexandri C, Demeestere I, Lybaert P. The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation? Int J Mol Sci 2023; 25:460. [PMID: 38203631 PMCID: PMC10778981 DOI: 10.3390/ijms25010460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Oncological treatments have dramatically improved over the last decade, and as a result, survival rates for cancer patients have also improved. Quality of life, including concerns about fertility, has become a major focus for both oncologists and patients. While oncologic treatments are often highly effective at suppressing neoplastic growth, they are frequently associated with severe gonadotoxicity, leading to infertility. For male patients, the therapeutic option to preserve fertility is semen cryopreservation. In prepubertal patients, immature testicular tissue can be sampled and stored to allow post-cure transplantation of the tissue, immature germ cells, or in vitro spermatogenesis. However, experimental techniques have not yet been proven effective for restoring sperm production for these patients. MicroRNAs (miRNAs) have emerged as promising molecular markers and therapeutic tools in various diseases. These small regulatory RNAs possess the unique characteristic of having multiple gene targets. MiRNA-based therapeutics can, therefore, be used to modulate the expression of different genes involved in signaling pathways dysregulated by changes in the physiological environment (disease, temperature, ex vivo culture, pharmacological agents). This review discusses the possible role of miRNA as an innovative treatment option in male fertility preservation-restoration strategies and describes the diverse applications where these new therapeutic tools could serve as fertility protection agents.
Collapse
Affiliation(s)
- Charlotte Klees
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Chrysanthi Alexandri
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
- Fertility Clinic, HUB-Erasme Hospital, 1070 Brussels, Belgium
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (C.K.); (C.A.); (I.D.)
| |
Collapse
|
23
|
Gareev I, Beylerli O, Tamrazov R, Ilyasova T, Shumadalova A, Du W, Yang B. Methods of miRNA delivery and possibilities of their application in neuro-oncology. Noncoding RNA Res 2023; 8:661-674. [PMID: 37860265 PMCID: PMC10582311 DOI: 10.1016/j.ncrna.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
In the current phase of medical progress, practical neuro-oncology faces critical challenges. These include the quest for and development of innovative methodological approaches, as well as the enhancement of conventional therapies to boost their efficacy in treating brain tumors, especially the malignant varieties. Recent strides in molecular and cellular biology, molecular genetics, and immunology have charted the primary research pathways in the development of new anti-cancer medications, with a particular focus on microRNA (miRNA)-based therapy. MiRNAs possess the ability to function as suppressors of tumor growth while also having the potential to act as oncogenes. MiRNAs wield control over numerous processes within the human body, encompassing tumor growth, proliferation, invasion, metastasis, apoptosis, angiogenesis, and immune responses. A significant impediment to enhancing the efficacy of brain tumor treatment lies in the unresolved challenge of traversing the blood-brain barrier (BBB) and blood-tumor barrier (BTB) to deliver therapeutic agents directly to the tumor tissue. Presently, there is a worldwide effort to conduct intricate research and design endeavors aimed at creating miRNA-based dosage forms and delivery systems that can effectively target various structures within the central nervous system (CNS). MiRNA-based therapy stands out as one of the most promising domains in neuro-oncology. Hence, the development of efficient and safe methods for delivering miRNA agents to the specific target cells within brain tumors is of paramount importance. In this study, we will delve into recent findings regarding various methods for delivering miRNA agents to brain tumor cells. We will explore the advantages and disadvantages of different delivery systems and consider some clinical aspects of miRNA-based therapy for brain tumors.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, PR China
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Rasim Tamrazov
- Department of Oncology, Radiology and Radiotherapy, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin street, 450008, Russia
| | - Weijie Du
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, PR China
| | - Baofeng Yang
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, 150067, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, PR China
| |
Collapse
|
24
|
Sadeghi MS, Lotfi M, Soltani N, Farmani E, Fernandez JHO, Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int 2023; 23:284. [PMID: 37986065 PMCID: PMC10661689 DOI: 10.1186/s12935-023-03133-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Lotfi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Razi N, Li W, Ignacio MA, Loube JM, Agostino EL, Zhu X, Scull MA, DeStefano JJ. Inhibition of SARS-CoV-2 infection in human airway epithelium with a xeno-nucleic acid aptamer. Respir Res 2023; 24:272. [PMID: 37932762 PMCID: PMC10629106 DOI: 10.1186/s12931-023-02590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND SARS-CoV-2, the agent responsible for the COVID-19 pandemic, enters cells through viral spike glycoprotein binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). Given the lack of effective antivirals targeting SARS-CoV-2, we previously utilized systematic evolution of ligands by exponential enrichment (SELEX) and selected fluoro-arabino nucleic acid (FANA) aptamer R8-9 that was able to block the interaction between the viral receptor-binding domain and ACE2. METHODS Here, we further assessed FANA-R8-9 as an entry inhibitor in contexts that recapitulate infection in vivo. RESULTS We demonstrate that FANA-R8-9 inhibits spike-bearing pseudovirus particle uptake in cell lines. Then, using an in-vitro model of human airway epithelium (HAE) and SARS-CoV-2 virus, we show that FANA-R8-9 significantly reduces viral infection when added either at the time of inoculation, or several hours later. These results were specific to the R8-9 sequence, not the xeno-nucleic acid utilized to make the aptamer. Importantly, we also show that FANA-R8-9 is stable in HAE culture secretions and has no overt cytotoxic effects. CONCLUSIONS Together, these results suggest that FANA-R8-9 effectively prevents infection by specific SARS-CoV-2 variants and indicate that aptamer technology could be utilized to target other clinically-relevant viruses in the respiratory mucosa.
Collapse
Affiliation(s)
- Niayesh Razi
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Weizhong Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Maxinne A Ignacio
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Jeffrey M Loube
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Eva L Agostino
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Margaret A Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA.
| | - Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
26
|
He Y, Cheng X, Zhou T, Li D, Peng J, Xu Y, Huang W. β-Hydroxybutyrate as an epigenetic modifier: Underlying mechanisms and implications. Heliyon 2023; 9:e21098. [PMID: 37928021 PMCID: PMC10623287 DOI: 10.1016/j.heliyon.2023.e21098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Previous studies have found that β-Hydroxybutyrate (BHB), the main component of ketone bodies, is of physiological importance as a backup energy source during starvation or induces diabetic ketoacidosis when insulin deficiency occurs. Ketogenic diets (KD) have been used as metabolic therapy for over a hundred years, it is well known that ketone bodies and BHB not only serve as ancillary fuel substituting for glucose but also induce anti-oxidative, anti-inflammatory, and cardioprotective features via binding to several target proteins, including histone deacetylase (HDAC), or G protein-coupled receptors (GPCRs). Recent advances in epigenetics, especially novel histone post-translational modifications (HPTMs), have continuously updated our understanding of BHB, which also acts as a signal transduction molecule and modification substrate to regulate a series of epigenetic phenomena, such as histone acetylation, histone β-hydroxybutyrylation, histone methylation, DNA methylation, and microRNAs. These epigenetic events alter the activity of genes without changing the DNA structure and further participate in the pathogenesis of related diseases. This review focuses on the metabolic process of BHB and BHB-mediated epigenetics in cardiovascular diseases, diabetes and complications of diabetes, neuropsychiatric diseases, cancers, osteoporosis, liver and kidney injury, embryonic and fetal development, and intestinal homeostasis, and discusses potential molecular mechanisms, drug targets, and application prospects.
Collapse
Affiliation(s)
- Yanqiu He
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Xi Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Juan Peng
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| |
Collapse
|
27
|
Xia S, Xu C, Liu F, Chen G. Development of microRNA-based therapeutics for central nervous system diseases. Eur J Pharmacol 2023; 956:175956. [PMID: 37541374 DOI: 10.1016/j.ejphar.2023.175956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
MicroRNA (miRNA)-mediated gene silencing is a method of RNA interference in which a miRNA binds to messenger RNA sequences and regulates target gene expression. MiRNA-based therapeutics have shown promise in treating a variety of central nervous system diseases, as verified by results from diverse preclinical model organisms. Over the last decade, several miRNA-based therapeutics have entered clinical trials for various kinds of diseases, such as tumors, infections, and inherited diseases. However, such clinical trials for central nervous system diseases are scarce, and many central nervous system diseases, including hemorrhagic stroke, ischemic stroke, traumatic brain injury, intractable epilepsy, and Alzheimer's disease, lack effective treatment. Considering its effectiveness for central nervous system diseases in preclinical experiments, microRNA-based intervention may serve as a promising treatment for these kinds of diseases. This paper reviews basic principles and recent progress of miRNA-based therapeutics and summarizes general procedures to develop such therapeutics for treating central nervous system diseases. Then, the current obstacles in drug development are discussed. This review also provides a new perspective on possible solutions to these obstacles in the future.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China; Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
28
|
Ruseska I, Zimmer A. Cellular uptake and trafficking of peptide-based drug delivery systems for miRNA. Eur J Pharm Biopharm 2023; 191:189-204. [PMID: 37666365 DOI: 10.1016/j.ejpb.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Today, macromolecular compounds such as microRNAs (miRNAs) are becoming more and more widespread as leading therapeutics. However, their application is limited mostly due to their poor stability, limited cellular uptake, and poor target specificity. Cell-penetrating peptides (CPPs), a group of positively charged peptides, represent a breakthrough as delivery systems for macromolecules. In the present study, we used two types of nanoparticles which differ in the type of CPP used for their manufacturing. The first type is composed of protamine, an arginine rich CPP, which is highly positively charged. The arginine residues are able to form electrostatic interactions with miRNAs, stabilize them, and deliver them to cells. The second type is composed of the N-Ter peptide (also known as MPG), an amphipathic peptide rich in lysine. The positively charged parts of the N-Ter peptide electrostatically stabilize miRNAs, whereas its amphipathic character allows it to successfully traverse cell membranes. We used miRNA-27a, a negative regulator of adipogenesis, to form nanoparticles with the peptides and traced their uptake in 3T3-L1 preadipocytes. Motivated by the lengthy discourse regarding the uptake mechanism of CPPs, the focus of our study was to analyse and understand the internalization of proticles (protamine nanoparticles) and N-Ter complexes. The nanoparticles were characterized regarding size, size distribution, and zeta potential, and their cytotoxicity was tested in 3T3-L1 cells. The uptake studies were performed by varying the experimental conditions such as time, concentration, and temperature, as well as by applying different inhibitors of endocytosis. Furthermore, we assessed the biological effect of miRNA-27a on the pro-adipogenic machinery. The obtained data have shown that protamine and the N-Ter peptide form positively charged nanoparticles through non-covalent complexation. The uptake of proticles and N-Ter complexes was found to be dependent on time, concentration, and temperature, and different uptake pathways were discovered to be involved in the internalization of the different nanoparticles. Furthermore, both types of nanoparticles induced the anti-adipogenic effect of miRNA-27a, demonstrating that this approach can be used as a novel miRNA replacement therapy in the treatment of obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Ivana Ruseska
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria.
| | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
29
|
Razi N, Li W, Ignacio MA, Loube JM, Agostino EL, Zhu X, Scull MA, DeStefano JJ. Inhibition of SARS-CoV-2 Infection in Human Airway Epithelium with a Xeno-Nucleic Acid Aptamer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559799. [PMID: 37808754 PMCID: PMC10557761 DOI: 10.1101/2023.09.27.559799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Background SARS-CoV-2, the agent responsible for the COVID-19 pandemic, enters cells through viral spike glycoprotein binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). Given the lack of effective antivirals targeting SARS-CoV-2, we previously utilized systematic evolution of ligands by exponential enrichment (SELEX) and selected fluoro-arabino nucleic acid (FANA) aptamer R8-9 that was able to block the interaction between the viral receptor-binding domain and ACE2. Methods Here, we further assessed FANA-R8-9 as an entry inhibitor in contexts that recapitulate infection in vivo. Results We demonstrate that FANA-R8-9 inhibits spike-bearing pseudovirus particle uptake in cell lines. Then, using an in-vitro model of human airway epithelium (HAE) and SARS-CoV-2 virus, we show that FANA-R8-9 significantly reduces viral infection when added either at the time of inoculation, or several hours later. These results were specific to the R8-9 sequence, not the xeno-nucleic acid utilized to make the aptamer. Importantly, we also show that FANA-R8-9 is stable in HAE culture secretions and has no overt cytotoxic effects. Conclusions Together, these results suggest that FANA-R8-9 effectively prevents infection by specific SARS-CoV-2 variants and indicate that aptamer technology could be utilized to target other clinically-relevant viruses in the respiratory mucosa.
Collapse
Affiliation(s)
- Niayesh Razi
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Weizhong Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742
| | - Maxinne A. Ignacio
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Jeffrey M. Loube
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Eva L. Agostino
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, and Maryland Pathogen Research Institute (MPRI), University of Maryland, College Park, MD, 20742
| |
Collapse
|
30
|
Chen H, Yao H, Chi J, Li C, Liu Y, Yang J, Yu J, Wang J, Ruan Y, Pi J, Xu JF. Engineered exosomes as drug and RNA co-delivery system: new hope for enhanced therapeutics? Front Bioeng Biotechnol 2023; 11:1254356. [PMID: 37823027 PMCID: PMC10562639 DOI: 10.3389/fbioe.2023.1254356] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
Chemotherapy often faces some obstacles such as low targeting effects and drug resistance, which introduce the low therapeutic efficiency and strong side effects. Recent advances in nanotechnology allows the use of novel nanosystems for targeted drug delivery, although the chemically synthesized nanomaterials always show unexpected low biocompability. The emergence of exosome research has offered a better understanding of disease treatment and created novel opportunities for developing effective drug delivery systems with high biocompability. Moreover, RNA interference has emerged as a promising strategy for disease treatments by selectively knocking down or over-expressing specific genes, which allows new possibilities to directly control cell signaling events or drug resistance. Recently, more and more interests have been paid to develop optimal delivery nanosystems with high efficiency and high biocompability for drug and functional RNA co-delivery to achieve enhanced chemotherapy. In light of the challenges for developing drug and RNA co-delivery system, exosomes have been found to show very attractive prospects. This review aims to explore current technologies and challenges in the use of exosomes as drug and RNA co-delivery system with a focus on the emerging trends and issues associated with their further applications, which may contribute to the accelerated developments of exosome-based theraputics.
Collapse
Affiliation(s)
- Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Chaowei Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiajun Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
31
|
Hwang J, Jang S, Kim C, Lee S, Jeong HS. Role of Stem Cell-Derived Exosomes and microRNAs in Spinal Cord Injury. Int J Mol Sci 2023; 24:13849. [PMID: 37762150 PMCID: PMC10530823 DOI: 10.3390/ijms241813849] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurological disorders represent a global health problem. Current pharmacological treatments often lead to short-term symptomatic relief but have dose-dependent side effects, such as inducing orthostatic arterial hypotension due to the blockade of alpha receptors, cardiotoxic effects due to impaired repolarization, and atrioventricular block and tachycardia, including ventricular fibrillation. These challenges have driven the medical community to seek effective treatments for this serious global health threat. Mesenchymal stem cells (MSCs) are pluripotent cells with anti-inflammatory, anti-apoptotic, and immunomodulatory properties, providing a promising alternative due to their ability to differentiate, favorable culture conditions, in vitro manipulation ability, and robust properties. Although MSCs themselves rarely differentiate into neurons at the site of injury after transplantation in vivo, paracrine factors secreted by MSCs can create environmental conditions for cell-to-cell communication and have shown therapeutic effects. Recent studies have shown that the pleiotropic effects of MSCs, particularly their immunomodulatory potential, can be attributed primarily to these paracrine factors. Exosomes derived from MSCs are known to play an important role in these effects. Many studies have evaluated the potential of exosome-based therapies for the treatment of various neurological diseases. In addition to exosomes, various miRNAs derived from MSCs have been identified to regulate genes and alleviate neuropathological changes in neurodegenerative diseases. This review explores the burgeoning field of exosome-based therapies, focusing on the effects of MSC-derived exosomes and exosomal miRNAs, and summarizes recent findings that shed light on the potential of exosomes in the treatment of neurological disorders. The insights gained from this review may pave the way for innovative and effective treatments for these complex conditions. Furthermore, we suggest the therapeutic effects of exosomes and exosomal miRNAs from MSCs, which have a rescue potential in spinal cord injury via diverse signaling pathways.
Collapse
Affiliation(s)
- Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| | - Choonghyo Kim
- Department of Neurosurgery, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Sungjoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (J.H.); (S.J.)
| |
Collapse
|
32
|
Li W, Li M, Huang Q, He X, Shen C, Hou X, Xue F, Deng Z, Luo Y. Advancement of regulating cellular signaling pathways in NSCLC target therapy via nanodrug. Front Chem 2023; 11:1251986. [PMID: 37744063 PMCID: PMC10512551 DOI: 10.3389/fchem.2023.1251986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of high cancer-associated mortality worldwide. Non-small cell lung cancer (NSCLC) is the most common type of LC. The mechanisms of NSCLC evolution involve the alterations of multiple complex signaling pathways. Even with advances in biological understanding, early diagnosis, therapy, and mechanisms of drug resistance, many dilemmas still need to face in NSCLC treatments. However, many efforts have been made to explore the pathological changes of tumor cells based on specific molecular signals for drug therapy and targeted delivery. Nano-delivery has great potential in the diagnosis and treatment of tumors. In recent years, many studies have focused on different combinations of drugs and nanoparticles (NPs) to constitute nano-based drug delivery systems (NDDS), which deliver drugs regulating specific molecular signaling pathways in tumor cells, and most of them have positive implications. This review summarized the recent advances of therapeutic targets discovered in signaling pathways in NSCLC as well as the related NDDS, and presented the future prospects and challenges.
Collapse
Affiliation(s)
- Wenqiang Li
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Mei Li
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Huang
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Xiaoyu He
- Sichuan North Medical College, Nanchong, Sichuan, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoming Hou
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fulai Xue
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiping Deng
- Zigong First People’s Hospital, Zigong, Sichuan, China
| | - Yao Luo
- Zigong First People’s Hospital, Zigong, Sichuan, China
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Montaño-Samaniego M, Sánchez-Cedillo J, Lucas-González A, Bravo-Estupiñan DM, Alarcón-Hernández E, Rivera-Gutiérrez S, Balderas-López JA, Ibáñez-Hernández M. Targeted Expression to Liver of an antimiR-33 Sponge as a Gene Therapy Strategy against Hypercholesterolemia: In Vitro Study. Curr Issues Mol Biol 2023; 45:7043-7057. [PMID: 37754229 PMCID: PMC10527677 DOI: 10.3390/cimb45090445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
Atherosclerosis is the leading cause of cardiovascular diseases in Mexico and worldwide. The membrane transporters ABCA1 and ABCG1 are involved in the reverse transport of cholesterol and stimulate the HDL synthesis in hepatocytes, therefore the deficiency of these transporters promotes the acceleration of atherosclerosis. MicroRNA-33 (miR-33) plays an important role in lipid metabolism and exerts a negative regulation on the transporters ABCA1 and ABCG1. It is known that by inhibiting the function of miR-33 with antisense RNA, HDL levels increase and atherogenic risk decreases. Therefore, in this work, a genetic construct, pPEPCK-antimiR-33-IRES2-EGFP, containing a specific antimiR-33 sponge with two binding sites for miR-33 governed under the PEPCK promoter was designed, constructed, and characterized, the identity of which was confirmed by enzymatic restriction, PCR, and sequencing. Hep G2 and Hek 293 FT cell lines, as well as a mouse hepatocyte primary cell culture were transfected with this plasmid construction showing expression specificity of the PEPCK promoter in hepatic cells. An analysis of the relative expression of miR-33 target messengers showed that the antimiR-33 sponge indirectly induces the expression of its target messengers (ABCA1 and ABCG1). This strategy could open new specific therapeutic options for hypercholesterolemia and atherosclerosis, by blocking the miR-33 specifically in hepatocytes.
Collapse
Affiliation(s)
- Mariela Montaño-Samaniego
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.M.-S.); (J.S.-C.); (A.L.-G.); (D.M.B.-E.)
- Laboratorio de Técnicas Fototérmicas, Departamento de Ciencias Básicas, Unidad Politécnica Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Jorge Sánchez-Cedillo
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.M.-S.); (J.S.-C.); (A.L.-G.); (D.M.B.-E.)
| | - Amellalli Lucas-González
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.M.-S.); (J.S.-C.); (A.L.-G.); (D.M.B.-E.)
| | - Diana M. Bravo-Estupiñan
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.M.-S.); (J.S.-C.); (A.L.-G.); (D.M.B.-E.)
- Laboratorio de Quimiosensibilidad Tumoral, Facultad de Microbiología, Universidad de Costa Rica, San Jose 11501-2060, Costa Rica
| | - Ernesto Alarcón-Hernández
- Laboratorio de Genética Molecular, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Sandra Rivera-Gutiérrez
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - José Abraham Balderas-López
- Laboratorio de Técnicas Fototérmicas, Departamento de Ciencias Básicas, Unidad Politécnica Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Miguel Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (M.M.-S.); (J.S.-C.); (A.L.-G.); (D.M.B.-E.)
| |
Collapse
|
34
|
Li Z, Lei Z, Cai Y, Cheng DB, Sun T. MicroRNA therapeutics and nucleic acid nano-delivery systems in bacterial infection: a review. J Mater Chem B 2023; 11:7804-7833. [PMID: 37539650 DOI: 10.1039/d3tb00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Bacteria that have worked with humans for thousands of years pose a major threat to human health even today, as drug resistance has become a prominent problem. Compared to conventional drug therapy, nucleic acid-based therapies are a promising and potential therapeutic strategy for diseases in which nucleic acids are delivered through a nucleic acid delivery system to regulate gene expression in specific cells, offering the possibility of curing intractable diseases that are difficult to treat at this stage. Among the many nucleic acid therapeutic ideas, microRNA, a class of small nucleic acids with special properties, has made great strides in biology and medicine in just over two decades, showing promise in preclinical drug development. In this review, we introduce recent advances in nucleic acid delivery systems and their clinical applications, highlighting the potential of nucleic acid therapies, especially miRNAs extracted from traditional herbs, in combination with the existing set of nucleic acid therapeutic systems, to potentially open up a new line of thought in the treatment of cancer, viruses, and especially bacterial infectious diseases.
Collapse
Affiliation(s)
- Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yilun Cai
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Hospital of Wuhan University of Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
35
|
Cui J, Zhang L, Zhang Z, Luo X, Liu Y, Li C, Huang W, Zou L, Yu X, Xiao F. A precise and efficient circular RNA synthesis system based on a ribozyme derived from Tetrahymena thermophila. Nucleic Acids Res 2023; 51:e78. [PMID: 37378451 PMCID: PMC10415121 DOI: 10.1093/nar/gkad554] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Classic strategies for circular RNA (circRNA) preparation always introduce large numbers of linear transcripts or extra nucleotides to the circularized product. In this study, we aimed to develop an efficient system for circRNA preparation based on a self-splicing ribozyme derived from an optimized Tetrahymena thermophila group Ⅰ intron. The target RNA sequence was inserted downstream of the ribozyme and a complementary antisense region was added upstream of the ribozyme to assist cyclization. Then, we compared the circularization efficiency of ribozyme or flanking intronic complementary sequence (ICS)-mediated methods through the DNMT1, CDR1as, FOXO3, and HIPK3 genes and found that the efficiency of our system was remarkably higher than that of flanking ICS-mediated method. Consequently, the circularized products mediated by ribozyme are not introduced with additional nucleotides. Meanwhile, the overexpressed circFOXO3 maintained its biological functions in regulating cell proliferation, migration, and apoptosis. Finally, a ribozyme-based circular mRNA expression system was demonstrated with a split green fluorescent protein (GFP) using an optimized Coxsackievirus B3 (CVB3) internal ribosome entry site (IRES) sequence, and this system achieved successful translation of circularized mRNA. Therefore, this novel, convenient, and rapid engineering RNA circularization system can be applied for the functional study and large-scale preparation of circular RNA in the future.
Collapse
Affiliation(s)
- Jingyi Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
- Graduate School of Peking Union Medical College, Beijing 100730, PR China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Lanxin Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Zaifeng Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
- Graduate School of Peking Union Medical College, Beijing 100730, PR China
| | - Xuanmei Luo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
| | - Ye Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
| | - Chang Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
| | - Wei Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
| | - Lihui Zou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, PR China
- Graduate School of Peking Union Medical College, Beijing 100730, PR China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| |
Collapse
|
36
|
Cai Z, Liu F, Li Y, Bai L, Feng M, Li S, Ma W, Shi S. Functional micro-RNA drugs acting as a fate manipulator in the regulation of osteoblastic death. NANOSCALE 2023; 15:12840-12852. [PMID: 37482769 DOI: 10.1039/d3nr02318d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Bone loss is prevalent in clinical pathological phenomena such as osteoporosis, which is characterized by decreased osteoblast function and number, increased osteoclast activity, and imbalanced bone homeostasis. However, current treatment strategies for bone diseases are limited. Regulated cell death (RCD) is a programmed cell death pattern activated by the expression of specific genes in response to environmental changes. Various studies have shown that RCD is closely associated with bone diseases, and manipulating the death fate of osteoblasts could contribute to effective bone treatment. Recently, microRNA-targeting therapy drugs have emerged as a potential solution because of their precise targeting, powerful curative effect, and limited side effects. Nevertheless, their clinical application is limited by their inherent instability, easy enzymatic degradation, and poor membrane penetrability. To address this challenge, a self-assembling tetrahedral DNA nanostructure (TDN)-based microRNA (Tmi) delivery system has been proposed. TDN features excellent biocompatibility, cell membrane penetrability, serum stability, and modification versatility, making it an ideal nucleic acid carrier for miRNA protection and intracellular transport. Once inside cells, Tmi can dissociate and release miRNAs to manipulate key molecules in the RCD signaling pathway, thereby regulating bone homeostasis and curing diseases caused by abnormal RCD activation. In this paper, we discuss the impact of the miRNA network on the initiation and termination of four critical RCD programs in bone tissues: apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we present the Tmi delivery system as a miRNA drug vector. This provides insight into the clinical translation of miRNA nucleic acid drugs and the application of miRNA drugs in bone diseases.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Fengshuo Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Long Bai
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Maogeng Feng
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
37
|
Li S, Huang Q, Yang Q, Peng X, Wu Q. MicroRNAs as promising therapeutic agents: A perspective from acupuncture. Pathol Res Pract 2023; 248:154652. [PMID: 37406378 DOI: 10.1016/j.prp.2023.154652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
MicroRNAs (miRNAs) are gaining recognition as potential therapeutic agents due to their small size, ability to target a wide range of genes, and significant role in disease progression. However, despite their promising potential, nearly half of the miRNA drugs developed for therapeutic purposes have been discontinued or put on hold, and none have advanced to phase III clinical trials. The development of miRNA therapeutics has faced obstacles such as difficulties in validating miRNA targets, conflicting evidence regarding competition and saturation effects, challenges in miRNA delivery, and determining appropriate dosages. These hurdles primarily arise from the intricate functional complexity of miRNAs. Acupuncture, a distinct, complementary therapy, offers a promising avenue to overcome these barriers, particularly by addressing the fundamental issue of preserving functional complexity through acupuncture regulatory networks. The acupuncture regulatory network consists of three main components: the acupoint network, the neuro-endocrine-immune (NEI) network, and the disease network. These networks represent the processes of information transformation, amplification, and conduction that occur during acupuncture. Notably, miRNAs serve as essential mediators and shared biological language within these interconnected networks. Harnessing the therapeutic potential of acupuncture-derived miRNAs can help reduce the time and economic resources required for miRNA drug development and alleviate the current developmental challenges miRNA therapeutics face. This review provides an interdisciplinary perspective by summarizing the interactions between miRNAs, their targets, and the three acupuncture regulatory networks mentioned earlier. The aim is to illuminate the challenges and opportunities in developing miRNA therapeutics. This review paper presents a comprehensive overview of miRNAs, their interactions with acupuncture regulatory networks, and their potential as therapeutic agents. By bridging the miRNA research and acupuncture fields, we aim to offer valuable insights into the obstacles and prospects of developing miRNA therapeutics.
Collapse
Affiliation(s)
- Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qianhui Huang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qingqing Yang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Xiaohua Peng
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China; Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, China; Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, China.
| |
Collapse
|
38
|
Alshahrani SH, Rakhimov N, Gupta J, Hassan ZF, Alsalamy A, Saleh EAM, Alsaab HO, Al-Aboudy FK, Alawadi AR, Mustafa YF. The mechanisms, functions and clinical applications of miR-542-3p in human cancers. Pathol Res Pract 2023; 248:154724. [PMID: 37542861 DOI: 10.1016/j.prp.2023.154724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
MicroRNAs, as a major type of noncoding RNAs, have crucial roles in various functions during development. Available data have shown that miR-542-3p decreased in various types of cancers. MiR-542-3p is engaged in various cancer-related behaviors like glycolysis, metastasis, epithelial-to-mesenchymal transition (EMT), cell cycle, apoptosis, and proliferation via targeting at least 18 genes and some important signaling pathways like Wnt/β-catenin, Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Janus kinase 2 (JAK2) signaling, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling. Current studies have proposed that the level of miR-542-3p could be modulated by several upstream regulators like transcription factors, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). In addition, the level of miR-542-3p or its related lncRNAs/circRNAs are correlated with poor prognosis and clinicopathological features of cancer-affected patients. Here, we have discussed the biogenesis, function, and regulation of miR-542-3p as well as its aberrant expression in various types of neoplastic cells. Moreover, we have discussed the prognostic value of miR-542-3p in cancer. Finally, we have added the underlying molecular mechanism of miR-542-3p in cancer pathogenesis.
Collapse
Affiliation(s)
| | - Nodir Rakhimov
- Head of the Department of Oncology, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura Pin Code 281406, U. P., India.
| | | | - Ali Alsalamy
- Department of Computer Technical engineering, College of Information Technology Imam Ja'afarAl-Sadiq University Al-Muthanna, Iraq
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | | | - Ahmed Radhi Alawadi
- Medical Analysis Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
39
|
Hjazi A, Sukmana BI, Ali SS, Alsaab HO, Gupta J, Ullah MI, Romero-Parra RM, Alawadi AHR, Alazbjee AAA, Mustafa YF. Functional role of circRNAs in osteogenesis: A review. Int Immunopharmacol 2023; 121:110455. [PMID: 37290324 DOI: 10.1016/j.intimp.2023.110455] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
The extracellular matrixes (ECM), as well as the microenvironmental signals, play an essential role in osteogenesis by regulating intercellular pathways. Recently, it has been demonstrated that a newly identified RNA, circular RNA, contributes to the osteogenesis process. Circular RNA (circRNA), the most recently identified RNA, is involved in the regulation of gene expression at transcription to translation levels. The dysregulation of circRNAs has been observed in several tumors and diseases. Also, various studies have shown that circRNAs expression is changed during osteogenic differentiation of progenitor cells. Therefore, understanding the role of circRNAs in osteogenesis might help the diagnosis as well as treatment of bone diseases such as bone defects and osteoporosis. In this review, circRNA functions and the related pathways in osteogenesis have been discussed.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Bayu Indra Sukmana
- Department of Oral Biology, Faculty of Dentistry, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Sally Saad Ali
- College of Dentistry, Al-Bayan University, Baghdad, Iraq
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406 U.P., India
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | | | - Ahmed H R Alawadi
- Medical Analysis Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| |
Collapse
|
40
|
Tucak-Smajić A, Ruseska I, Letofsky-Papst I, Vranić E, Zimmer A. Development and Characterization of Cationic Nanostructured Lipid Carriers as Drug Delivery Systems for miRNA-27a. Pharmaceuticals (Basel) 2023; 16:1007. [PMID: 37513917 PMCID: PMC10384247 DOI: 10.3390/ph16071007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Although miRNA-27a has been identified as a promising candidate for miRNA mimic therapy of obesity, its application is limited due to enzymatic degradation and low membrane permeation. To overcome these problems, we developed cationic nanostructured lipid carriers (cNLCs) using high-pressure homogenization and used them as non-viral carriers for the anti-adipogenic miRNA-27a. Cargo-free octadecylamine-containing NLCs and miRNA/cNLC complexes were characterized regarding particle size, size distributions, zeta potential, pH values, particle topography and morphology, and entrapment efficacy. Furthermore, the cytotoxicity and cellular uptake of the miRNA/cNLC complex in the 3T3-L1 cell line were investigated. The investigation of the biological effect of miRNA-27a on adipocyte development and an estimation of the accumulated Oil-Red-O (ORO) dye in lipid droplets in mature adipocytes were assessed with light microscopy and absorbance measurements. The obtained data show that cNLCs represent a suitable DDS for miRNAs, as miRNA/cNLC particles are rapidly formed through non-covalent complexation due to electrostatic interactions between both components. The miRNA-27a/cNLC complex induced an anti-adipogenic effect on miRNA-27a by reducing lipid droplet accumulation in mature adipocytes, indicating that this approach might be used as a new therapeutic strategy for miRNA mimic replacement therapies in the prevention or treatment of obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Amina Tucak-Smajić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Ivana Ruseska
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Ilse Letofsky-Papst
- Institute of Electron Microscopy and Nanoanalysis, Center for Electron Microscopy, Graz University of Technology, NAWI Graz, Steyrergasse 17, 8010 Graz, Austria
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| |
Collapse
|
41
|
Zhang J, Tian W, Wang F, Liu J, Huang J, Duangmano S, Liu H, Liu M, Zhang Z, Jiang X. Advancements in understanding the role of microRnas in regulating macrophage polarization during acute lung injury. Cell Cycle 2023; 22:1694-1712. [PMID: 37415386 PMCID: PMC10446815 DOI: 10.1080/15384101.2023.2230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a critical and life-threatening illness that causes severe dyspnea, and respiratory distress and is often caused by a variety of direct or indirect factors that damage the alveolar epithelium and capillary endothelial cells, leading to inflammation factors and macrophage infiltration. Macrophages play a crucial role in the progression of ALI/ARDS, exhibiting different polarized forms at different stages of the disease that control the disease outcome. MicroRNAs (miRNA) are conserved, endogenous, short non-coding RNAs composed of 18-25 nucleotides that serve as potential markers for many diseases and are involved in various biological processes, including cell proliferation, apoptosis, and differentiation. In this review, we provide a brief overview of miRNA expression in ALI/ARDS and summarize recent research on the mechanism and pathways by which miRNAs respond to macrophage polarization, inflammation, and apoptosis. The characteristics of each pathway are also summarized to provide a comprehensive understanding of the role of miRNAs in regulating macrophage polarization during ALI/ARDS.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wanyi Tian
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiao Liu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiang Huang
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Anesthesiology, Luzhou People’s Hospital, Luzhou, China
| |
Collapse
|
42
|
Gupta S, Dutta S, Hui SP. Regenerative Potential of Injured Spinal Cord in the Light of Epigenetic Regulation and Modulation. Cells 2023; 12:1694. [PMID: 37443728 PMCID: PMC10341208 DOI: 10.3390/cells12131694] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
A spinal cord injury is a form of physical harm imposed on the spinal cord that causes disability and, in many cases, leads to permanent mammalian paralysis, which causes a disastrous global issue. Because of its non-regenerative aspect, restoring the spinal cord's role remains one of the most daunting tasks. By comparison, the remarkable regenerative ability of some regeneration-competent species, such as some Urodeles (Axolotl), Xenopus, and some teleost fishes, enables maximum functional recovery, even after complete spinal cord transection. During the last two decades of intensive research, significant progress has been made in understanding both regenerative cells' origins and the molecular signaling mechanisms underlying the regeneration and reconstruction of damaged spinal cords in regenerating organisms and mammals, respectively. Epigenetic control has gradually moved into the center stage of this research field, which has been helped by comprehensive work demonstrating that DNA methylation, histone modifications, and microRNAs are important for the regeneration of the spinal cord. In this review, we concentrate primarily on providing a comparison of the epigenetic mechanisms in spinal cord injuries between non-regenerating and regenerating species. In addition, we further discuss the epigenetic mediators that underlie the development of a regeneration-permissive environment following injury in regeneration-competent animals and how such mediators may be implicated in optimizing treatment outcomes for spinal cord injurie in higher-order mammals. Finally, we briefly discuss the role of extracellular vesicles (EVs) in the context of spinal cord injury and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Samudra Gupta
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India;
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK;
| | - Subhra Prakash Hui
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India;
| |
Collapse
|
43
|
Luo Y, Yang X, Du Y, Dou Y, Cui W, Li J, Wei J, Ma X, Lin Y. DNA Tetrahedra-Based Delivery of MicroRNA-22 to Reduce Depressive Symptoms in Mice. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37321225 DOI: 10.1021/acsami.3c03054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Major depressive disorder (MDD) is a common illness with an increasing lifetime prevalence. Thus, an increasing number of studies have investigated the association between MDD and microRNAs (miRNAs), which are a novel approach for treating depression. However, the therapeutic potential of miRNA-based strategies has several limitations. To overcome these limitations, DNA tetrahedra (TDNs) have been used as piggyback materials. In this study, we successfully used TDNs as carriers of miRNA-22-3p (miR-22-3p) and synthesized a novel DNA nanocomplex (TDN-miR-22-3p), which was used in a lipopolysaccharide (LPS)-induced depression cell model. The results suggest that miR-22-3p may regulate inflammation by regulating phosphatase and tensin homologue (PTEN), an important regulatory molecule in the PI3K/AKT pathway, and downregulating the expression of NLRP3. We further validated the role of TDN-miR-22-3p in vivo using an LPS-induced animal model of depression. The results indicate that it ameliorated depression-like behavior and attenuated the expression of inflammation-related factors in mice. This study demonstrates the establishment of a straightforward and efficacious miRNA delivery system and the potential of TDNs as therapeutic vectors and tools for mechanistic studies. To the best of our knowledge, this is the first study to use TDNs in combination with miRNAs to treat depression.
Collapse
Affiliation(s)
- Yuling Luo
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Yang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Du
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yikai Dou
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Jiajie Li
- Department of Cosmetic and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinxue Wei
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
44
|
Baker A, Lorch J, VanderWeele D, Zhang B. Smart Nanocarriers for the Targeted Delivery of Therapeutic Nucleic Acid for Cancer Immunotherapy. Pharmaceutics 2023; 15:1743. [PMID: 37376190 DOI: 10.3390/pharmaceutics15061743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
A wide variety of therapeutic approaches and technologies for delivering therapeutic agents have been investigated for treating cancer. Recently, immunotherapy has achieved success in cancer treatment. Successful clinical results of immunotherapeutic approaches for cancer treatment were led by antibodies targeting immune checkpoints, and many have advanced through clinical trials and obtained FDA approval. A major opportunity remains for the development of nucleic acid technology for cancer immunotherapy in the form of cancer vaccines, adoptive T-cell therapies, and gene regulation. However, these therapeutic approaches face many challenges related to their delivery to target cells, including their in vivo decay, the limited uptake by target cells, the requirements for nuclear penetration (in some cases), and the damage caused to healthy cells. These barriers can be avoided and resolved by utilizing advanced smart nanocarriers (e.g., lipids, polymers, spherical nucleic acids, metallic nanoparticles) that enable the efficient and selective delivery of nucleic acids to the target cells and/or tissues. Here, we review studies that have developed nanoparticle-mediated cancer immunotherapy as a technology for cancer patients. Moreover, we also investigate the crosstalk between the function of nucleic acid therapeutics in cancer immunotherapy, and we discuss how nanoparticles can be functionalized and designed to target the delivery and thus improve the efficacy, toxicity, and stability of these therapeutics.
Collapse
Affiliation(s)
- Abu Baker
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jochen Lorch
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David VanderWeele
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bin Zhang
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Natalicchio A, Montagnani M, Gallo M, Marrano N, Faggiano A, Zatelli MC, Mazzilli R, Argentiero A, Danesi R, D'Oronzo S, Fogli S, Giuffrida D, Gori S, Ragni A, Renzelli V, Russo A, Franchina T, Tuveri E, Sciacca L, Monami M, Cirino G, Di Cianni G, Colao A, Avogaro A, Cinieri S, Silvestris N, Giorgino F. MiRNA dysregulation underlying common pathways in type 2 diabetes and cancer development: an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view. ESMO Open 2023; 8:101573. [PMID: 37263082 PMCID: PMC10245125 DOI: 10.1016/j.esmoop.2023.101573] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Increasing evidence suggests that patients with diabetes, particularly type 2 diabetes (T2D), are characterized by an increased risk of developing different types of cancer, so cancer could be proposed as a new T2D-related complication. On the other hand, cancer may also increase the risk of developing new-onset diabetes, mainly caused by anticancer therapies. Hyperinsulinemia, hyperglycemia, and chronic inflammation typical of T2D could represent possible mechanisms involved in cancer development in diabetic patients. MicroRNAs (miRNAs) are a subset of non-coding RNAs, ⁓22 nucleotides in length, which control the post-transcriptional regulation of gene expression through both translational repression and messenger RNA degradation. Of note, miRNAs have multiple target genes and alteration of their expression has been reported in multiple diseases, including T2D and cancer. Accordingly, specific miRNA-regulated pathways are involved in the pathogenesis of both conditions. In this review, a panel of experts from the Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), and Italian Society of Pharmacology (SIF) provide a critical view of the evidence about the involvement of miRNAs in the pathophysiology of both T2D and cancer, trying to identify the shared miRNA signature and pathways able to explain the strong correlation between the two conditions, as well as to envision new common pharmacological approaches.
Collapse
Affiliation(s)
- A Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - M Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, Medical School, University of Bari Aldo Moro, Bari, Italy
| | - M Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - N Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - M C Zatelli
- Section of Endocrinology, Geriatrics, and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - R Mazzilli
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | - A Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - S Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - D Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - S Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, Verona, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - T Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - E Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Carbonia, Sardinia, Italy
| | - L Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, Catania, Italy
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Firenze, Italy
| | - G Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - G Di Cianni
- Diabetes Unit, Livorno Hospital, Livorno, Italy
| | - A Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy; UNESCO Chair, Education for Health and Sustainable Development, Federico II University, Naples, Italy
| | - A Avogaro
- Department of Medicine, University of Padova, Padua, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - F Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
46
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
47
|
Wang Y, Wu Y, Zhang B, Zheng C, Hu C, Guo C, Kong Q, Wang Y. Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system. Biomaterials 2023; 298:122132. [PMID: 37156085 DOI: 10.1016/j.biomaterials.2023.122132] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/17/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Intervertebral disc degeneration (IDD) progresses due to local inflammatory response, gradually unbalanced anabolic/catabolic activity, and progressive functional impairment within the nucleus pulposus. Antagomir-21, a cholesterol-modified miRNA-21 inhibitor, has potential extracellular matrix (ECM) regenerative ability, but its application for IDD is limited by inadequate local delivery systems. An injectable hydrogel gene delivery system encapsulating a modified tannic acid nanoparticles (TA NPs) vector was engineered for on-demand and sustained delivery of antagomir-21 into the nucleus pulposus. After nucleus pulposus cell uptake, antagomir-21 was released from TA NPs and regulated the ECM metabolic balance by inhibiting the MAPK/ERK signaling pathway. TA NPs scavenged intracellular ROS and reduced inflammation by downregulating TNF-α expression. In vivo, synergistic anti-inflammatory effects and ECM regeneration effectively promoted therapeutic efficacy against IDD. This hydrogel gene delivery system represents a creative, promising strategy for IDD repair.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
48
|
Naghizadeh MM, Bakhshandeh B, Noorbakhsh F, Yaghmaie M, Masoudi-Nejad A. Rewiring of miRNA-mRNA bipartite co-expression network as a novel way to understand the prostate cancer related players. Syst Biol Reprod Med 2023:1-12. [PMID: 37018429 DOI: 10.1080/19396368.2023.2187268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The differential expression and direct targeting of mRNA by miRNA are two main logics of the traditional approach to constructing the miRNA-mRNA network. This approach, could be led to the loss of considerable information and some challenges of direct targeting. To avoid these problems, we analyzed the rewiring network and constructed two miRNA-mRNA expression bipartite networks for both normal and primary prostate cancer tissue obtained from PRAD-TCGA. We then calculated beta-coefficient of the regression-model when miR was dependent and mRNA independent for each miR and mRNA and separately in both networks. We defined the rewired edges as a significant change in the regression coefficient between normal and cancer states. The rewired nodes through multinomial distribution were defined and network from rewired edges and nodes was analyzed and enriched. Of the 306 rewired edges, 112(37%) were new, 123(40%) were lost, 44(14%) were strengthened, and 27(9%) weakened connections were discovered. The highest centrality of 106 rewired mRNAs belonged to PGM5, BOD1L1, C1S, SEPG, TMEFF2, and CSNK2A1. The highest centrality of 68 rewired miRs belonged to miR-181d, miR-4677, miR-4662a, miR-9.3, and miR-1301. SMAD and beta-catenin binding were enriched as molecular functions. The regulation was a frequently repeated concept in the biological process. Our rewiring analysis highlighted the impact of β-catenin and SMAD signaling as also some transcript factors like TGFB1I1 in prostate cancer progression. Altogether, we developed a miRNA-mRNA co-expression bipartite network to identify the hidden aspects of the prostate cancer mechanism, which traditional analysis -like differential expression- was not detect it.
Collapse
Affiliation(s)
- Mohammad Mehdi Naghizadeh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Yaghmaie
- Hematology, Oncology and Stem Cell Transplantation Research Center, Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
49
|
Abbas MA, Al-Saigh NN, Saqallah FG. Regulation of adipogenesis by exosomal milk miRNA. Rev Endocr Metab Disord 2023; 24:297-316. [PMID: 36692804 DOI: 10.1007/s11154-023-09788-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Milk is a rich source of miRNA packaged in exosomes. Evidence for the systemic uptake and tissue distribution of milk exosomes was reported in newborn and adult humans and animals. Breastfeeding in infants was associated with a reduced risk of obesity. Numerous adipogenesis-related miRNAs have been detected in human milk exosomes. It has been demonstrated that ingested exosomal milk miRNAs may alter gene expression in offspring to regulate their metabolism and growth. In humans, consumption of other species' milk, such as cows and goats, is continued through adulthood. Since miRNAs are conserved, the concern of cross-species transfer of adipogenic miRNA has been raised in recent years, and the increase in obesity worldwide was attributed partially to dairy milk consumption by humans. However, evidence is still weak. Research emphasizes the need for an adequate number of exosomal milk's miRNAs to reach the target cell for biological action to be achieved. It was reported that obese women's milk had less miRNA-148a and miRNA-30b, which may affect the fat acquisition of their babies. Some exosomal milk miRNAs, such as miRNA-29, miRNA-148, miRNA-30b and miRNA-125b, may have epigenetic effects on milk recipients. Moreover, the ability of milk exosomes to cross the gastrointestinal barrier makes them a promising oral drug delivery tool. Yet, exosomes may also be tagged with specific ligands which target certain tissues. Thus, milk exosomes can be engineered and loaded with certain miRNAs responsible for adipocyte differentiation, conversion, or browning. Modifications in the miRNA cargo of exosomes can benefit human health and be an alternative to traditional drugs.
Collapse
Affiliation(s)
- Manal A Abbas
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan.
- Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan.
| | - Noor Nadhim Al-Saigh
- Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Siences, Amman, 11104, Jordan
| | - Fadi G Saqallah
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
50
|
Knauer N, Meschaninova M, Muhammad S, Hänggi D, Majoral JP, Kahlert UD, Kozlov V, Apartsin EK. Effects of Dendrimer-microRNA Nanoformulations against Glioblastoma Stem Cells. Pharmaceutics 2023; 15:pharmaceutics15030968. [PMID: 36986829 PMCID: PMC10056969 DOI: 10.3390/pharmaceutics15030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Glioblastoma is a rapidly progressing tumor quite resistant to conventional treatment. These features are currently assigned to a self-sustaining population of glioblastoma stem cells. Anti-tumor stem cell therapy calls for a new means of treatment. In particular, microRNA-based treatment is a solution, which in turn requires specific carriers for intracellular delivery of functional oligonucleotides. Herein, we report a preclinical in vitro validation of antitumor activity of nanoformulations containing antitumor microRNA miR-34a and microRNA-21 synthetic inhibitor and polycationic phosphorus and carbosilane dendrimers. The testing was carried out in a panel of glioblastoma and glioma cell lines, glioblastoma stem-like cells and induced pluripotent stem cells. We have shown dendrimer-microRNA nanoformulations to induce cell death in a controllable manner, with cytotoxic effects being more pronounced in tumor cells than in non-tumor stem cells. Furthermore, nanoformulations affected the expression of proteins responsible for interactions between the tumor and its immune microenvironment: surface markers (PD-L1, TIM3, CD47) and IL-10. Our findings evidence the potential of dendrimer-based therapeutic constructions for the anti-tumor stem cell therapy worth further investigation.
Collapse
Affiliation(s)
- Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariya Meschaninova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Sajjad Muhammad
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Clinic for Neurosurgery, Medical Faculty, Heinrich-Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, 205 Route de Narbonne, CEDEX 04, 31077 Toulouse, France
| | - Ulf Dietrich Kahlert
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular-, and Transplant-Surgery, Medical Faculty, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia
| | - Evgeny K. Apartsin
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600 Pessac, France
- Correspondence:
| |
Collapse
|