1
|
Zhang D, Zhai B, Sun J, Cheng J, Zhang X, Guo D. Advances on Delivery System of Active Ingredients of Dried Toad Skin and Toad Venom. Int J Nanomedicine 2024; 19:7273-7305. [PMID: 39050871 PMCID: PMC11268768 DOI: 10.2147/ijn.s469742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
2
|
Chavda VP, Dawre S, Pandya A, Vora LK, Modh DH, Shah V, Dave DJ, Patravale V. Lyotropic liquid crystals for parenteral drug delivery. J Control Release 2022; 349:533-549. [PMID: 35792188 DOI: 10.1016/j.jconrel.2022.06.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
The necessity for long-term treatments of chronic diseases has encouraged the development of novel long-acting parenteral formulations intending to improve drug pharmacokinetics and therapeutic efficacy. Lately, one of the novel approaches has been developed based on lipid-based liquid crystals. The lyotropic liquid crystal (LLC) systems consist of amphiphilic molecules and are formed in presence of solvents with the most common types being cubic, hexagonal and lamellar mesophases. LC injectables have been recently developed based on polar lipids that spontaneously form liquid crystal nanoparticles in aqueous tissue environments to create the in-situ long-acting sustained-release depot to provide treatment efficacy over extended periods. In this manuscript, we have consolidated and summarized the various type of liquid crystals, recent formulation advancements, analytical evaluation, and therapeutic application of lyotropic liquid crystals in the field of parenteral sustained release drug delivery.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India; Department of Pharmaceutics & Pharm, Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India.
| | - Shilpa Dawre
- Department of Pharmaceutics, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Dharti H Modh
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Vidhi Shah
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Divyang J Dave
- Department of Pharmaceutics & Pharm, Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India
| |
Collapse
|
3
|
Yang B, Gomes Dos Santos A, Puri S, Bak A, Zhou L. The industrial design, translation, and development strategies for long-acting peptide delivery. Expert Opin Drug Deliv 2022; 19:1233-1245. [PMID: 35787229 DOI: 10.1080/17425247.2022.2098276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Peptides are widely recognized as therapeutic agents in the treatment of a wide range of diseases, such as cancer, diabetes etc. However, their use has been limited by their short half-life, due to significant metabolism by exo- and endo-peptidases as well as their inherent poor physical and chemical stability. Research with the aim of improving their half-life in the body, and thus improving patient compliance (by decreasing the frequency of injections) has gained significant attention. AREAS COVERED This review outlines the current landscape and industrial approaches to achieve extended peptide exposure and reduce dosing frequency. Emphasis is placed on identifying challenges in drug product manufacturing and desirable critical quality attributes that are essential for activity and safety, providing insights into chemistry and design aspects impacting peptide release, and summarizing important considerations for CMC developability assessments of sustained release peptide drugs. EXPERT OPINION Bring the patient and disease perspective early into development. Substantial advances have been made in the field of sustained delivery of peptides despite their complexity. The article will also highlight considerations for early-stage product design and development, providing an industrial perspective on risk mitigation in developing sustained release peptide drug products.
Collapse
Affiliation(s)
- Bin Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Ana Gomes Dos Santos
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| | - Liping Zhou
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Boston, USA
| |
Collapse
|
4
|
Zhang S, Nagapudi K, Shen M, Lomeo J, Qin Y, Zhu A, Nayak P, Chang D, Hannoush RN. Release Mechanisms and Practical Percolation Threshold for Long-acting Biodegradable Implants: An Image to Simulation Study. J Pharm Sci 2021; 111:1896-1910. [PMID: 34902434 DOI: 10.1016/j.xphs.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022]
Abstract
The development of long-acting drug formulations requires efficient characterization technique as the designed 6-12 months release duration renders real-time in vitro and in vivo experiments cost and time prohibitive. Using a novel image-based release modeling method, release profiles were predicted from X-Ray Microscopy (XRM) of T0 samples. A validation study with the in vitro release test shows good prediction accuracy of the initial burst release. Through fast T0 image-based release prediction, the impact of formulation and process parameters on burst release rate was investigated. Recognizing the limitations of XRM, correlative imaging with Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) was introduced. A water stress test was designed to directly elucidate the formation of pores through polymer-drug-water interplay. Through an iterative correction method that considers poly(lactic-co-glycolic acid) (PLGA) polymer degradation, good agreement was achieved between release predictions using FIB-SEM images acquired from T0 samples and in vitro testing data. Furthermore, using image-based release simulations, a practical percolation threshold was identified that has profound influence on the implant performance. It is proposed as an important critical quality attribute for biodegradable long-acting delivery system, that needs to be investigated and quantified.
Collapse
Affiliation(s)
- Shawn Zhang
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, USA.
| | | | - Mike Shen
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, USA
| | - Joshua Lomeo
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, USA
| | - Yuri Qin
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, USA
| | - Aiden Zhu
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, USA
| | - Purnendu Nayak
- Eurofins Lancaster Laboratories, Lancaster, PA 17605, USA
| | - Debby Chang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rami N Hannoush
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Gautam N, Kesavan K. Phase Transition Microemulsion of Brimonidine Tartrate for Glaucoma Therapy: Preparation, Characterization and Pharmacodynamic Study. Curr Eye Res 2021; 46:1844-1852. [PMID: 34176380 DOI: 10.1080/02713683.2021.1942071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose: The aim of this study was to formulate brimonidine tartrate loaded phase transition microemulsions (PMEs), which undergo phase transition from water in oil (W/O) microemulsions to liquid crystalline (LC) and then oil in water (O/W) microemulsions after instilled into the eye and prolong the precorneal residence time and ocular bioavailability for the effective treatment of glaucoma.Methods: The pseudo-ternary phase diagram was developed and various PMEs were prepared using Tween 80 and Span 80 with isopropyl myristate and water. Globule size and shape, physicochemical parameters, in vitro and ex vivo drug release of PMEs were studied. The in vivo anti-glaucoma efficacy of optimized PMEs was studied in an experimental rabbit eyes model and compared with marketed formulation (MF).Results: Globule size of PMEs was found less than 200 nm, which was confirmed by both dynamic light scattering technique and Transmission Electron Microscopy. Physicochemical properties such as pH, refractive index, percentage transparency, viscosity and conductivity were also found in the acceptable ranges. In vitro release studies of PMEs exhibited sustained release property. Ex vivo permeation study also supported the enhanced drug flux through cornea from PMEs as compared with MF. In pharmacodynamic study, a greater reduction in intraocular pressure was seen in PMEs as compared to MF.Conclusion: PMEs as ocular drug delivery system offer a promising approach to enhance the corneal contact, higher permeation and prolonged precorneal retention time in the eye leading to sustained drug release, enhanced bioavailability and patient compliance.
Collapse
Affiliation(s)
- Nivedita Gautam
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Karthikeyan Kesavan
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
6
|
Aboumanei MH, Fayez H. Intra-articular formulation of colchicine loaded nanoemulsion systems for enhanced locoregional drug delivery: in vitro characterization, 99mTc coupling and in vivo biodistribution studies. Drug Dev Ind Pharm 2021; 47:770-777. [PMID: 34032545 DOI: 10.1080/03639045.2021.1934865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Colchicine (Col) is a drug used mainly for prevention and treatment of acute gouty arthritis. Unfortunately, colchicine has a narrow therapeutic index, with no obvious differentiation between toxic and nontoxic doses, resulting in a great deal of doubt and a disappointing outcome. To surmount such limitation, colchicine nanoemulsion systems (ColNE) were developed using water titration technique. The pseudoternary phase diagrams of surfactant (Span 20 or Span 60 or Tween 80), cosurfactant (ethanol) and oil (IPM) were constructed. The developed ColNE systems were characterized for particle size (PS), polydispersity index (PDI), zeta potential (ZP) and entrapment efficiency (EE %). ColNE-5 was selected as optimized system with PS = 103.34 ± 5.44 nm, ZP = 34.23 ± 0.94 mV, PDI = 0.26 ± 0.01% and EE % = 75.65 ± 0.34%. To track ColNE-5 in vivo, technetium 99 m (99mTc) was incorporated into this system via coupling with colchicine. 99mTc-ColNE-5 and 99mTc-Col solution (99mTc-ColS) were injected intra-articularly (IA) into the inflamed knee joint of Swiss albino mice joints stimulated by MSU crystals then the biodistribution pattern was studied. The findings revealed that IA injection of 99mTc-ColNE-5 significantly enhanced retention and the pharmacodynamic effects of Col compared to 99mTc-ColS. Herein, we concluded that nanoemulsion (NE) could be used as an IA injectable delivery vehicle to improve retention and localization of Col inside the inflamed joint.
Collapse
Affiliation(s)
- Mohamed H Aboumanei
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hend Fayez
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
7
|
Nagapudi K, Zhu A, Chang DP, Lomeo J, Rajagopal K, Hannoush RN, Zhang S. Microstructure, Quality, and Release Performance Characterization of long-Acting Polymer Implant Formulations with X-Ray Microscopy and Quantitative AI Analytics. J Pharm Sci 2021; 110:3418-3430. [PMID: 34089709 DOI: 10.1016/j.xphs.2021.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Long-acting implants are typically formulated using carrier(s) with specific physical and chemical properties, along with the active pharmaceutical ingredient (API), to achieve the desired daily exposure for the target duration of action. In characterizing such formulations, real-time in-vitro and in-vivo experiments that are typically used to characterize implants are lengthy, costly, and labor intensive as these implants are designed to be long acting. A novel characterization technique, combining high resolution three-dimensional X-Ray microscopy imaging, image-based quantification, and transport simulation, has been employed to provide a mechanistic understanding of formulation and process impact on the microstructures and performance of a polymer-based implant. Artificial intelligence-based image segmentation and image data analytics were used to convert morphological features visualized at high resolution into numerical microstructure models. These digital models were then used to calculate key physical parameters governing drug transport in a polymer matrix, including API uniformity, API domain size, and permeability. This powerful new tool has the potential to advance the mechanistic understanding of the interplay between drug-microstructure and performance and accelerate the therapeutic development long-acting implants.
Collapse
Affiliation(s)
- Karthik Nagapudi
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Aiden Zhu
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, United States
| | - Debby P Chang
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Joshua Lomeo
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, United States
| | | | - Rami N Hannoush
- Genentech, 1 DNA Way, South San Francisco, CA 94080, United States
| | - Shawn Zhang
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, MA 01803, United States.
| |
Collapse
|
8
|
Water driven transformation of a nonionic microemulsion into liquid crystalline phase: Structural characterizations and drug release behavior. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Controlled release of a model hydrophilic high molecular weight compound from injectable non-lamellar liquid crystal formulations containing different types of phospholipids. Int J Pharm 2020; 577:118944. [DOI: 10.1016/j.ijpharm.2019.118944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022]
|
10
|
Liu X, Li Q, Gao X, Lu C, Dang L, Wang Z. The palm oil-based microemulsion: Fabrication, characterization and rheological properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
de Araújo PR, Calixto GMF, da Silva IC, de Paula Zago LH, Oshiro Junior JA, Pavan FR, Ribeiro AO, Fontana CR, Chorilli M. Mucoadhesive In Situ Gelling Liquid Crystalline Precursor System to Improve the Vaginal Administration of Drugs. AAPS PharmSciTech 2019; 20:225. [PMID: 31214798 DOI: 10.1208/s12249-019-1439-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
The vaginal mucosa is a very promising route for drug administration due to its high permeability and the possibility to bypass first pass metabolism; however, current vaginal dosage forms present low retention times due to their dilution in vaginal fluids, which hampers the efficacy of many pharmacological treatments. In order to overcome these problems, this study proposes to develop a mucoadhesive in situ gelling liquid crystalline precursor system composed of 30% of oleic acid and cholesterol (7:1), 40% of ethoxylated and propoxylated cetyl alcohol, and 30% of a dispersion of 16% Poloxamer 407. The effect of the dilution with simulated vaginal fluid (SVF) on this system was evaluated by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheological studies, texture profile analysis (TPA), mucoadhesion study, in vitro drug release test using hypericin (HYP) as drug model, and cytotoxicity assay. PLM and SAXS confirmed the formation of an isotropic system. After the addition of three different concentrations of SVF (30, 50, and 100%), the resultant formulations presented anisotropy and characteristics of viscous lamellar phases. Rheology shows that formulations with SVF behaved as a non-Newtonian fluid with suitable shear thinning for vaginal application. TPA and mucoadhesion assays indicated the formation of long-range ordered systems as the amount of SVF increases which may assist in the fixation of the formulation on the vaginal mucosa. The formulations were able to control about 75% of the released HYP demonstrating a sustained release profile. Finally, all formulations acted as safe vaginal drug delivery systems.
Collapse
|
12
|
Li Y, Angelova A, Liu J, Garamus VM, Li N, Drechsler M, Gong Y, Zou A. In situ phase transition of microemulsions for parenteral injection yielding lyotropic liquid crystalline carriers of the antitumor drug bufalin. Colloids Surf B Biointerfaces 2018; 173:217-225. [PMID: 30296646 DOI: 10.1016/j.colsurfb.2018.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/11/2018] [Accepted: 09/10/2018] [Indexed: 10/28/2022]
Abstract
In this work, we used the small angle X-ray scattering (SAXS) method for controlled preparation of in situ forming sustained-release carriers for the antitumor drug bufalin (BUF), which has very poor solubility and a considerable cardiotoxicity in a non-encapsulated state. To that aim, we exploited the pseudo-ternary phase diagram of an oil(O)/surfactant(S)/water(W) system containing medium chain capric/caprylic triglycerides (MCT) and a co-surfactant blend of Macrogol (15)-hydroxystearate (Solutol HS 15) and sorbitan monooleate (Span 80). Two compositions with different oil contents (sample B and C) were selected from the microemulsion region of the phase diagram in order to study the effect of the aqueous environment on their structural behavior. A phase transition from a microemulsion (ME) to a liquid crystalline phase (LC) was established by SAXS upon progressive dilution. The drug bufalin (BUF) was encapsulated in the microemulsions with low viscosity, whereas the release of the drug occurred from the in situ generated lamellar liquid crystalline structures. The formulations were characterized by SAXS, dynamic light scattering (DLS), cryogenic transmission electron microscopy (Cryo-TEM), rheology, drug loading and encapsulation efficiency, and in vitro release profiles. A correlation was suggested between the structures of the in situ phase-transition formed LCME formulations, the differences in their viscosities and drug release profiles. The performed cytotoxicity, cell apoptosis and pharmacokinetic experiments showed an enhanced bioavailability of BUF after encapsulation. These results suggest potential clinical applications for the obtained safe in situ phase-transition sustained-release formulations of BUF.
Collapse
Affiliation(s)
- Yawen Li
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Angelina Angelova
- Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT, F-92296, Châtenay-Malabry cedex, France
| | - Jianwen Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Vasil M Garamus
- Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, D-21502, Geesthacht, Germany
| | - Na Li
- National Center for Protein Science Shanghai and Shanghai Institute of Biochemistry and Cell Biology, Shanghai, 200237, PR China
| | - Markus Drechsler
- Keylab "Electron and Optical Microscopy", Bavarian Polymerinstitute (BPI), University of Bayreuth, D-95440, Bayreuth, Germany
| | - Yabin Gong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200437, PR China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
13
|
Aboumanei MH, Abdelbary AA, Ibrahim IT, Tadros MI, El-Kolaly MT. Improved Targeting and Tumor Retention of a Newly Synthesized Antineoplaston A10 Derivative by Intratumoral Administration: Molecular Docking, Technetium 99m Radiolabeling, andIn VivoBiodistribution Studies. Cancer Biother Radiopharm 2018; 33:221-232. [DOI: 10.1089/cbr.2017.2431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mohamed H. Aboumanei
- Labeled Compounds Department, Hot Lab Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Aly A. Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Ismail T. Ibrahim
- Labeled Compounds Department, Hot Lab Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mina I. Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed T. El-Kolaly
- Labeled Compounds Department, Hot Lab Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
14
|
Xu Y, Li V, Li J, Pan D, Langenbucher G, Mathias N. Characterization of a Liquid Crystal System for Sustained Release of a Peptide BMS-686117. AAPS PharmSciTech 2018; 19:348-357. [PMID: 28741139 DOI: 10.1208/s12249-017-0835-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/09/2017] [Indexed: 11/30/2022] Open
Abstract
Liquid crystal lipid-based formulations are an effective approach to prolong pharmacokinetics and reduce burst release of a drug on subcutaneous delivery. The objective of this paper was to investigate the influence of phase structures of a lipid-based liquid crystal delivery system and its associated mechanical properties on the release profile of a peptide. It was hypothesized that release of drug molecules are closely related to the mechanical properties that are controlled by phase structures. Experimentally, the relationship between phase structures of lipid liquid crystal system-soy phosphatidyl choline (SPC) and glycerol dioleate (GDO) in water were characterized by polarized light microscopy and small angle X-ray diffraction. Their rheological properties were evaluated with a rheometer and the in vitro release of the peptide as a measure drug release from the LC-depot injection. Three phases: disordered phase, lamellar phase, mixtures of cubic, lamellar, and hexagonal phases were detected by varying formulation compositions. A significant difference in rheological behavior was observed. The disordered phase displayed some attributes of typical Newtonian fluid with lowest viscosity while the lamellar phase showed a shear thinning behavior. Regarding the mechanical strength, the lamellar phase presents the highest storage modulus due to its layer structure followed by mixed phases. Comparing release profiles, the lamellar phase produced a fast release followed by the mixture of phases. In conclusion, this study demonstrates the ability to characterize LC phase structures with microscopy, small angle X-ray diffraction, and rheological measurements and their link to modulating a peptide release profile.
Collapse
|
15
|
Thakur SS, Solloway J, Stikkelman A, Seyfoddin A, Rupenthal ID. Phase transition of a microemulsion upon addition of cyclodextrin – applications in drug delivery. Pharm Dev Technol 2017; 23:167-175. [DOI: 10.1080/10837450.2017.1371191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sachin S. Thakur
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jared Solloway
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Drug Delivery Research Unit, School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anneloes Stikkelman
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ali Seyfoddin
- Drug Delivery Research Unit, School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ilva D. Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Hou M, Dang L, Liu T, Guo Y, Wang Z. Novel Fluorescent Microemulsion: Probing Properties, Investigating Mechanism, and Unveiling Potential Application. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25747-25754. [PMID: 28703570 DOI: 10.1021/acsami.7b05819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscale microemulsions have been utilized as delivery carriers for nutraceuticals and active biological drugs. Herein, we designed and synthesized a novel oil in water (O/W) fluorescent microemulsion based on isoamyl acetate, polyoxyethylene castor oil EL (CrEL), and water. The microemulsion emitted bright blue fluorescence, thus exhibiting its potential for active drug detection with label-free strategy. The microemulsion exhibited excitation-dependent emission and distinct red shift with longer excitation wavelengths. Lifetime and quantum yield of fluorescent microemulsion were 2.831 ns and 5.0%, respectively. An excellent fluorescent stability of the microemulsion was confirmed by altering pH, ionic strength, temperature, and time. Moreover, we proposed a probable mechanism of fluorochromic phenomenon, in connection with the aromatic ring structure of polyoxyethylene ether substituent in CrEL. Based on our findings, we concluded that this new fluorescent microemulsion is a promising drug carrier that can facilitate active drug detection with a label-free strategy. Although further research is required to understand the exact mechanism behind its fluorescence property, this work provided valuable guidance to develop new biosensors based on fluorescent microemulsion.
Collapse
Affiliation(s)
- Mengna Hou
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Leping Dang
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Tiankuo Liu
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Yun Guo
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Zhanzhong Wang
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| |
Collapse
|
17
|
Zhu L, Li M, Dong J, Jin Y. Dimethyl silicone dry nanoemulsion inhalations: Formulation study and anti-acute lung injury effect. Int J Pharm 2015; 491:292-8. [PMID: 26142249 DOI: 10.1016/j.ijpharm.2015.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 01/18/2023]
Abstract
Acute lung injury (ALI) is a severe disease, leading to death if not treated quickly. An emergency medicine is necessary for ALI therapy. Dimethyl silicone (DMS) is an effective agent to defoam the bubbles in the lung induced by ALI. However, DMS aerosols, a marketed formulation of DMS, affect environments and will be limited in the future. Here we firstly report a dry nanoemulsion inhalation for pulmonary delivery. Novel DMS dry nanoemulsion inhalations (DSNIs) were developed in this study. The optimal formulation of stable and homogenous DMS nanoemulsions (DSNs) was composed of Cremophor RH40/PEG 400/DMS (4:4:2, w/w/w) and water. The DSNs showed the tiny size of 19.8 nm, the zeta potential of -9.66 mV, and the low polydispersity index (PDI) of 0.37. The type of DSNs was identified as oil-in-water. The DSNs were added with mannitol followed by freeze-drying to obtain the DSNIs that were loose white powders, showed good fluidity, and were capable of rapid reconstitution to DSNs. The DSNs could adhere on the surfaces of lyophilized mannitol crystals. The aerodynamic diameter of DSNIs was 4.82 μm, suitable for pulmonary inhalation. The in vitro defoaming rate of DSNIs was 1.25 ml/s, much faster than those of the blank DSNIs, DMS, and DMS aerosols. The DSNIs showed significantly higher anti-ALI effect on the ALI rat models than the blank DSNIs and the DMS aerosols according to lung appearances, histological sections, and lung wet weight/dry weight ratios. The DSNIs are effective anti-ALI nanomedicines. The novel DMS formulation is a promising replacement of DMS aerosols.
Collapse
Affiliation(s)
- Lifei Zhu
- Anhui Medical University, Hefei 230001, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Yiguang Jin
- Anhui Medical University, Hefei 230001, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
18
|
Badás EP, Martínez J, Rivero de Aguilar Cachafeiro J, Miranda F, Figuerola J, Merino S. Ageing and reproduction: antioxidant supplementation alleviates telomere loss in wild birds. J Evol Biol 2015; 28:896-905. [PMID: 25758014 DOI: 10.1111/jeb.12615] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/26/2015] [Accepted: 03/09/2015] [Indexed: 01/10/2023]
Abstract
Reproduction is inherently costly. Environmental stressors, such as infection and limited food resources, can compromise investment at each breeding attempt. For example, recent data on captive birds showed that increased reproductive effort accelerates ageing. However, the effects of nutritional status and infection on ageing remain unknown. Telomeres function as protective caps at the ends of eukaryotic chromosomes, and changes in telomere length is a commonly used proxy for ageing. To partially address the mechanisms of ageing following reproduction, we supplemented, medicated or administered a combined treatment to wild blue tits (Cyanistes caeruleus) breeding in central Spain during 2012. The nutritional supplement consisted of two different antioxidants, whereas the medication was an antimalarial treatment against blood parasites. We evaluated the effect of these manipulations on reproductive success and parasite loads in the first breeding season, and on changes in telomere length between two consecutive breeding seasons. Supplemented birds showed no reduction in blood parasite infections in 2012, although they exhibited higher body mass and fledging success. The antimalarial drugs reduced infections by several parasite species, but this had no effect on fitness parameters. In the following season, telomeres from supplemented birds had shortened less. Altogether, we found that supplementation with antioxidants provided fitness benefits in the short term and reduced telomere loss a year following treatment. Our results provide indirect empirical support for accelerated telomere loss as a cost of reproduction.
Collapse
Affiliation(s)
- E P Badás
- Department of Evolutionary Ecology, National Museum of Natural Sciences, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Kinam Park
- Purdue University, Department of Biomedical Engineering, West Lafayette, IN 47907, USA; Purdue University, Department of Pharmaceutics, West Lafayette, IN 47907, USA.
| |
Collapse
|
20
|
Ki MH, Lim JL, Ko JY, Park SH, Kim JE, Cho HJ, Park ES, Kim DD. A new injectable liquid crystal system for one month delivery of leuprolide. J Control Release 2014; 185:62-70. [DOI: 10.1016/j.jconrel.2014.04.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/11/2014] [Accepted: 04/19/2014] [Indexed: 01/03/2023]
|