1
|
Nagarajan Y, Chandrasekaran N, Deepa Parvathi V. Functionalized Nanomaterials In Pancreatic Cancer Theranostics And Molecular Imaging. ChemistryOpen 2024:e202400232. [PMID: 39434498 DOI: 10.1002/open.202400232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatic cancer (PC) is one of the most fatal malignancies in the world. This lethality persists due to lack of effective and efficient treatment strategies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive epithelial malignancy which has a high incidence rate and contributes to overall cancer fatalities. As of 2022, pancreatic cancer contributes to about 3 % of all cancers globally. Over the years, research has characterised germline predisposition, the origin cell, precursor lesions, genetic alterations, structural alterations, transcriptional changes, tumour heterogeneity, metastatic progression, and the tumour microenvironment, which has improved the understanding of PDAC carcinogenesis. By using molecular-based target therapies, these fundamental advancements support primary prevention, screening, early detection, and treatment. The focus of this review is the use of targeted nanoparticles as an alternative to conventional pancreatic cancer treatment due to the various side effects of the latter. The principles of nanoparticle based cancer therapy is efficient targeting of tumour cells via enhanced permeability and retention (EPR) effects and decrease the chemotherapy side effects due to their non-specificity. To increase the efficiency of existing therapies and modify target nanoparticles, several molecular markers of pancreatic cancer cells have been identified. Thus pancreatic cancer cells can be detected using appropriately functionalized nanoparticles with specific signalling molecules. Once cancer has been identified, these nanoparticles can kill the tumour by inducing hyperthermia, medication delivery, immunotherapy or gene therapy. As potent co-delivery methods for adjuvants and tumor-associated antigens; nanoparticles (NPs) have demonstrated significant promise as delivery vehicles in cancer therapy. This ensures the precise internalization of the functionalized nanoparticle and thus also activates the immune system effectively against tumor cells. This review also discusses the immunological factors behind the uptake of functionalized nanoparticles in cancer therapies. Theranostics, which combine imaging and therapeutic chemicals in a single nanocarrier, are the next generation of medicines. Pancreatic cancer treatment may be revolutionised by the development of a tailored nanocarrier with diagnostic, therapeutic, and imaging capabilities. It is extremely difficult to incorporate various therapeutic modalities into a single nanocarrier without compromising the individual functionalities. Surface modification of nanocarriers with antibodies or proteins will enable to attain multifunctionality which increases the efficiency of pancreatic cancer therapy.
Collapse
Affiliation(s)
- Yoghalakshmi Nagarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Tamil Nadu, Chennai, 600116, India
| | - Natarajan Chandrasekaran
- Senior Professor & Former Director, Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore Campus, Tiruvalam road, Tamil Nadu, Katpadi, Vellore 632014
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Tamil Nadu, Chennai, 600116, India
| |
Collapse
|
2
|
Chavan DD, Bhosale RR, Thorat VM, Shete AS, Patil SJ, Tiwari DD. Recent Advances in the Development and Utilization of Nanoparticles for the Management of Malignant Solid Tumors. Cureus 2024; 16:e70312. [PMID: 39469411 PMCID: PMC11513206 DOI: 10.7759/cureus.70312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The purpose of nanotechnology-based drug delivery systems or novel drug delivery systems is to improve the effectiveness of therapy, and their promising properties have led to their increasing significance in the management of cancer. The researchers have primarily focused on designing novel nanocarriers, like nanoparticles (NPs), that can effectively deliver drugs to target cells and respond specifically to conditions particular to cancer. Whether passive or active targeting, these nanocarriers can deliver therapeutic cargoes to the tumor site to release the drug from the drug delivery systems. The purpose of this study is to provide recent scientific literature and key findings to researchers as well as the scientific community from the medical and pharmaceutical domains by reporting current advancements in the development of NPs for the treatment of different malignant solid tumors, such as colorectal, pancreatic, prostate, and cervical cancer.
Collapse
Affiliation(s)
- Dhanashri D Chavan
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Rohit R Bhosale
- Department of Pharmaceutics, Krishna Foundation's Jaywant Institute of Pharmacy, Wathar, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Amol S Shete
- Department of Pharmaceutics, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| | - Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Malkapur, IND
| |
Collapse
|
3
|
Pramanik N, Gupta A, Ghanwatkar Y, Mahato RI. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release 2024; 366:231-260. [PMID: 38171473 PMCID: PMC10922996 DOI: 10.1016/j.jconrel.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Despite significant treatment efforts, pancreatic ductal adenocarcinoma (PDAC), the deadliest solid tumor, is still incurable in the preclinical stages due to multifacet stroma, dense desmoplasia, and immune regression. Additionally, tumor heterogeneity and metabolic changes are linked to low grade clinical translational outcomes, which has prompted the investigation of the mechanisms underlying chemoresistance and the creation of effective treatment approaches by selectively targeting genetic pathways. Since targeting upstream molecules in first-line oncogenic signaling pathways typically has little clinical impact, downstream signaling pathways have instead been targeted in both preclinical and clinical studies. In this review, we discuss how the complexity of various tumor microenvironment (TME) components and the oncogenic signaling pathways that they are connected to actively contribute to the development and spread of PDAC, as well as the ways that recent therapeutic approaches have been targeted to restore it. We also illustrate how many endogenous stimuli-responsive linker-based nanocarriers have recently been developed for the specific targeting of distinct oncogenes and their downstream signaling cascades as well as their ongoing clinical trials. We also discuss the present challenges, prospects, and difficulties in the development of first-line oncogene-targeting medicines for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Nilkamal Pramanik
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya Gupta
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Singh M, Jana BK, Pal P, Singha I, Rajkumari A, Chowrasia P, Nath V, Mazumder B. Nanoparticles in pancreatic cancer therapy: a detailed and elaborated review on patent literature. Expert Opin Ther Pat 2023; 33:681-699. [PMID: 37991186 DOI: 10.1080/13543776.2023.2287520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Nanotechnology may open up new avenues for overcoming the challenges of pancreatic cancer therapy as a broad arsenal of anticancer medicines fail to realize their full therapeutic potential in pancreatic ductal adenocarcinoma due to the formation of multiple resistance mechanisms inside the tumor. Many studies have reported the successful use of various nano formulations in pancreatic cancer therapy. AREAS COVERED This review covers all the major nanotechnology-based patent litrature available on renowned patent data bases like Patentscope and Espacenet, through the time period of 2007-2022. This is an entirely patent centric review, and it includes both clinical and non-clinical data available on nanotechnology-based therapeutics and diagnostic tools for pancreatic cancer. EXPERT OPINION For the sake of understanding, the patents are categorized under various formulation-specific heads like metallic/non-metallic nanoparticles, polymeric nanoparticles, liposomes, carbon nanotubes, protein nanoparticles and liposomes. This distinguishes one specific nanoparticle type from another and makes this review a one-of-a-kind comprehensive patent compilation that has not been reported so far in the history of nanotechnological formulations in pancreatic cancer.
Collapse
Affiliation(s)
- Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Paulami Pal
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ishita Singha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Ananya Rajkumari
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pinky Chowrasia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Venessa Nath
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
5
|
Li Y, Yang KD, Duan HY, Du YN, Ye JF. Phage-based peptides for pancreatic cancer diagnosis and treatment: alternative approach. Front Microbiol 2023; 14:1231503. [PMID: 37601380 PMCID: PMC10433397 DOI: 10.3389/fmicb.2023.1231503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Pancreatic cancer is a devastating disease with a high mortality rate and a lack of effective therapies. The challenges associated with early detection and the highly aggressive nature of pancreatic cancer have limited treatment options, underscoring the urgent need for better disease-modifying therapies. Peptide-based biotherapeutics have become an attractive area of research due to their favorable properties such as high selectivity and affinity, chemical modifiability, good tissue permeability, and easy metabolism and excretion. Phage display, a powerful technique for identifying peptides with high affinity and specificity for their target molecules, has emerged as a key tool in the discovery of peptide-based drugs. Phage display technology involves the use of bacteriophages to express peptide libraries, which are then screened against a target of interest to identify peptides with desired properties. This approach has shown great promise in cancer diagnosis and treatment, with potential applications in targeting cancer cells and developing new therapies. In this comprehensive review, we provide an overview of the basic biology of phage vectors, the principles of phage library construction, and various methods for binding affinity assessment. We then describe the applications of phage display in pancreatic cancer therapy, targeted drug delivery, and early detection. Despite its promising potential, there are still challenges to be addressed, such as optimizing the selection process and improving the pharmacokinetic properties of phage-based drugs. Nevertheless, phage display represents a promising approach for the development of novel targeted therapies in pancreatic cancer and other tumors.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Hao-yu Duan
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Ya-nan Du
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, China
- School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
6
|
Barui S, Percivalle NM, Conte M, Dumontel B, Racca L, Carofiglio M, Cauda V. Development of doped ZnO-based biomimicking and tumor-targeted nanotheranostics to improve pancreatic cancer treatment. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractDespite different nanomaterials were developed so far against cancer, their potential drawbacks are still scarcely considered. The off-target delivery of a therapeutic compound, as well as the non-specific uptake of these nanomaterials by healthy tissues or organs, and their potential immunogenicity are some of the major issues that still have to be faced prior to a successful clinical translation. This work aims to develop an innovative theranostic, biocompatible, and drug-loaded nanoconstruct based on Gadolinium-doped Zinc Oxide (ZnO-Gd) nanocrystals (NCs), focusing on one of the most lethal diseases, i.e., pancreatic cancer. The use of zinc oxide is motivated by the huge potential of this nanomaterial already demonstrated for in vitro and in vivo applications, while the Gadolinium doping confers magnetic properties useful for diagnostics. Furthermore, an innovative biomimetic shell is here used to coat the NCs: it is composed of a lipid bilayer made from extracellular vesicles (EVs) combined with other synthetic lipids and a peptide targeting the pancreatic tumor microenvironment. To complete the nanoconstruct therapeutic function, Gemcitabine, a first-line drug for pancreatic cancer treatment, was adsorbed on the ZnO-Gd NCs prior to the coating with the above-mentioned lipidic shell. The aim of this work is thus to strongly enhance the therapeutic capability of the final nanoconstruct, providing it with high biocompatibility, colloidal stability in biological media, efficient cargo loading and release properties, as well as active targeting for site-selective drug delivery. Furthermore, the magnetic properties of the ZnO-Gd NCs core can in future allow efficient in situ bioimaging capabilities based on Magnetic Resonance Imaging technique. The obtained nanoconstructs were tested on two different pancreatic cancer cell lines, i.e., BxPC-3 and the metastatic AsPC-1, proving high cell internalization levels, mediated by the targeting peptide exposed on the nanoconstruct. Cellular cytotoxicity assay performed on both cell lines dictated ~ 20% increased cell killing efficacy of Gemcitabine when delivered through the nanoconstruct rather than as a free drug. Taken together, our designed theranostic nanoconstruct can have a significant impact on the standard treatment of pancreatic cancer.
Collapse
|
7
|
Zhao T, Zhang R, He Q, Zhou H, Song X, Gong T, Zhang Z. Partial ligand shielding nanoparticles improve pancreatic ductal adenocarcinoma treatment via a multifunctional paradigm for tumor stroma reprogramming. Acta Biomater 2022; 145:122-134. [PMID: 35381402 DOI: 10.1016/j.actbio.2022.03.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/01/2022]
Abstract
The dense stroma that acts as a physical and biological barrier in the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) leads to the failure of chemotherapeutic drug delivery. Cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) mainly constitute the refuge for cancer cells in PDAC. Herein, a CAF targeting drug delivery system (TDDS) based on RBC vesicles partial protection (RBC-Fn-NP) was established and investigated for reprogramming stroma, as well as enhancing tumor penetration and antitumor efficacy in PDAC. RBC vesicles were firstly used for partial protection of peptide from external influences. The exposed FnBPA5 peptide showed high affinity with both CAFs and the major components as collagen I and relaxed-fibronectin of ECM. Retinoic acid (RA) could disturb Golgi of CAFs, resulting in the reduction of protein secretion from the headstream. As expected, the strategy of RBC vesicles protected FnBPA5 targeting and RA-induced protein reduction was confirmed to reprogram the dense stroma and improve the penetration of Doxorubicin (Dox) in PDAC. RBC-Fn-NP inhibited tumor growth in both Pan02-orthotopic bearing model and Pan02-subcutaneous mice model. Hence, these partial ligand shielding nanoparticles offer a multifunctional and efficient approach to overcome penetration barriers and enhance the antitumor efficacy of chemotherapy in PDAC. STATEMENT OF SIGNIFICANCE: A partial ligand shielding nanoparticle platform (RBC-Fn-NP), which has the function of an RBC vesicle "shell" and thetargeting properties of a "core" to achieve superior therapeutic effects against PDAC, was established. The targeted ligand was modified on the surface of the nanoparticles instead of the RBC membranes. Three-dimensional PDAC stroma-rich spheroids were established to evaluate the penetration and tumor stroma remodeling. The targeting properties of FnBPA5 peptide, the effect of RA-induced Golgi disruption on the reduction of protein secretion, and the incomplete "camouflage" of the RBC vesicles were confirmed both in vitro and in vivo. As expected, our nanoplatform may provide a promising strategy for remolding dense stroma and enhancing the permeability in PDAC.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Rongping Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Qin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Hongli Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Xu Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China; NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Devices & NMPA Research Base of Regulatory Science for Medical Devices, Sichuan University, Chengdu, China; National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, Chengdu, China.
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China.
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University, No.17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Argenziano M, Arpicco S, Brusa P, Cavalli R, Chirio D, Dosio F, Gallarate M, Peira E, Stella B, Ugazio E. Developing Actively Targeted Nanoparticles to Fight Cancer: Focus on Italian Research. Pharmaceutics 2021; 13:pharmaceutics13101538. [PMID: 34683830 PMCID: PMC8540327 DOI: 10.3390/pharmaceutics13101538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023] Open
Abstract
Active targeting is a valuable and promising approach with which to enhance the therapeutic efficacy of nanodelivery systems, and the development of tumor-targeted nanoparticles has therefore attracted much research attention. In this field, the research carried out in Italian Pharmaceutical Technology academic groups has been focused on the development of actively targeted nanosystems using a multidisciplinary approach. To highlight these efforts, this review reports a thorough description of the last 10 years of Italian research results on the development of actively targeted nanoparticles to direct drugs towards different receptors that are overexpressed on cancer cells or in the tumor microenvironment. In particular, the review discusses polymeric nanocarriers, liposomes, lipoplexes, niosomes, solid lipid nanoparticles, squalene nanoassemblies and nanobubbles. For each nanocarrier, the main ligands, conjugation strategies and target receptors are described. The literature indicates that polymeric nanoparticles and liposomes stand out as key tools for improving specific drug delivery to the site of action. In addition, solid lipid nanoparticles, squalene nanoparticles and nanobubbles have also been successfully proposed. Taken together, these strategies all offer many platforms for the design of nanocarriers that are suitable for future clinical translation.
Collapse
Affiliation(s)
| | - Silvia Arpicco
- Correspondence: (S.A.); (M.G.); Tel.: +39-011-670-6668 (S.A.); +39-011-670-7194 (M.G.)
| | | | | | | | | | - Marina Gallarate
- Correspondence: (S.A.); (M.G.); Tel.: +39-011-670-6668 (S.A.); +39-011-670-7194 (M.G.)
| | | | | | | |
Collapse
|
9
|
Yeo ELL, Azman N'A, Kah JCY. Stealthiness and Hematocompatibility of Gold Nanoparticles with Pre-Formed Protein Corona. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4913-4923. [PMID: 33861611 DOI: 10.1021/acs.langmuir.1c00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Studies have established that a serum protein corona pre-formed around gold nanorods (NRs) could be exploited for loading photosensitizers and chemotherapeutics to result in efficient cell kill in vitro with an extremely low dose. In this study, we further demonstrated that pre-forming a serum protein corona (PC) around citrate-capped NRs (NR-Cit) to form NR-PC conferred them stealth property and high hematocompatibility similar to the common strategy of PEGylating NRs, which would otherwise not be able to evade the immune system. Specifically, the NR-PC caused minimal complement activation with significantly lower formation of the terminal complement complex SC5b-9 measured in human serum containing NR-PC, and this resulted in low uptake by phagocytic U937 monocytes of 5.9% of the initial gold dose compared to 55.8% of NR-Cit. In addition, NR-PC exhibited very low hemolytic activity of less than 0.2% hemolysis with no observable effect on RBC morphology as opposed to 0.6% for NR-Cit at the same concentration of 1 nM NRs. Furthermore, we showed that the high hematocompatibility and stealth property of NR-PC were maintained even after the loading of small molecules, photosensitizer Chlorine e6 (Ce6), into the protein corona, thus further establishing the potential clinical relevance of exploiting the inevitably formed serum protein corona on nanoparticles as an effective delivery vector for small molecular therapeutics.
Collapse
Affiliation(s)
- Eugenia Li Ling Yeo
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4, #04-08, 117583 Singapore
| | - Nurul 'Ain Azman
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4, #04-08, 117583 Singapore
| | - James Chen Yong Kah
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4, #04-08, 117583 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, 119077 Singapore
| |
Collapse
|
10
|
Nethi SK, Bhatnagar S, Prabha S. Synthetic Receptor-Based Targeting Strategies to Improve Tumor Drug Delivery. AAPS PharmSciTech 2021; 22:93. [PMID: 33683499 DOI: 10.1208/s12249-021-01919-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Heterogeneity in tumor expression as well as expression in normal tissues of various targets limit the usefulness of current ligand-based active targeting approaches. Incorporation of synthetic receptors, which can be recognized by delivery systems engineered to present specific functional groups on the surface, is a novel approach to improve tumor targeting. Alternatively, introduction of synthetic functionalities on cellular carriers can also enhance tumor targeting. We review various strategies that have been utilized for the introduction of synthetic targets in tumor tissues. The introduction of synthetic functional groups in the tumor through improved strategies is anticipated to result in improved target specificity and reduced heterogeneity in target expression.
Collapse
|
11
|
Abstract
Tumor-homing peptides are widely used for improving tumor selectivity of anticancer drugs and imaging agents. The goal is to increase tumor uptake and reduce accumulation at nontarget sites. Here, we describe current approaches for tumor-homing peptide identification and validation, and provide comprehensive overview of classes of tumor-homing peptides undergoing preclinical and clinical development. We focus on unique mechanistic features and applications of a recently discovered class of tumor-homing peptides, tumor-penetrating C-end Rule (CendR) peptides, that can be used for tissue penetrative targeting of extravascular tumor tissue. Finally, we discuss unanswered questions and future directions in the field of development of peptide-guided smart drugs and imaging agents.
Collapse
|
12
|
Phage Display-Based Homing Peptide-Daunomycin Conjugates for Selective Drug Targeting to PANC-1 Pancreatic Cancer. Pharmaceutics 2020; 12:pharmaceutics12060576. [PMID: 32580307 PMCID: PMC7355684 DOI: 10.3390/pharmaceutics12060576] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
The Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most aggressive and dangerous cancerous diseases, leading to a high rate of mortality. Therefore, the development of new, more efficient treatment approaches is necessary to cure this illness. Peptide-based drug targeting provides a new tool for this purpose. Previously, a hexapeptide Cys-Lys-Ala-Ala-Lys-Asn (CKAAKN) was applied efficiently as the homing device for drug-loaded nanostructures in PDAC cells. In this research, Cys was replaced by Ser in the sequence and this new SKAAKN targeting moiety was used in conjugates containing daunomycin (Dau). Five different structures were developed and tested. The results indicated that linear versions with one Dau were not effective on PANC-1 cells in vitro; however, branched conjugates with two Dau molecules showed significant antitumor activity. Differences in the antitumor effect of the conjugates could be explained with the different cellular uptake and lysosomal degradation. The most efficient conjugate was Dau=Aoa-GFLG-K(Dau=Aoa)SKAAKN-OH (conjugate 4) that also showed significant tumor growth inhibition on s.c. implanted PANC-1 tumor-bearing mice with negligible side effects. Our novel results suggest that peptide-based drug delivery systems could be a promising tool for the treatment of pancreatic cancers.
Collapse
|
13
|
Su T, Yang B, Gao T, Liu T, Li J. Polymer nanoparticle-assisted chemotherapy of pancreatic cancer. Ther Adv Med Oncol 2020; 12:1758835920915978. [PMID: 32426046 PMCID: PMC7222269 DOI: 10.1177/1758835920915978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a lethal disease characterized by highly dense stroma fibrosis. Only 15-20% of patients with pancreatic cancer have resectable tumors, and only around 20% of them survive to 5 years. Traditional cancer treatments have little effect on their prognosis, and successful surgical resection combined with effective perioperative therapy is the main method for maximizing long-term survival. For this reason, chemotherapy is an adjunct treatment for resectable cancer and is the main therapy for incurable pancreatic cancer, including metastatic pancreatic adenocarcinoma. However, there are various side effects of chemotherapeutic medicine and low drug penetration because the complex tumor microenvironment limits the application of chemotherapy. As a novel strategy, polymer nanoparticles make it possible to target the tumor microenvironment, release cytotoxic agents through various responsive reactions, and thus overcome the treatment barrier. As drug carriers, polymer nanoparticles show marked advantages, such as increased drug delivery and efficiency, controlled drug release, decreased side effects, prolonged half-life, and evasion of immunogenic blockade. In this review, we discuss the factors that cause chemotherapy obstacles in pancreatic cancer, and introduce the application of polymer nanoparticles to treat pancreatic cancer.
Collapse
Affiliation(s)
- Tianqi Su
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tianren Gao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Tongjun Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| | - Jiannan Li
- Department of General Surgery, Second Hospital of Jilin University, Changchun 130041, People’s Republic of China
| |
Collapse
|
14
|
Mesenchymal Stem Cells As Guideposts for Nanoparticle-Mediated Targeted Drug Delivery in Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12040965. [PMID: 32295145 PMCID: PMC7226169 DOI: 10.3390/cancers12040965] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
Nanocarriers have been extensively utilized for the systemic targeting of various solid tumors and their metastases. However, current drug delivery systems, in general, suffer from a lack of selectivity for tumor cells. Here, we develop a novel two-step targeting strategy that relies on the selective accumulation of targetable synthetic receptors (i.e., azide moieties) in tumor tissues, followed by delivery of drug-loaded nanoparticles having a high binding affinity for these receptors. Mesenchymal stem cells (MSCs) were used as vehicles for the tumor-specific accumulation of azide moieties, while dibenzyl cyclooctyne (DBCO) was used as the targeting ligand. Biodistribution and antitumor efficacy studies were performed in both orthotopic metastatic and patient-derived xenograft (PDX) tumor models of ovarian cancer. Our studies show that nanoparticles are retained in tumors at a significantly higher concentration in mice that received azide-labeled MSCs (MSC-Az). Furthermore, we observed significantly reduced tumor growth (p < 0.05) and improved survival in mice receiving MSC-Az along with paclitaxel-loaded DBCO-functionalized nanoparticles compared to controls. These studies demonstrate the feasibility of a two-step targeting strategy for efficient delivery of concentrated chemotherapy for treating solid tumors.
Collapse
|
15
|
Silva F, Paulo A, Pallier A, Même S, Tóth É, Gano L, Marques F, Geraldes CF, Castro MMC, Cardoso AM, Jurado AS, López-Larrubia P, Lacerda S, Cabral Campello MP. Dual Imaging Gold Nanoplatforms for Targeted Radiotheranostics. MATERIALS 2020; 13:ma13030513. [PMID: 31978954 PMCID: PMC7040626 DOI: 10.3390/ma13030513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Gold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools, mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life. Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating Gd3+ for Magnetic Resonance Imaging (MRI) and 67Ga3+ for Single Photon Emission Computed Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with affinity towards the gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely PC3 prostate cancer cells. The potential of these multimodal imaging nanoconstructs was thoroughly investigated by the assessment of their magnetic properties, in vitro cellular uptake, biodistribution, and radiosensitisation assays. The relaxometric properties predict a potential T1- and T2- MRI application. The promising in vitro cellular uptake of 67Ga/Gd-based bombesin containing particles was confirmed through biodistribution studies in tumor bearing mice, indicating their integrity and ability to target the GRPr. Radiosensitization studies revealed the therapeutic potential of the nanoparticles. Moreover, the DOTA chelating unit moiety versatility gives a high theranostic potential through the coordination of other therapeutically interesting radiometals. Altogether, our nanoparticles are interesting nanomaterial for theranostic application and as bimodal T1- and T2- MRI / SPECT imaging probes.
Collapse
Affiliation(s)
- Francisco Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - António Paulo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Agnès Pallier
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Carlos F.G.C. Geraldes
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- Coimbra Chemistry Center, University of Coimbra, 3004-535 Coimbra, Portugal
- CIBIT/ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde. Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - M. Margarida C.A. Castro
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- Coimbra Chemistry Center, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ana M. Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
- Institute for Interdisciplinary Research of the University of Coimbra, 3030-789 Coimbra, Portugal
| | - Amália S. Jurado
- Department of Life Sciences, Faculty of Science and TechnologyUniversity of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal (A.S.J.)
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal;
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC/UAM, c/ Arturo Duperier 4, 28029 Madrid, Spain;
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans CEDEX 2, France; (A.P.); (S.M.)
- Correspondence: (M.P.C.C.); (S.L.)
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal; (F.S.); (A.P.); (L.G.); (F.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
- Correspondence: (M.P.C.C.); (S.L.)
| |
Collapse
|
16
|
Zhu X, Lu N, Zhou Y, Xuan S, Zhang J, Giampieri F, Zhang Y, Yang F, Yu R, Battino M, Wang Z. Targeting Pancreatic Cancer Cells with Peptide-Functionalized Polymeric Magnetic Nanoparticles. Int J Mol Sci 2019; 20:ijms20122988. [PMID: 31248076 PMCID: PMC6627612 DOI: 10.3390/ijms20122988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is a concealed and highly malignant tumor, and its early diagnosis plays an increasingly weighty role during the course of cancer treatment. In this study, we developed a polymeric magnetic resonance imaging (MRI) nanoplatform for MRI contrast agents. To improve tumor-targeting delivery of MRI contrast agents, we employed a pancreatic cancer targeting CKAAKN peptide to prepare a peptide-functionalized amphiphilic hyaluronic acid–vitamin E succinate polymer (CKAAKN–HA–VES) for delivering ultra-small superparamagnetic iron oxide (USPIO), namely, CKAAKN–HA–VES@USPIO. With the modification of the CKAAKN peptide, CKAAKN–HA–VES@USPIO could specifically internalize into CKAAKN-positive BxPC-3 cells. The CKAAKN–HA–VES@USPIO nanoparticles presented a more specific accumulation into pancreatic cancer cells than normal pancreatic cells, and an obvious decrease in signal intensity was observed in CKAAKN-positive BxPC-3 cells, compared with CKAAKN-negative HPDE6-C7 cells and non-targeting HA–VES@USPIO nanoparticles. The results demonstrated that our polymeric MRI nanoplatform could selectively internalize into CKAAKN-positive pancreatic cancer cells by the specific binding of CKAAKN peptide with pancreatic cancer cell membrane receptors, which provided a novel polymeric MRI contrast agent with high specificity for pancreatic cancer diagnosis, and makes it a very promising candidate for magnetic resonance imaging contrast enhancement.
Collapse
Affiliation(s)
- Xiuliang Zhu
- Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Nan Lu
- Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Shaoyan Xuan
- College of Pharmaceutical Sciences, Zhejiang University, Hang Zhou 310058, China.
| | - Jiaojiao Zhang
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Francesca Giampieri
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo-Vigo Campus, 32004 Ourense, Spain.
| | - Yongping Zhang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Fangfang Yang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Risheng Yu
- Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Maurizio Battino
- Department of Clinical Sciences, Faculty of Medicine, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo-Vigo Campus, 32004 Ourense, Spain.
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
17
|
Sanhaji M, Göring J, Couleaud P, Aires A, Cortajarena AL, Courty J, Prina-Mello A, Stapf M, Ludwig R, Volkov Y, Latorre A, Somoza Á, Miranda R, Hilger I. The phenotype of target pancreatic cancer cells influences cell death by magnetic hyperthermia with nanoparticles carrying gemicitabine and the pseudo-peptide NucAnt. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 20:101983. [PMID: 30940505 DOI: 10.1016/j.nano.2018.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 12/17/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
In this paper we show that conjugation of magnetic nanoparticles (MNPs) with Gemcitabine and/or NucAnt (N6L) fostered their internalization into pancreatic tumor cells and that the coupling procedure did not alter the cytotoxic potential of the drugs. By treating tumor cells (BxPC3 and PANC-1) with the conjugated MNPs and magnetic hyperthermia (43 °C, 60 min), cell death was observed. The two pancreatic tumor cell lines showed different reactions against the combined therapy according to their intrinsic sensitivity against Gemcitabine (cell death, ROS production, ability to activate ERK 1/2 and JNK). Finally, tumors (e.g. 3 mL) could be effectively treated by using almost 4.2 × 105 times lower Gemcitabine doses compared to conventional therapies. Our data show that this combinatorial therapy might well play an important role in certain cell phenotypes with low readiness of ROS production. This would be of great significance in distinctly optimizing local pancreatic tumor treatments.
Collapse
Affiliation(s)
- Mourad Sanhaji
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Julia Göring
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Pierre Couleaud
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Antonio Aires
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Aitziber L Cortajarena
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - José Courty
- Laboratoire CRRET, Université Paris EST Créteil, 61 Avenue du Général de Gaulle, Créteil, France
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Marcus Stapf
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Robert Ludwig
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | - Yuri Volkov
- Nanomedicine and Molecular Imaging group, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Alfonso Latorre
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Campus Universitario de Cantoblanco, Madrid, Spain; Unidad Asociada de Nanobiotecnología CNB-CSIC & IMDEA Nanociencia, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Ingrid Hilger
- Institute for Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
18
|
Mura S, Fattal E, Nicolas J. From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines. J Drug Target 2019; 27:470-501. [PMID: 30720372 DOI: 10.1080/1061186x.2019.1579822] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article covers the most important steps of the pioneering work of Patrick Couvreur and tries to shed light on his outstanding career that has been a source of inspiration for many decades. His discovery of biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) has opened large perspectives in nanomedicine. Indeed, NPs made from various types of alkyl cyanoacrylate monomers have been used in different applications, such as the treatment of intracellular infections or the treatment of multidrug resistant hepatocarcinoma. This latest application led to the Phase III clinical trial of Livatag®, a PACA nanoparticulate formulation of doxorubicin. Despite the success of PACA NPs, the development of a novel type of NP with higher drug loadings and lower burst release was tackled by the discovery of squalene-based nanomedicines where the drug is covalently linked to the lipid derivative and the resulting conjugate is self-assembled into NPs. This pioneering work was accompanied by a wide range of novel applications which mainly dealt with the management of unmet medical needs (e.g. pancreatic cancer, brain ischaemia and spinal cord injury).
Collapse
Affiliation(s)
- Simona Mura
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| | - Elias Fattal
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| | - Julien Nicolas
- a Institut Galien Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay , Châtenay-Malabry , France
| |
Collapse
|
19
|
Shen Q, Yang H, Peng C, Zhu H, Mei J, Huang S, Chen B, Liu J, Wu W, Cao S. Capture and biological release of circulating tumor cells in pancreatic cancer based on peptide-functionalized silicon nanowire substrate. Int J Nanomedicine 2018; 14:205-214. [PMID: 30636873 PMCID: PMC6307685 DOI: 10.2147/ijn.s187892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Efficient and precise circulating tumor cells' (CTCs) capture and release with minimal effect on cell viability for CTCs' analysis are general requirements of CTCs' detection device in clinical application. However, these two essential factors are difficult to be achieved simultaneously. Methods In order to reach the aforementioned goal, we integrated multiple strategies and technologies of staggered herringbone structure, nanowires' substrate, peptides, enzymatic release, specific cell staining, and gene sequencing into microfluidic device and the sandwich structure peptide-silicon nanowires' substrate was termed as Pe-SiNWS. Results The Pe-SiNWS demonstrated excellent capture efficiency (95.6%) and high release efficiency (92.6%). The good purity (28.5%) and cell viability (93.5%) of CTCs could be obtained through specific capture and biological release by using Pe-SiNWS. The good purity of CTCs facilitated precise and quick biological analysis, and five types of KRAS mutation were detected in 16 pancreatic cancer patients but not in healthy donors. Conclusion The results proved that the effective capture, minor damage release, and precise analysis of CTCs could be realized simultaneously by our novel strategy. The successful clinical application indicated that our work was anticipated to open up new opportunities for the design of CTC microfluidic device.
Collapse
Affiliation(s)
- Qinglin Shen
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China, .,Cancer Center, Renmin Hospital, Wuhan University, Wuhan, China,
| | - Haitao Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China,
| | - Caixia Peng
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Central Laboratory, The Central Hospital of Wuhanper, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Jia Mei
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Shan Huang
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
| | - Bin Chen
- Central Laboratory, Renmin Hospital, Wuhan University, Wuhan, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbo Wu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China,
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China,
| |
Collapse
|
20
|
Tucci ST, Seo JW, Kakwere H, Kheirolomoom A, Ingham ES, Mahakian LM, Tam S, Tumbale S, Baikoghli M, Cheng RH, Ferrara KW. A Scalable Method for Squalenoylation and Assembly of Multifunctional 64Cu-Labeled Squalenoylated Gemcitabine Nanoparticles. Nanotheranostics 2018; 2:387-402. [PMID: 30324084 PMCID: PMC6170330 DOI: 10.7150/ntno.26969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/02/2018] [Indexed: 12/15/2022] Open
Abstract
Squalenoylation of gemcitabine, a front-line therapy for pancreatic cancer, allows for improved cellular-level and system-wide drug delivery. The established methods to conjugate squalene to gemcitabine and to form nanoparticles (NPs) with the squalenoylated gemcitabine (SqGem) conjugate are cumbersome, time-consuming and can be difficult to reliably replicate. Further, the creation of multi-functional SqGem-based NP theranostics would facilitate characterization of in vivo pharmacokinetics and efficacy. Methods: Squalenoylation conjugation chemistry was enhanced to improve reliability and scalability using tert-butyldimethylsilyl (TBDMS) protecting groups. We then optimized a scalable microfluidic mixing platform to produce SqGem-based NPs and evaluated the stability and morphology of select NP formulations using dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cytotoxicity was evaluated in both PANC-1 and KPC (KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx-Cre) pancreatic cancer cell lines. A 64Cu chelator (2-S-(4-aminobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid, NOTA) was squalenoylated and used with positron emission tomography (PET) imaging to monitor the in vivo fate of SqGem-based NPs. Results: Squalenoylation yields of gemcitabine increased from 15% to 63%. Cholesterol-PEG-2k inclusion was required to form SqGem-based NPs using our technique, and additional cholesterol inclusion increased particle stability at room temperature; after 1 week the PDI of SqGem NPs with cholesterol was ~ 0.2 while the PDI of SqGem NPs lacking cholesterol was ~ 0.5. Similar or superior cytotoxicity was achieved for SqGem-based NPs compared to gemcitabine or Abraxane® when evaluated at a concentration of 10 µM. Squalenoylation of NOTA enabled in vivo monitoring of SqGem-based NP pharmacokinetics and biodistribution. Conclusion: We present a scalable technique for fabricating efficacious squalenoylated-gemcitabine nanoparticles and confirm their pharmacokinetic profile using a novel multifunctional 64Cu-SqNOTA-SqGem NP.
Collapse
Affiliation(s)
- Samantha T Tucci
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA
| | - Jai W Seo
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Hamilton Kakwere
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | | | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA
| | - Sarah Tam
- Department of Biomedical Engineering, University of California Davis, Davis, California, 95616, USA
| | - Spencer Tumbale
- Department of Radiology, Stanford University, Palo Alto, CA 94304, USA
| | - Mo Baikoghli
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, 95616, USA
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, 95616, USA
| | | |
Collapse
|
21
|
Newman MR, Benoit DSW. In Vivo Translation of Peptide-Targeted Drug Delivery Systems Discovered by Phage Display. Bioconjug Chem 2018; 29:2161-2169. [PMID: 29889510 DOI: 10.1021/acs.bioconjchem.8b00285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Therapeutic compounds with narrow therapeutic windows and significant systemic side effects benefit from targeted drug delivery strategies. Peptide-protein interactions are often exploited for targeting, with phage display a primary method to identify high-affinity peptide ligands that bind cell surface and matrix bound receptors preferentially expressed in target tissues. After isolating and sequencing high-binding phages, peptides are easily synthesized and chemically modified for incorporation into drug delivery systems, including peptide-drug conjugates, polymers, and nanoparticles. This review describes the phage display methodology to identify targeting peptide sequences, strategies to functionalize drug carriers with phage-derived peptides, specific examples of drug carriers with in vivo translation, and limitations and future applications of phage display to drug delivery.
Collapse
Affiliation(s)
- Maureen R Newman
- Center for Musculoskeletal Research, Department of Orthopaedics , University of Rochester Medical Center , Rochester , New York 14642 , United States
| | - Danielle S W Benoit
- Center for Musculoskeletal Research, Department of Orthopaedics , University of Rochester Medical Center , Rochester , New York 14642 , United States
| |
Collapse
|
22
|
The effects of novel chitosan-targeted gemcitabine nanomedicine mediating cisplatin on epithelial mesenchymal transition, invasion and metastasis of pancreatic cancer cells. Biomed Pharmacother 2017; 96:650-658. [DOI: 10.1016/j.biopha.2017.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
|
23
|
Westergaard Mulberg M, Taskova M, Thomsen RP, Okholm AH, Kjems J, Astakhova K. New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods. Chembiochem 2017; 18:1599-1603. [PMID: 28681411 DOI: 10.1002/cbic.201700125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 11/11/2022]
Abstract
For decades the detection of nucleic acids and their interactions at low abundances has been a challenging task that has thus far been solved by enzymatic target amplification. In this work we aimed at developing efficient tools for amplification-free nucleic acid detection, which resulted in the synthesis of new fluorescent nanoparticles. Here, the fluorescent nanoparticles were made by simple and inexpensive radical emulsion polymerization of butyl acrylate in the presence of fluorescent dyes and additional functionalization reagents. This provided ultra-bright macrofluorophores of 9-84 nm mean diameter, modified with additional alkyne and amino groups for bioconjugation. By using click and NHS chemistries, the new nanoparticles were attached to target-specific DNA probes that were used in fluorimetry and fluorescence microscopy. Overall, these fluorescent nanoparticles and their oligonucleotide derivatives have higher photostability, brighter fluorescence and hence dramatically lower limits of target detection than the individual organic dyes. These properties make them useful in approaches directed towards ultrasensitive detection of nucleic acids, in particular for imaging and in vitro diagnostics of DNA.
Collapse
Affiliation(s)
- Mads Westergaard Mulberg
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, Campusvej 55, 5230, Odense M, Denmark.,Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800, Kongens Lyngby, Denmark
| | - Maria Taskova
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, Campusvej 55, 5230, Odense M, Denmark.,Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800, Kongens Lyngby, Denmark
| | - Rasmus P Thomsen
- Aarhus University, Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Anders H Okholm
- Aarhus University, Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Jørgen Kjems
- Aarhus University, Interdisciplinary Nanoscience Center, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Kira Astakhova
- University of Southern Denmark, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Center, Campusvej 55, 5230, Odense M, Denmark.,Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Sobot D, Mura S, Yesylevskyy SO, Dalbin L, Cayre F, Bort G, Mougin J, Desmaële D, Lepetre-Mouelhi S, Pieters G, Andreiuk B, Klymchenko AS, Paul JL, Ramseyer C, Couvreur P. Conjugation of squalene to gemcitabine as unique approach exploiting endogenous lipoproteins for drug delivery. Nat Commun 2017; 8:15678. [PMID: 28555624 PMCID: PMC5459998 DOI: 10.1038/ncomms15678] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
Once introduced in the organism, the interaction of nanoparticles with various biomolecules strongly impacts their fate. Here we show that nanoparticles made of the squalene derivative of gemcitabine (SQGem) interact with lipoproteins (LPs), indirectly enabling the targeting of cancer cells with high LP receptors expression. In vitro and in vivo experiments reveal preeminent affinity of the squalene-gemcitabine bioconjugates towards LP particles with the highest cholesterol content and in silico simulations further display their incorporation into the hydrophobic core of LPs. To the best of our knowledge, the use of squalene to induce drug insertion into LPs for indirect cancer cell targeting is a novel concept in drug delivery. Interestingly, not only SQGem but also other squalene derivatives interact similarly with lipoproteins while such interaction is not observed with liposomes. The conjugation to squalene represents a versatile platform that would enable efficient drug delivery by simply exploiting endogenous lipoproteins. The interaction of nanoparticles with a range of biomolecules once they have been injected within the body can affect their performance. Here, the authors demonstrate that squalene nanomaterials conjugated with anticancer drugs can interact with lipoproteins and can be used to target cancer cells.
Collapse
Affiliation(s)
- Dunja Sobot
- Institut Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Simona Mura
- Institut Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Laura Dalbin
- Institut Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Fanny Cayre
- Institut Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Guillaume Bort
- Institut Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Julie Mougin
- Institut Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Didier Desmaële
- Institut Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Sinda Lepetre-Mouelhi
- Institut Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Grégory Pieters
- CEA Saclay, iBiTecS-S/SCBM, Labex LERMIT, 91191 Gif-sur-Yvette, France
| | - Bohdan Andreiuk
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France.,Department of Organic Chemistry, Chemistry Faculty, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, University of Strasbourg, 74 route du Rhin, 67401 Illkirch Cedex, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015 Paris, France.,Lip(Sys)2, Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Univ Paris-Sud, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR 8612, CNRS, Univ Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| |
Collapse
|
25
|
Kuzmicheva GA, Belyavskaya VA. Peptide phage display in biotechnology and biomedicine. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Kuzmicheva GA, Belyavskaya VA. [Peptide phage display in biotechnology and biomedicine]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:481-495. [PMID: 27797323 DOI: 10.18097/pbmc20166205481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials.
Collapse
Affiliation(s)
- G A Kuzmicheva
- Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia; XBiotech USA, Austin, TX, USA
| | - V A Belyavskaya
- Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
27
|
Birhanu G, Javar HA, Seyedjafari E, Zandi-Karimi A. Nanotechnology for delivery of gemcitabine to treat pancreatic cancer. Biomed Pharmacother 2017; 88:635-643. [PMID: 28142120 DOI: 10.1016/j.biopha.2017.01.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most deadly and quickly fatal human cancers with a 5-year mortality rate close to 100%. Its prognosis is very poor, mainly because of its hostile biological behavior and late onset of symptoms for clinical diagnosis; these bring limitations on therapeutic interventions. Factors contributing for the difficulties in treating PC include: high rate of drug resistance, fast metastasis to different organs, poor prognosis and relapse of the tumor after therapy. After being approved by US FDA 1997, Gemcitabine (Gem) is the first line and the gold standard drug for all stages of advanced PC till now. However, its efficacy is unsatisfactory, mainly due to; its chemical instability and poor cellular uptake, resulting in an extremely short half-life and low bioavailability. To solve this drawbacks and increase the therapeutic outcome important progress has been achieved in the field of nanotechnology and offers a promising and effective alternative. This review mainly focus on the most commonly investigated nanoparticle (NP) delivery systems of Gem for PC treatment and the latest progresses achieved. Novel nanocarriers with better tumor targeting efficiencies and maximum treatment outcome to treat this deadly due are given much attention.
Collapse
Affiliation(s)
- Gebremariam Birhanu
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran, Iran; School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Ali Zandi-Karimi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
28
|
Abstract
Lipid-drug conjugates (LDCs) are drug molecules that have been covalently modified with lipids. The conjugation of lipids to drug molecules increases lipophilicity and also changes other properties of drugs. The conjugates demonstrate several advantages including improved oral bioavailability, improved targeting to the lymphatic system, enhanced tumor targeting, and reduced toxicity. Based on the chemical nature of drugs and lipids, various conjugation strategies and chemical linkers can be utilized to synthesize LDCs. Linkers and/or conjugation methods determine how drugs are released from LDCs and are critical for the optimal performance of LDCs. In this review, different lipids used for preparing LDCs and various conjugation strategies are summarized. Although LDCs can be administered without a delivery carrier, most of them are loaded into appropriate delivery systems. The lipid moiety in the conjugates can significantly enhance drug loading into hydrophobic components of delivery carriers and thus generate formulations with high drug loading and superior stability. Different delivery carriers such as emulsions, liposomes, micelles, lipid nanoparticles, and polymer nanoparticles are also discussed in this review.
Collapse
Affiliation(s)
- Danielle Irby
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University , Hampton, Virginia 23668, United States
| | - Chengan Du
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University , Hampton, Virginia 23668, United States
| | - Feng Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University , Hampton, Virginia 23668, United States
| |
Collapse
|
29
|
Michel D, Mohammed-Saeid W, Getson H, Roy C, Poorghorban M, Chitanda JM, Verrall R, Badea I. Evaluation of β-cyclodextrin-modified gemini surfactant-based delivery systems in melanoma models. Int J Nanomedicine 2016; 11:6703-6712. [PMID: 28003746 PMCID: PMC5161338 DOI: 10.2147/ijn.s121156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel drug delivery systems are developed to improve the biological behavior of poorly soluble drugs and to improve therapeutic outcomes. In melanoma therapy, the goal is efficient drug delivery and mitigation of drug resistance. Melphalan (Mel), a currently used therapeutic agent for melanoma, requires solvent system for solubilization, leading to poor chemical stability. Moreover, drug resistance often renders the drug inefficient in clinical setting. A novel β-cyclodextrin-modified gemini surfactant (CDgemini) delivery system was developed to incorporate Mel in order to improve its physicochemical and biological behavior. Melphalan nanoparticles (Mel-NP) showed optimal particle size in the 200-250 nm range for endocytosis and induced significantly higher cell death compared with Mel (50% of inhibitory concentration [IC50] of 36 µM for the complexes vs 82 µM for Mel). The CDgemini delivery system did not alter the pathway of the cellular death triggered by Mel and caused no intrinsic toxicity to the cells. The Mel-NP complexes induced significant cell death in melanoma cells that were rendered resistant to Mel. These findings demonstrate in principle the applicability of the CDgemini delivery system as safe and efficient alternative to the current melanoma therapy, especially in chemoresistant cases.
Collapse
Affiliation(s)
- Deborah Michel
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| | | | - Heather Getson
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| | - Caitlin Roy
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| | | | - Jackson M Chitanda
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ronald Verrall
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition
| |
Collapse
|
30
|
Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 2016; 13:750-765. [PMID: 27531700 DOI: 10.1038/nrclinonc.2016.119] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer- related deaths. PDAC remains one of the most difficult-to-treat cancers, owing to its unique pathobiological features: a nearly impenetrable desmoplastic stroma, and hypovascular and hypoperfused tumour vessels render most treatment options largely ineffective. Progress in understanding the pathobiology and signalling pathways involved in disease progression is helping researchers to develop novel ways to fight PDAC, including improved nanotechnology-based drug-delivery platforms that have the potential to overcome the biological barriers of the disease that underlie persistent drug resistance. So-called 'nanomedicine' strategies have the potential to enable targeting of the Hedgehog-signalling pathway, the autophagy pathway, and specific RAS-mutant phenotypes, among other pathological processes of the disease. These novel therapies, alone or in combination with agents designed to disrupt the pathobiological barriers of the disease, could result in superior treatments, with increased efficacy and reduced off-target toxicities compared with the current standard-of-care regimens. By overcoming drug-delivery challenges, advances can be made in the treatment of PDAC, a disease for which limited improvement in overall survival has been achieved over the past several decades. We discuss the approaches to nanomedicine that have been pursued to date and those that are the focus of ongoing research, and outline their potential, as well as the key challenges that must be overcome.
Collapse
|
31
|
Fumagalli G, Marucci C, Christodoulou MS, Stella B, Dosio F, Passarella D. Self-assembly drug conjugates for anticancer treatment. Drug Discov Today 2016; 21:1321-9. [DOI: 10.1016/j.drudis.2016.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/10/2016] [Accepted: 06/15/2016] [Indexed: 12/28/2022]
|
32
|
Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv 2016; 14:201-214. [DOI: 10.1080/17425247.2016.1213238] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Sara A. Abouelmagd
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
33
|
Arpicco S, Battaglia L, Brusa P, Cavalli R, Chirio D, Dosio F, Gallarate M, Milla P, Peira E, Rocco F, Sapino S, Stella B, Ugazio E, Ceruti M. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
34
|
Layek B, Sadhukha T, Prabha S. Glycoengineered mesenchymal stem cells as an enabling platform for two-step targeting of solid tumors. Biomaterials 2016; 88:97-109. [PMID: 26946263 DOI: 10.1016/j.biomaterials.2016.02.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
Current tumor targeted drug and diagnostic delivery systems suffer from a lack of selectivity for tumor cells. Here, we propose a two-step tumor targeting strategy based on mesenchymal stem cells (MSCs), which actively traffic to tumors. We developed glycoengineering protocols to induce expression of non-natural azide groups on the surface of MSCs without affecting their viability or tumor homing properties. Glycoengineered MSCs demonstrated active tumor homing in subcutaneous and orthotopic lung and ovarian tumor models. Subsequent systemic administration of dibenzyl cyclooctyne (DBCO)-labeled fluorophores or nanoparticles to MSC pretreated mice resulted in enhanced tumor accumulation of these agents through bio-orthogonal copper-free click chemistry. Further, administration of glycoengineered MSCs along with paclitaxel-loaded DBCO-functionalized nanoparticles resulted in significant (p < 0.05) inhibition of tumor growth and improved survival (p < 0.0001) in an orthotopic metastatic ovarian tumor model. These results provide evidence for the potential of MSC-based two-step targeting strategy to improve the tumor specificity of diagnostic agents and drugs, and thus potentially improve the treatment outcomes for patients diagnosed with cancer.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Tanmoy Sadhukha
- Albany Medical Research Inc., 21 Corporate Circle, Albany, NY 12203, USA
| | - Swayam Prabha
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA; Center for Translational Drug Delivery, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
35
|
Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B 2016; 4:5078-5100. [DOI: 10.1039/c6tb00900j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the mechanisms of anticancer drug resistance according to its cellular level of action and outlines the nanomedicine-based strategies adopted to overcome it.
Collapse
Affiliation(s)
- Dunja Sobot
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| |
Collapse
|
36
|
Mondal G, Kumar V, Shukla SK, Singh PK, Mahato RI. EGFR-Targeted Polymeric Mixed Micelles Carrying Gemcitabine for Treating Pancreatic Cancer. Biomacromolecules 2015; 17:301-13. [PMID: 26626700 DOI: 10.1021/acs.biomac.5b01419] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The objective of this study was to design GE11 peptide (YHWYGYTPQNVI) linked micelles of poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-gemcitabine-graft-dodecanol (PEG-b-PCC-g-GEM-g-DC) for enhanced stability and target specificity of gemcitabine (GEM) to EGFR-positive pancreatic cancer cells. GE11-PEG-PCD/mPEG-b-PCC-g-GEM-g-DC mixed micelles showed EGFR-dependent enhanced cellular uptake, and cytotoxicity as compared to scrambled peptide HW12-PEG-PCD/mPEG-b-PCC-g-GEM-g-DC mixed micelles and unmodified mPEG-b-PCC-g-GEM-g-DC micelles. Importantly, GE11-linked mixed micelles preferentially accumulated in orthotopic pancreatic tumor and tumor vasculature at 24 h post systemic administration. GE11-linked mixed micelles inhibited orthotopic pancreatic tumor growth compared to HW12-linked mixed micelles, unmodified mPEG-b-PCC-g-GEM-g-DC micelles, and free GEM formulations. Tumor growth inhibition was mediated by apoptosis of tumor cells and endothelial cells as determined by immunohistochemical staining. In summary, GE11-linked mixed micelles is a promising approach to treat EGFR overexpressing cancers.
Collapse
Affiliation(s)
- Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Surendra K Shukla
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, Nebraska United States
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center , Omaha, Nebraska United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
37
|
Zhang L, Becton M, Wang X. Designing Nanoparticle Translocation through Cell Membranes by Varying Amphiphilic Polymer Coatings. J Phys Chem B 2015; 119:3786-94. [DOI: 10.1021/acs.jpcb.5b00825] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liuyang Zhang
- College of Engineering and NanoSEC, University of Georgia, Athens, Georgia 30602, United States
| | - Matthew Becton
- College of Engineering and NanoSEC, University of Georgia, Athens, Georgia 30602, United States
| | - Xianqiao Wang
- College of Engineering and NanoSEC, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
38
|
Mura S, Bui DT, Couvreur P, Nicolas J. Lipid prodrug nanocarriers in cancer therapy. J Control Release 2015; 208:25-41. [PMID: 25617724 DOI: 10.1016/j.jconrel.2015.01.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/12/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Application of nanotechnology in the medical field (i.e., nanomedicine) plays an important role in the development of novel drug delivery methods. Nanoscale drug delivery systems can indeed be customized with specific functionalities in order to improve the efficacy of the treatments. However, despite the progresses of the last decades, nanomedicines still face important obstacles related to: (i) the physico-chemical properties of the drug moieties which may reduce the total amount of loaded drug; (ii) the rapid and uncontrolled release (i.e., burst release) of the encapsulated drug after administration and (iii) the instability of the drug in biological media where a fast transformation into inactive metabolites can occur. As an alternative strategy to alleviate these drawbacks, the prodrug approach has found wide application. The covalent modification of a drug molecule into an inactive precursor from which the drug will be freed after administration offers several benefits such as: (i) a sustained drug release (mediated by chemical or enzymatic hydrolysis of the linkage between the drug-moiety and its promoiety); (ii) an increase of the drug chemical stability and solubility and, (iii) a reduced toxicity before the metabolization occurs. Lipids have been widely used as building blocks for the design of various prodrugs. Interestingly enough, these lipid-derivatized drugs can be delivered through a nanoparticulate form due to their ability to self-assemble and/or to be incorporated into lipid/polymer matrices. Among the several prodrugs developed so far, this review will focus on the main achievements in the field of lipid-based prodrug nanocarriers designed to improve the efficacy of anticancer drugs. Gemcitabine (Pubchem CID: 60750); 5-fluorouracil (Pubchem CID: 3385); Doxorubicin (Pubchem CID: 31703); Docetaxel (Pubchem CID: 148124); Methotrexate (Pubchem CID: 126941); Paclitaxel (Pubchem CID: 36314).
Collapse
Affiliation(s)
- Simona Mura
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France.
| | - Duc Trung Bui
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
39
|
Valetti S, Mura S, Noiray M, Arpicco S, Dosio F, Vergnaud J, Desmaële D, Stella B, Couvreur P. Peptide Conjugation: Before or After Nanoparticle Formation? Bioconjug Chem 2014; 25:1971-83. [DOI: 10.1021/bc5003423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sabrina Valetti
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università di Torino, 9 via Pietro
Giuria, 10125 Torino, Italy
| | - Simona Mura
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| | - Magali Noiray
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| | - Silvia Arpicco
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università di Torino, 9 via Pietro
Giuria, 10125 Torino, Italy
| | - Franco Dosio
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università di Torino, 9 via Pietro
Giuria, 10125 Torino, Italy
| | - Juliette Vergnaud
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| | - Didier Desmaële
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| | - Barbara Stella
- Dipartimento
di Scienza e Tecnologia del Farmaco, Università di Torino, 9 via Pietro
Giuria, 10125 Torino, Italy
| | - Patrick Couvreur
- Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
- CNRS UMR 8612, Institut Galien Paris-Sud, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry cedex, France
| |
Collapse
|