1
|
Yadav K, Ebenezer Gnanakani SP, Kumar Sahu K, Sucheta, Dubey A, Minz S, Raza W, Pradhan M. Unleashing the potential of natural protein based nanoparticles for the delivery of therapeutic nucleic Acid: A comprehensive review. Int J Pharm 2025; 669:125049. [PMID: 39674384 DOI: 10.1016/j.ijpharm.2024.125049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Nucleic acid-based therapeutics represent a revolutionary approach in treating genetic disorders, offering unprecedented potential for addressing pathologies at their molecular level. However, effective cellular delivery remains a critical challenge hindering their clinical implementation. While existing delivery systems, including viral vectors and lipid nanoparticles, have shown utility, they face limitations in immunogenicity, cargo capacity, and manufacturing complexity. Natural protein-based nanoparticles, derived from proteins such as albumin, ferritin, and elastin, have emerged as promising alternative delivery systems. These carriers offer distinct advantages including reduced immunogenicity, enhanced biocompatibility, and optimal biodegradation profiles. Their engineerable nature enables precise control over particle size, surface charge, and ligand conjugation, facilitating selective cellular targeting and improved pharmacokinetics. Recent technological advances have expanded the application of protein nanoparticles across various nucleic acid modalities, including mRNA, siRNA, and plasmid DNA. Extensive research has characterized these systems through rigorous in vitro and in vivo studies, advancing our understanding of their biological behavior and clinical potential. Advanced engineering methodologies have further enhanced their optimization for specific therapeutic applications. This review examines the development and potential of protein-based nanoparticles in nucleic acid delivery, highlighting their advantages and addressing current challenges. By analyzing recent advances and clinical progress, we underscore their significant potential to enhance the safety, specificity, and efficacy of nucleic acid therapeutics, potentially revolutionizing the treatment of genetic disorders.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - S Princely Ebenezer Gnanakani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Limda, Waghodia, Vadodara, Gujarat 391760, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Wasim Raza
- Central Laboratory Facility, Chhattisgarh Council of Science and Technology, Vigyan Bhawan, Raipur, Chhattisgarh, India
| | | |
Collapse
|
2
|
Simon L, Zhou D, Coeurvolan A, Lapinte V, Lecommandoux S, Garanger E, Bégu S. Dual Responsive Emulsions Based on Amphiphilic Elastin-like Polypeptide Bioconjugates. Bioconjug Chem 2024; 35:1923-1932. [PMID: 39532301 DOI: 10.1021/acs.bioconjchem.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
To achieve the desired therapeutic response, drug delivery systems must ensure the controlled release of the loaded content at the targeted site. One possible strategy relies on the improvement of conventional drug delivery systems. To do so, smart polymers, able to change their behavior upon chemical, physical, or biological stimuli, can be used. In this context, this study aims to evaluate the potential of natural amphiphilic smart elastin-like polypeptides grafted with alkyl chains (ELP-g-Bu) to stabilize conventional oil-in-water emulsions and trigger the release of loaded molecules upon dual stimuli. With butyl pendant chains and methionine residues, the macromolecular surfactant ELP-g-Bu demonstrated a modification of physicochemical properties, looking at critical aggregation concentration, upon both temperature and oxidation stimuli. The macromolecular surfactant was then able to stabilize a paraffin-oil-in-water emulsion. The ELP-g-Bu emulsion presented a droplet size of 9 ± 1 μm and stability for at least a month at 4 and 25 °C. After successful loading of a fluorescent lipophilic molecule used as a drug model, a complete destabilization of the ELP-g-Bu emulsion and burst release of the content was achieved with thermal triggering at 42 °C. In oxidative conditions, a partial release was measured, which can be improved by increasing the number of oxidable thioether groups. Overall, these dually responsive amphiphilic ELP-g-Bu demonstrated their potential for smart-polymer-based drug delivery systems that can be promising for inflammatory disease treatment as increased temperature and radical oxygen species are present in such cases.
Collapse
Affiliation(s)
- Laurianne Simon
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Dongxu Zhou
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSMAC, 16 Avenue Pey-Berland, Pessac F-33600, France
| | - Anita Coeurvolan
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Vincent Lapinte
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier 34293, France
| | - Sébastien Lecommandoux
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSMAC, 16 Avenue Pey-Berland, Pessac F-33600, France
| | - Elisabeth Garanger
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, ENSMAC, 16 Avenue Pey-Berland, Pessac F-33600, France
| | - Sylvie Bégu
- ICGM, University Montpellier, CNRS, ENSCM, Montpellier 34293, France
| |
Collapse
|
3
|
Tanaka N, Suyama K, Tomohara K, Nose T. Exploring LCST- and UCST-like Behavior of Branched Molecules Bearing Repeat Units of Elastin-like Peptides as Side Components. Biomacromolecules 2024; 25:7156-7166. [PMID: 39383337 PMCID: PMC11558673 DOI: 10.1021/acs.biomac.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Elastin-like peptides (ELPs) exhibit lower critical solution temperature (LCST)-type behavior, being soluble at low temperatures and insoluble at high temperatures. While the properties of linear, long-chain ELPs are well-studied, short-chain ELPs, especially those with branched architectures, have been less explored. Herein, to obtain further insights into multimeric short ELPs, we investigated the temperature-responsive properties of branched molecules composed of a repeating pentapeptide unit of short ELPs, Phe-Pro-Gly-Val-Gly, as side components and oligo(Glu) as a backbone structure. In turbidimetry experiments, the branched ELPs showed LCST-like behavior similar to conventional ELPs and upper critical solution temperature (UCST)-like behavior, which are rarely observed in ELPs. In addition, the morphological aspects and mechanisms underlying the temperature-responsiveness were investigated. We observed that spherical aggregates formed, and the branched ELPs underwent structural changes through the self-assembly process. This study demonstrates the unique temperature-responsiveness of branched short ELPs, providing new insights into the future development and use of ELPs with tailored properties.
Collapse
Affiliation(s)
- Naoki Tanaka
- Department
of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keitaro Suyama
- Faculty
of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Tomohara
- Faculty
and Graduate School of Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| | - Takeru Nose
- Department
of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
- Faculty
of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Choi M, Kwon J, Jang JH, Kim DS, Kim HJ. Enhancing the Biological Properties of Organic-Inorganic Hybrid Calcium Silicate Cements: An In Vitro Study. J Funct Biomater 2024; 15:337. [PMID: 39590541 PMCID: PMC11595442 DOI: 10.3390/jfb15110337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: This study aimed to enhance the biological properties of hydraulic calcium silicate cements (HCSCs) by incorporating organic and inorganic components, specifically elastin-like polypeptides (ELPs) and bioactive glass (BAG). We focused on the effects of these composites on the viability, migration, and osteogenic differentiation of human periodontal ligament fibroblasts (hPDLFs). (2) Methods: Proroot MTA was supplemented with 1-5 wt% 63S BAG and 10 wt% ELP. The experimental groups contained various combinations of HSCS with ELP and BAG. Cell viability was assessed using an MTT assay, cell migration was evaluated using wound healing and transwell assays, and osteogenic activity was determined through Alizarin Red S staining and a gene expression analysis of osteogenic markers (ALP, RUNX-2, OCN, and Col1A2). (3) Results: The combination of ELP and BAG significantly enhanced the viability of hPDLFs with an optimal BAG concentration of 1-4%. Cell migration assays demonstrated faster migration rates in groups with 2-4% BAG and ELP incorporation. Osteogenic activity was the highest with 2-3% BAG incorporation with ELP, as evidenced by intense Alizarin Red S staining and the upregulation of osteogenic differentiation markers. (4) Conclusions: The incorporation of ELP (organic) and BAG (inorganic) into HCSC significantly enhances the viability, migration, and osteogenic differentiation of hPDLFs. These findings suggest that composite HCSC might support healing in destructed bone lesions in endodontics.
Collapse
Affiliation(s)
- Minji Choi
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea;
| | - Jiyoung Kwon
- Department of Conservative Dentistry, Kyung Hee University Dental Hospital, Seoul 02447, Republic of Korea;
| | - Ji-Hyun Jang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-H.J.); (D.-S.K.)
| | - Duck-Su Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-H.J.); (D.-S.K.)
| | - Hyun-Jung Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-H.J.); (D.-S.K.)
| |
Collapse
|
5
|
Soleimani A, Alizadeh H. Unlocking the potential of Extensin Signal peptide and Elastin-like polypeptide tag fused to Shigella dysenteriae's IpaDSTxB to improve protein expression and purification in Nicotiana tabacum and Medicagosativa. Protein Expr Purif 2024; 222:106521. [PMID: 38852714 DOI: 10.1016/j.pep.2024.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Plants are often seen as a potent tool in the recombinant protein production industry. However, unlike bacterial expression, it is not a popular method due to the low yield and difficulty of protein extraction and purification. Therefore, developing a new high efficient and easy to purify platform is crucial. One of the best approaches to make extraction easier is to utilize the Extensin Signal peptide (EXT) to translocate the recombinant protein to the outside of the cell, along with incorporating an Elastin-like polypeptide tag (ELP) to enhance purification and accumulation rates. In this research, we transiently expressed Shigella dysenteriae's IpaDSTxB fused to both NtEXT and ELP in both Nicotiana tabacum and Medicago sativa. Our results demonstrated that N. tabacum, with an average yield of 6.39 ng/μg TSP, outperforms M. sativa, which had an average yield of 3.58 ng/μg TSP. On the other hand, analyzing NtEXT signal peptide indicated that merging EXT to the constructs facilitates translocation of IpaDSTxB to the apoplast by 78.4% and 65.9% in N. tabacum and M. sativa, respectively. Conversely, the mean level for constructs without EXT was below 25% for both plants. Furthermore, investigation into the orientation of ELP showed that merging it to the C-terminal of IpaDSTxB leads to a higher accumulation rate in both N. tabacum and M. sativa by 1.39 and 1.28 times, respectively. It also facilitates purification rate by over 70% in comparison to 20% of the 6His tag. The results show a highly efficient and easy to purify platform for the expression of heterologous proteins in plant.
Collapse
Affiliation(s)
- AmirMohammad Soleimani
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Houshang Alizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
6
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
7
|
Ali A, Phan A, Vaikari V, Park M, Pospiech M, Chu R, Meng Y, MacKay JA, Alachkar H. FLT3/CD99 Bispecific Antibody-Based Nanoparticles for Acute Myeloid Leukemia. CANCER RESEARCH COMMUNICATIONS 2024; 4:1946-1962. [PMID: 39007347 PMCID: PMC11305399 DOI: 10.1158/2767-9764.crc-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Cluster of differentiation 99 (CD99) is a receptor that is significantly upregulated in acute myeloid leukemia (AML). FMS-like tyrosine kinase 3 internal tandem duplication mutation in AML (FLT3-ITD AML) exhibits even higher levels of CD99 expression. Our group previously employed a novel peptide platform technology called elastin-like polypeptides and fused it with single-chain antibodies capable of binding to FLT3 (FLT3-A192) or CD99 (CD99-A192). Targeting either FLT3 or CD99 using FLT3-A192 or CD99-A192 led to AML cell death and reduced leukemia burden in AML mouse models. Here, we report on the development of a novel Co-Assembled construct that is capable of binding to both CD99 and FLT3 and the antileukemia activity of the bispecific construct in FLT3-ITD AML preclinical models. This dual-targeting Co-Assembled formulation exhibits cytotoxic effects on AML cells (AML cell lines and primary blasts) and reduced leukemia burden and prolonged survival in FLT3-ITD AML mouse models. Altogether, this study demonstrates the potential of an innovative therapeutic strategy that targets both FLT3 and CD99 in FLT3-ITD AML. SIGNIFICANCE This study investigates a dual-targeting strategy in acute myeloid leukemia (AML), focusing on FLT3 and CD99. The approach demonstrates enhanced therapeutic potential, presenting a novel option for AML treatment.
Collapse
Affiliation(s)
- Atham Ali
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Vijaya Vaikari
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Mincheol Park
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Mateusz Pospiech
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Ryan Chu
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Yiting Meng
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, University of Southern California, Los Angeles, California.
- Department of Ophthalmology, USC Roski Eye Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, California.
- Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California.
| | - Houda Alachkar
- Department of Clinical Pharmacy, USC School of Pharmacy, University of Southern California, Los Angeles, California.
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
8
|
Truong AT, Lee SJ, Hamada K, Kiyomi A, Guo H, Yamada Y, Kikkawa Y, Okamoto CT, Nomizu M, MacKay JA. Synergy between Laminin-Derived Elastin-like Polypeptides (LELPs) Optimizes Cell Spreading. Biomacromolecules 2024; 25:4001-4013. [PMID: 38814168 DOI: 10.1021/acs.biomac.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A major component of the extracellular matrix (ECM), laminins, modulates cells via diverse receptors. Their fragments have emerging utility as components of "ECM-mimetics" optimized to promote cell-based therapies. Recently, we reported that a bioactive laminin peptide known as A99 enhanced cell binding and spreading via fusion to an elastin-like polypeptide (ELP). The ELP "handle" serves as a rapid, noncovalent strategy to concentrate bioactive peptide mixtures onto a surface. We now report that this strategy can be further generalized across an expanded panel of additional laminin-derived elastin-like polypeptides (LELPs). A99 (AGTFALRGDNPQG), A2G80 (VQLRNGFPYFSY), AG73 (RKRLQVQLSIRT), and EF1m (LQLQEGRLHFMFD) all promote cell spreading while showing morphologically distinct F-actin formation. Equimolar mixtures of A99:A2G80-LELPs have synergistic effects on adhesion and spreading. Finally, three of these ECM-mimetics promote the neurite outgrowth of PC-12 cells. The evidence presented here demonstrates the potential of ELPs to deposit ECM-mimetics with applications in regenerative medicine, cell therapy, and tissue engineering.
Collapse
Affiliation(s)
- Anh T Truong
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shin-Jae Lee
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Anna Kiyomi
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Yuji Yamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
9
|
El-Nablaway M, Rashed F, Taher ES, Atia GA, Foda T, Mohammed NA, Abdeen A, Abdo M, Hînda I, Imbrea AM, Taymour N, Ibrahim AM, Atwa AM, Ibrahim SF, Ramadan MM, Dinu S. Bioactive injectable mucoadhesive thermosensitive natural polymeric hydrogels for oral bone and periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1384326. [PMID: 38863491 PMCID: PMC11166210 DOI: 10.3389/fbioe.2024.1384326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, United States
| | - Nourelhuda A. Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Al Karak, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ioana Hînda
- Department of Biology, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ana-Maria Imbrea
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Timișoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Samah F. Ibrahim
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
10
|
Beeton K, Mitra D, Akinleye AA, Howell JA, Yu CS, Bidwell GL, Tandon R. An Elastin-like Polypeptide-fusion peptide targeting capsid-tegument interface as an antiviral against cytomegalovirus infection. Sci Rep 2024; 14:10253. [PMID: 38704431 PMCID: PMC11069587 DOI: 10.1038/s41598-024-60691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.
Collapse
Affiliation(s)
- Komal Beeton
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Dipanwita Mitra
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Adesanya A Akinleye
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - John A Howell
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Christian S Yu
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Gene L Bidwell
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Ritesh Tandon
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Office of Research Infrastructure Programs, National Institute of Health, 6701 Democracy Blvd., Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Huang H, Hwang J, Anilkumar S, Kiick KL. Controlled Release of Drugs from Extracellular Matrix-Derived Peptide-Based Nanovesicles through Tailored Noncovalent Interactions. Biomacromolecules 2024; 25:2408-2422. [PMID: 38546162 PMCID: PMC11661555 DOI: 10.1021/acs.biomac.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Elastin-collagen nanovesicles (ECnV) have emerged as a promising platform for drug delivery due to their tunable physicochemical properties and biocompatibility. The potential of nine distinct ECnVs to serve as drug-delivery vehicles was investigated in this study, and it was demonstrated that various small-molecule cargo (e.g., dexamethasone, methotrexate, doxorubicin) can be encapsulated in and released from a set of ECnVs, with extents of loading and rates of release dictated by the composition of the elastin domain of the ECnV and the type of cargo. Elastin-like peptides (ELPs) and collagen-like peptides (CLPs) of various compositions were produced; the secondary structure of the corresponding peptides was determined using CD, and the morphology and average hydrodynamic diameter (∼100 nm) of the ECnVs were determined using TEM and DLS. It was observed that hydrophobic drugs exhibited slower release kinetics than hydrophilic drugs, but higher drug loading was achieved for the more hydrophilic Dox. The collagen-binding ability of the ECnVs was demonstrated through a 2D collagen-binding assay, suggesting the potential for longer retention times in collagen-enriched tissues or matrices. Sustained release of drugs for up to 7 days was observed and, taken together with the collagen-binding data, demonstrates the potential of this set of ECnVs as a versatile drug delivery vehicle for longer-term drug release of a variety of cargo. This study provides important insights into the drug delivery potential of ECnVs and offers useful information for future development of ECnV-based drug delivery systems for the treatment of various diseases.
Collapse
Affiliation(s)
- Haofu Huang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sudha Anilkumar
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
12
|
Phan A, MacKay JA. Steric stabilization of bioactive nanoparticles using elastin-like polypeptides. Adv Drug Deliv Rev 2024; 206:115189. [PMID: 38281625 DOI: 10.1016/j.addr.2024.115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Elastin-like polypeptides (ELP) are versatile, thermo-responsive polymers that can be conjugated to virtually any therapeutic cargo. Derived from short amino-acid sequences and abundant in humans, certain ELPs display low immunogenicity. Substrates for endogenous proteases, ELPs are biodegradable and thus, are candidate biomaterials. Peptides and proteins can be directly coupled with ELPs through genetic engineering, while other polymers and small molecules can be appended through covalent bioconjugation or non-covalent complexation. ELPs that phase separate at physiological temperatures can form the core of nano assemblies; however, ELPs that remain soluble can sterically stabilize the corona of a variety of nanoparticles. Nanoparticles with ELPs at their corona promote colloids with favorable pharmacokinetic (PK) properties that enables therapeutic efficacy with intermittent administration. This review highlights a comprehensive spectrum of ELP fusions shown to stabilize the solubility, and sometimes bioactivity, of their cargo - with a focus on biophysical properties that underlie their therapeutic effects.
Collapse
Affiliation(s)
- Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
13
|
Azulay R, Strugach DS, Amiram M. Self-assembly of temperature-responsive di-block polypeptides functionalized with unnatural amino acids. Protein Sci 2024; 33:e4878. [PMID: 38147468 PMCID: PMC10804675 DOI: 10.1002/pro.4878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
The incorporation of unnatural amino acids (uAAs) into protein-based polymers has emerged as a powerful methodology to expand their chemical repertoire. Recently, we demonstrated that incorporating uAAs into two temperature-responsive protein-based polymers-namely resilin- and elastin-like polypeptides (RLPs and ELPs, respectively)-can alter their properties. In this study, we incorporated aromatic uAAs into the protein sequence of RLP-ELP diblocks to yield new and diverse assemblies from a single DNA template. Specifically, we show that incorporating aromatic uAAs can modulate the phase-transition behaviors and self-assembly of the diblocks into various morphologies, including spherical and cylindrical micelles and single- and double-layered vesicles, with some constructs also demonstrating a temperature-responsive shape-shifting behavior. Next, we evaluated the ability of the RLP-ELP assemblies to encapsulate a chemotherapeutic drug, doxorubicin, and show how the identity of the incorporated uAAs and the morphology of the nanostructure affect the encapsulation efficiency. Taken together, our findings demonstrate that the multi-site incorporation of uAAs into temperature-responsive, amphiphilic protein-based diblock copolymers is a promising approach for the functionalization and tuning of self-assembled nanostructures.
Collapse
Affiliation(s)
- Rotem Azulay
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Daniela S. Strugach
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Miriam Amiram
- Avram and Stella Goldstein‐Goren Department of Biotechnology EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
14
|
Garg A, González-Foutel NS, Gielnik MB, Kjaergaard M. Design of functional intrinsically disordered proteins. Protein Eng Des Sel 2024; 37:gzae004. [PMID: 38431892 DOI: 10.1093/protein/gzae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
Many proteins do not fold into a fixed three-dimensional structure, but rather function in a highly disordered state. These intrinsically disordered proteins pose a unique challenge to protein engineering and design: How can proteins be designed de novo if not by tailoring their structure? Here, we will review the nascent field of design of intrinsically disordered proteins with focus on applications in biotechnology and medicine. The design goals should not necessarily be the same as for de novo design of folded proteins as disordered proteins have unique functional strengths and limitations. We focus on functions where intrinsically disordered proteins are uniquely suited including disordered linkers, desiccation chaperones, sensors of the chemical environment, delivery of pharmaceuticals, and constituents of biomolecular condensates. Design of functional intrinsically disordered proteins relies on a combination of computational tools and heuristics gleaned from sequence-function studies. There are few cases where intrinsically disordered proteins have made it into industrial applications. However, we argue that disordered proteins can perform many roles currently performed by organic polymers, and that these proteins might be more designable due to their modularity.
Collapse
Affiliation(s)
- Ankush Garg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Maciej B Gielnik
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
15
|
Tatsubo D, Suyama K, Sakamoto N, Tomohara K, Taniguchi S, Maeda I, Nose T. Determining the Sequence Dependency of Self-Assembly of Elastin-Like Peptides Using Short Peptide Analogues with Shuffled Repetitive Sequences. Biochemistry 2023; 62:2559-2570. [PMID: 37540116 DOI: 10.1021/acs.biochem.3c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Synthetic elastin-like peptides (ELPs) that possess characteristic tropoelastin-derived hydrophobic repetitive sequences, such as (VPGVG)n, exhibit thermoresponsive reversible self-assembly. Although their thermoresponsive properties have been well-studied, the sequence-dependent and structural requirements for self-assembly remain ambiguous. In particular, it is still unclear whether the amino acid sequences derived from tropoelastin are necessary for self-assembly. In this study, 11 sequence-shuffled ELP analogues based on (FPGVG)5, which is a previously developed short ELP (sELP), were designed to elucidate the sequence-dependent and structural requirements for their self-assembly. Among them, eight shuffled peptides exhibited self-assembling properties, whereas the other three peptides were difficult to dissolve in water. Structural analyses revealed that the structural characteristics of the three insoluble peptides were different from those of their thermoresponsive analogues. Furthermore, the secondary structures of the peptide analogues possessing the self-assembly abilities were different from each other. These results suggest that the potential for self-assembly and water solubility of sELPs depend on the primary structure in each repeated unit. Moreover, several shuffled analogues exhibited more potent self-assembling properties than the original (FPGVG)5, indicating that shorter ELPs can be obtained using their novel motifs as repetitive units. We also observed that the presence of Pro-Gly sequence in the repeating units was advantageous in terms of peptide solubility. Although further analysis will be necessary to elucidate the molecular mechanism underlying the self-assembly of these sELPs, this study provides insights into the relationship between the amino acid sequence and the self-assembling ability of the peptides for developing new sELPs for various applications.
Collapse
Affiliation(s)
- Daiki Tatsubo
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keitaro Suyama
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Naoki Sakamoto
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Tomohara
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Suguru Taniguchi
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka 820-8502, Fukuoka, Japan
| | - Iori Maeda
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka 820-8502, Fukuoka, Japan
| | - Takeru Nose
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
- Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Gowtham P, Arumugam VA, Harini K, Pallavi P, Thirumalai A, Girigoswami K, Girigoswami A. Nanostructured proteins for delivering drugs to diseased tissues. BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS 2023; 12:115-129. [DOI: 10.1680/jbibn.23.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
During the last few years, nanostructures based on proteins have been playing a vital role in revolutionizing the nanomedicine era. Since protein nanoparticles are smaller and have a greater surface area, they retain a better capacity to interact with other molecules, resulting in carrying payloads efficiently to diseased tissues. Besides having attractive biocompatibility and biodegradability, protein nanoparticles can also be modified on their surfaces. For the fabrication of these nanostructures, there are several processes involved, including emulsification, desolvation, a combination of complex coacervation and electrospray. This can be achieved by using different proteins such as albumin, gelatin, elastin, gliadin, collagen, legumin and zein, as well as a combination of these proteins. It is possible to functionalize protein nanoparticles by altering their internal and external interfaces so that they can encapsulate drugs, release them in a controlled manner, disassemble them systematically and target tumors. This review highlights the physicochemical properties and engineering of several proteins to nano-dimensions used to deliver drugs to diseased tissues.
Collapse
Affiliation(s)
- Pemula Gowtham
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, India
| | - Karthick Harini
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Pragya Pallavi
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Anbazhagan Thirumalai
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| |
Collapse
|
17
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
18
|
Park D, Lee SJ, Choi DK, Park JW. Therapeutic Agent-Loaded Fibrous Scaffolds for Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15051522. [PMID: 37242764 DOI: 10.3390/pharmaceutics15051522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Tissue engineering is a sophisticated field that involves the integration of various disciplines, such as clinical medicine, material science, and life science, to repair or regenerate damaged tissues and organs. To achieve the successful regeneration of damaged or diseased tissues, it is necessary to fabricate biomimetic scaffolds that provide structural support to the surrounding cells and tissues. Fibrous scaffolds loaded with therapeutic agents have shown considerable potential in tissue engineering. In this comprehensive review, we examine various methods for fabricating bioactive molecule-loaded fibrous scaffolds, including preparation methods for fibrous scaffolds and drug-loading techniques. Additionally, we delved into the recent biomedical applications of these scaffolds, such as tissue regeneration, inhibition of tumor recurrence, and immunomodulation. The aim of this review is to discuss the latest research trends in fibrous scaffold manufacturing methods, materials, drug-loading methods with parameter information, and therapeutic applications with the goal of contributing to the development of new technologies or improvements to existing ones.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
19
|
Phan A, Avila H, MacKay JA. Biomimetic SARS-CoV-2 Spike Protein Nanoparticles. Biomacromolecules 2023; 24:2030-2041. [PMID: 37001147 PMCID: PMC10084924 DOI: 10.1021/acs.biomac.2c01465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Indexed: 04/03/2023]
Abstract
COVID-19 is an infectious respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus contains a crucial coat protein that engages with target cells via a receptor binding domain (RBD) on its spike protein. To better study the RBD and its therapeutic opportunities, we genetically engineered a simple fusion with a thermo-responsive elastin-like polypeptide (ELP). These fusions express in Escherichia coli at a high yield in the soluble fraction and were easily purified using ELP-mediated phase separation (79 mg/L culture). Interestingly, they assembled peptide-based nanoparticles (Rh = 71.4 nm), which was attributed to oligomerization of RBDs (25.3 kDa) counterbalanced by steric stabilization by a soluble ELP (73.4 kDa). To investigate their biophysical properties, we explored the size, shape, and binding affinity for the human angiotensin-converting enzyme 2 (hACE2) and cellular uptake. Biomimetic nanoparticles such as these may enable future strategies to target the same cells, tissues, and cell-surface receptors as those harnessed by SARS-CoV-2.
Collapse
Affiliation(s)
- Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, United States
| | - Hugo Avila
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, United States
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, United States
- Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 1450 San Pablo Street, Los Angeles, CA 90033, United States
- Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, United States
| |
Collapse
|
20
|
Ma L, Fang X, Wang C. Peptide-based coacervates in therapeutic applications. Front Bioeng Biotechnol 2023; 10:1100365. [PMID: 36686257 PMCID: PMC9845597 DOI: 10.3389/fbioe.2022.1100365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Coacervates are droplets formed by liquid‒liquid phase separation. An increasing number of studies have reported that coacervates play an important role in living cells, such as in the generation of membraneless organelles, and peptides contribute to condensate droplet formation. Peptides with versatile functional groups and special secondary structures, including α-helices, β-sheets and intrinsically disordered regions, provide novel insights into coacervation, such as biomimetic protocells, neurodegenerative diseases, modulations of signal transmission, and drug delivery systems. In this review, we introduce different types of peptide-based coacervates and the principles of their interactions. Additionally, we summarize the thermodynamic and kinetic mechanisms of peptide-based coacervates and the associated factors, including salt, pH, and temperature, affecting the phase separation process. We illustrate recent studies on modulating the functions of peptide-based coacervates applied in biological diseases. Finally, we propose their promising broad applications and describe the challenges of peptide-based coacervates in the future.
Collapse
Affiliation(s)
- Lilusi Ma
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Xiaocui Fang, ; Chen Wang,
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Xiaocui Fang, ; Chen Wang,
| |
Collapse
|
21
|
Elastin-like polypeptide-based micelles as a promising platform in nanomedicine. J Control Release 2023; 353:713-726. [PMID: 36526018 DOI: 10.1016/j.jconrel.2022.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
New and improved nanomaterials are constantly being developed for biomedical purposes. Nanomaterials based on elastin-like polypeptides (ELPs) have increasingly shown potential over the past two decades. These polymers are artificial proteins of which the design is based on human tropoelastin. Due to this similarity, ELP-based nanomaterials are biodegradable and therefore well suited to drug delivery. The assembly of ELP molecules into nanoparticles spontaneously occurs at temperatures above a transition temperature (Tt). The ELP sequence influences both the Tt and the physicochemical properties of the assembled nanomaterial. Nanoparticles with desired properties can hence be designed by choosing the appropriate sequence. A promising class of ELP nanoparticles are micelles assembled from amphiphilic ELP diblock copolymers. Such micelles are generally uniform and well defined. Furthermore, site-specific attachment of cargo to the hydrophobic block results in micelles with the cargo shielded inside their core, while conjugation to the hydrophilic block causes the cargo to reside in the corona where it is available for interactions. Such control over particle design is one of the main contributing factors for the potential of ELP-based micelles as a drug delivery system. Additionally, the micelles are easily loaded with protein or peptide-based cargo by expressing it as a fusion protein. Small molecule drugs and other cargo types can be either covalently conjugated to ELP domains or physically entrapped inside the micelle core. This review aims to give an overview of ELP-based micelles and their applications in nanomedicine.
Collapse
|
22
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
23
|
Griswold E, Cappello J, Ghandehari H. Silk-elastinlike protein-based hydrogels for drug delivery and embolization. Adv Drug Deliv Rev 2022; 191:114579. [PMID: 36306893 DOI: 10.1016/j.addr.2022.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023]
Abstract
Silk-Elastinlike Protein-Based Polymers (SELPs) can form thermoresponsive hydrogels that allow for the generation of in-situ drug delivery matrices. They are produced by recombinant techniques, enabling exact control of monomer sequence and polymer length. In aqueous solutions SELP strands form physical crosslinks as a function of temperature increase without the addition of crosslinking agents. Gelation kinetics, modulus of elasticity, pore size, drug release, biorecognition, and biodegradation of SELP hydrogels can be controlled by placement of amino acid residues at strategic locations in the polymer backbone. SELP hydrogels have been investigated for delivery of a variety of bioactive agents including small molecular weight drugs and fluorescent probes, oligomers of glycosaminoglycans, polymeric macromolecules, proteins, plasmid DNA, and viral gene delivery systems. In this review we provide a background for use of SELPs in matrix-mediated delivery and summarize recent investigations of SELP hydrogels for controlled delivery of bioactive agents as well as their use as liquid embolics.
Collapse
Affiliation(s)
- Ethan Griswold
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center of Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph Cappello
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hamidreza Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center of Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
24
|
The application of elastin-like peptides in cancer, tissue engineering and ocular disease. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Goncalves AG, Hartzell EJ, Sullivan MO, Chen W. Recombinant protein polymer-antibody conjugates for applications in nanotechnology and biomedicine. Adv Drug Deliv Rev 2022; 191:114570. [PMID: 36228897 DOI: 10.1016/j.addr.2022.114570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023]
Abstract
Currently, there are over 100 antibody-based therapeutics on the market for the treatment of various diseases. The increasing importance of antibody treatment is further highlighted by the recent FDA emergency use authorization of certain antibody therapies for COVID-19 treatment. Protein-based materials have gained momentum for antibody delivery due to their biocompatibility, tunable chemistry, monodispersity, and straightforward synthesis and purification. In this review, we discuss progress in engineering the molecular features of protein-based biomaterials, in particular recombinant protein polymers, for introducing novel functionalities and enhancing the delivery properties of antibodies and related binding protein domains.
Collapse
Affiliation(s)
- Antonio G Goncalves
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States.
| |
Collapse
|
26
|
Gueta O, Amiram M. Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Adv Drug Deliv Rev 2022; 190:114460. [PMID: 36030987 DOI: 10.1016/j.addr.2022.114460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/24/2023]
Abstract
Expanding the chemical repertoire of natural and artificial protein-based polymers (PBPs) can enable the production of sequence-defined, yet chemically diverse, biopolymers with customized or new properties that cannot be accessed in PBPs composed of only natural amino acids. Various approaches can enable the expansion of the chemical repertoire of PBPs, including chemical and enzymatic treatments or the incorporation of unnatural amino acids. These techniques are employed to install a wide variety of chemical groups-such as bio-orthogonally reactive, cross-linkable, post-translation modifications, and environmentally responsive groups-which, in turn, can facilitate the design of customized PBP-based drug-delivery systems with modified, fine-tuned, or entirely new properties and functions. Here, we detail the existing and emerging technologies for expanding the chemical repertoire of PBPs and review several chemical groups that either demonstrate or are anticipated to show potential in the design of PBP-based drug delivery systems. Finally, we provide our perspective on the remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Osher Gueta
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
27
|
van Strien J, Warmenhoven H, Logiantara A, Makurat M, Aglas L, Bethanis A, Leboux R, van Rijt L, MacKay JA, van Schijndel JW, Schneider G, Olsthoorn R, Jiskoot W, van Ree R, Kros A. Bet v 1-displaying elastin-like polypeptide nanoparticles induce a strong humoral and weak CD4+ T-cell response against Bet v 1 in a murine immunogenicity model. Front Immunol 2022; 13:1006776. [PMID: 36275650 PMCID: PMC9583423 DOI: 10.3389/fimmu.2022.1006776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
There is growing concern about the toxicity of colloidal aluminum salts used as adjuvants in subcutaneous allergen immunotherapy (SCIT). Therefore, alternative adjuvants and delivery systems are being explored to replace alum in SCIT. We applied micellar elastin-like polypeptides (ELPs), a type of self-assembling protein, to replace alum as vaccine adjuvant in birch pollen SCIT. ELP and an ELP-Bet v 1 fusion protein were expressed in E. coli and purified by immuno-affinity chromatography and inverse-transition cycling (ITC). Nanoparticles self-assembled from ELP and a 9:1 ELP/ELP-Bet v 1 mixture were characterized by using dynamic light scattering and atomic force microscopy. Allergenicity was assessed by measuring mediator release from rat basophilic leukemia cells transformed with the human FcϵR1 and sensitized with sera derived from human birch pollen allergic patients. Humoral and T-cell immunity were investigated by immunizing naïve mice with the ELP/ELP-Bet v 1 nanoparticles or alum-adsorbed Bet v 1, both containing 36 µg Bet v 1. ELP and ELP/ELP-Bet v 1 self-assembled at 37°C into spherically shaped micelles with a diameter of ~45 nm. ELP conjugation made Bet v 1 hypo-allergenic (10-fold). Compared to alum-adsorbed Bet v 1, ELP/ELP-Bet v 1 nanoparticles induced stronger IgG responses with an earlier onset. Additionally, ELP/ELP-Bet v 1 did not induce Th2 skewing cytokines and IgE. The hypoallergenic character and strong humoral immune response in the absence of a Th2-skewing T-cell response make ELP-based nanoparticles a promising candidate to replace alum in SCIT.
Collapse
Affiliation(s)
- Jolinde van Strien
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Hans Warmenhoven
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
- R&D Department, Haarlems Allergenen Laboratorium (HAL) Allergy B.V., Leiden, Netherlands
| | - Adrian Logiantara
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Max Makurat
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Lorenz Aglas
- Division of Allergy and Immunology, Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Athanasios Bethanis
- Division of Allergy and Immunology, Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Romain Leboux
- Department of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Leonie van Rijt
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | | | - Gregory Schneider
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - René Olsthoorn
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Wim Jiskoot
- Department of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
28
|
Attia SA, MacKay JA. Protein and polypeptide mediated delivery to the eye. Adv Drug Deliv Rev 2022; 188:114441. [PMID: 35817213 PMCID: PMC10049092 DOI: 10.1016/j.addr.2022.114441] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022]
Abstract
Hybrid or recombinant protein-polymers, peptide-based biomaterials, and antibody-targeted therapeutics are widely explored for various ocular conditions and vision correction. They have been noted for their potential biocompatibility, potency, adaptability, and opportunities for sustained drug delivery. Unique to peptide and protein therapeutics, their production by cellular translation allows their precise modification through genetic engineering. To a greater extent than drug delivery to other systems, delivery to the eye can benefit from the combination of locally-targeted administration and protein-based specificity. Consequently, a range of delivery platforms and administration methods have been exploited to address the ocular delivery of peptide and protein biomaterials. This review discusses a sample of preclinical and clinical opportunities for peptide-based drug delivery to the eye.
Collapse
Affiliation(s)
- Sara Aly Attia
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
29
|
Avila H, Yu J, Boddu G, Phan A, Truong A, Peddi S, Guo H, Lee SJ, Alba M, Canfield E, Yamamoto V, Paton JC, Paton AW, Lee AS, MacKay JA. Hydra-Elastin-like Polypeptides Increase Rapamycin Potency When Targeting Cell Surface GRP78. Biomacromolecules 2022; 23:3116-3129. [PMID: 35786858 PMCID: PMC10231879 DOI: 10.1021/acs.biomac.2c00048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rapalogues are powerful therapeutic modalities for breast cancer; however, they suffer from low solubility and dose-limiting side effects. To overcome these challenges, we developed a long-circulating multiheaded drug carrier called 5FA, which contains rapamycin-binding domains linked with elastin-like polypeptides (ELPs). To target these "Hydra-ELPs" toward breast cancer, we here linked 5FA with four distinct peptides which are reported to engage the cell surface form of the 78 kDa glucose-regulated protein (csGRP78). To determine if these peptides affected the carrier solubility, this library was characterized by light scattering and mass spectrometry. To guide in vitro selection of the most potent functional carrier for rapamycin, its uptake and inhibition of mTORC1 were monitored in a ductal breast cancer model (BT474). Using flow cytometry to track cellular association, it was found that only the targeted carriers enhanced cellular uptake and were susceptible to proteolysis by SubA, which specifically targets csGRP78. The functional inhibition of mTOR was monitored by Western blot for pS6K, whereby the best carrier L-5FA reduced mTOR activity by 3-fold compared to 5FA or free rapamycin. L-5FA was further visualized using super-resolution confocal laser scanning microscopy, which revealed that targeting increased exposure to the carrier by ∼8-fold. This study demonstrates how peptide ligands for GRP78, such as the L peptide (RLLDTNRPLLPY), may be incorporated into protein-based drug carriers to enhance targeting.
Collapse
Affiliation(s)
- Hugo Avila
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Jingmei Yu
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Geetha Boddu
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Anh Truong
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Shin-Jae Lee
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
- Department of Biomedical Engineering, USC Viterbi School of Engineering, Los Angeles, California 90089, United States
| | - Mario Alba
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Ethan Canfield
- Mass Spectrometry Core, USC School of Pharmacy, Los Angeles, California 90089, United States
| | - Vicky Yamamoto
- Department of Biochemistry and Molecular Medicine, USC Keck School of Medicine, Los Angeles, California 90033, United States
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, USC Keck School of Medicine, Los Angeles, California 90033, United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, Los Angeles, California 90089, United States
- Department of Biomedical Engineering, USC Viterbi School of Engineering, Los Angeles, California 90089, United States
- Department of Ophthalmology, USC Keck School of Medicine, Los Angeles, California 90033, United States
| |
Collapse
|
30
|
Shi X, Chen D, Liu G, Zhang H, Wang X, Wu Z, Wu Y, Yu F, Xu Q. Application of Elastin-Like Polypeptide in Tumor Therapy. Cancers (Basel) 2022; 14:cancers14153683. [PMID: 35954346 PMCID: PMC9367306 DOI: 10.3390/cancers14153683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Elastin-like Polypeptide (ELP) are widely applied in protein purification, drug delivery, tissue engineering, and even tumor therapy. Recent studies show that usage of ELP has made great progress in combination with peptide drugs or antibody drugs. The combination of ELP and photosensitizer in cancer therapy or imaging has made more progress and needs to be summarized. In this review, we summarize the specific application of ELP in cancer therapy, especially the latest developments in the combined use of ELP with photosensitizers. We seek to provide the most recent understanding of ELP and its new application in combination with Photosensitizer. Abstract Elastin-like polypeptides (ELPs) are stimulus-responsive artificially designed proteins synthesized from the core amino acid sequence of human tropoelastin. ELPs have good biocompatibility and biodegradability and do not systemically induce adverse immune responses, making them a suitable module for drug delivery. Design strategies can equip ELPs with the ability to respond to changes in temperature and pH or the capacity to self-assemble into nanoparticles. These unique tunable biophysicochemical properties make ELPs among the most widely studied biopolymers employed in protein purification, drug delivery, tissue engineering and even in tumor therapy. As a module for drug delivery and as a carrier to target tumor cells, the combination of ELPs with therapeutic drugs, antibodies and photo-oxidation molecules has been shown to result in improved pharmacokinetic properties (prolonged half-life, drug targeting, cell penetration and controlled release) while restricting the cytotoxicity of the drug to a confined infected site. In this review, we summarize the latest developments in the application methods of ELP employed in tumor therapy, with a focus on its conjugation with peptide drugs, antibodies and photosensitizers.
Collapse
Affiliation(s)
- Xianggang Shi
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
| | - Guodong Liu
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian 223800, China; (G.L.); (H.Z.); (X.W.)
| | - Hailing Zhang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian 223800, China; (G.L.); (H.Z.); (X.W.)
| | - Xiaoyan Wang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian 223800, China; (G.L.); (H.Z.); (X.W.)
| | - Zhi Wu
- Jiangsu Key Laboratory of High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China;
| | - Yan Wu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
| | - Feng Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
- Correspondence: (F.Y.); (Q.X.); Tel.: +86-139-5292-3250 (F.Y.); +86-159-5281-6017 (Q.X.)
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (X.S.); (D.C.); (Y.W.)
- Correspondence: (F.Y.); (Q.X.); Tel.: +86-139-5292-3250 (F.Y.); +86-159-5281-6017 (Q.X.)
| |
Collapse
|
31
|
Ban E, Kim A. Coacervates: recent developments as nanostructure delivery platforms for therapeutic biomolecules. Int J Pharm 2022; 624:122058. [PMID: 35905931 DOI: 10.1016/j.ijpharm.2022.122058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Coacervation is a liquid-liquid phase separation that can occur in solutions of macromolecules through self-assembly or electrostatic interactions. Recently, coacervates composed of biocompatible macromolecules have been actively investigated as nanostructure platforms to encapsulate and deliver biomolecules such as proteins, RNAs, and DNAs. One particular advantage of coacervates is that they are derived from aqueous solutions, unlike other nanoparticle delivery systems that often require organic solvents. In addition, coacervates achieve high loading while maintaining the viability of the cargo material. Here, we review recent developments in the applications of coacervates and their limitations in the delivery of therapeutic biomolecules. Important factors for coacervation include molecular structures of the polyelectrolytes, mixing ratio, the concentration of polyelectrolytes, and reaction conditions such as ionic strength, pH, and temperature. Various compositions of coacervates have been shown to deliver biomolecules in vitro and in vivo with encouraging activities. However, major hurdles remain for the systemic route of administration other than topical or local delivery. The scale-up of manufacturing methods suitable for preclinical and clinical evaluations remains to be addressed. We conclude with a few research directions to overcome current challenges, which may lead to successful translation into the clinic.
Collapse
Affiliation(s)
- Eunmi Ban
- College of Pharmacy, CHA University, Seongnam 13488, Korea
| | - Aeri Kim
- College of Pharmacy, CHA University, Seongnam 13488, Korea.
| |
Collapse
|
32
|
The Use of Polymer Blends in the Treatment of Ocular Diseases. Pharmaceutics 2022; 14:pharmaceutics14071431. [PMID: 35890326 PMCID: PMC9322751 DOI: 10.3390/pharmaceutics14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The eye is an organ with limited drug access due to its anatomical and physiological barriers, and the usual forms of ocular administration are limited in terms of drug penetration, residence time, and bioavailability, as well as low patient compliance. Hence, therapeutic innovations in new drug delivery systems (DDS) have been widely explored since they show numerous advantages over conventional methods, besides delivering the content to the eye without interfering with its normal functioning. Polymers are usually used in DDS and many of them are applicable to ophthalmic use, especially biodegradable ones. Even so, it can be a hard task to find a singular polymer with all the desirable properties to deliver the best performance, and combining two or more polymers in a blend has proven to be more convenient, efficient, and cost-effective. This review was carried out to assess the use of polymer blends as DDS. The search conducted in the databases of Pubmed and Scopus for specific terms revealed that although the physical combination of polymers is largely applied, the term polymer blend still has low compliance.
Collapse
|
33
|
Haas S, Desombre M, Kirschhöfer F, Huber MC, Schiller SM, Hubbuch J. Purification of a Hydrophobic Elastin-Like Protein Toward Scale-Suitable Production of Biomaterials. Front Bioeng Biotechnol 2022; 10:878838. [PMID: 35814018 PMCID: PMC9257828 DOI: 10.3389/fbioe.2022.878838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Elastin-like proteins (ELPs) are polypeptides with potential applications as renewable bio-based high-performance polymers, which undergo a stimulus-responsive reversible phase transition. The ELP investigated in this manuscript—ELP[V2Y-45]—promises fascinating mechanical properties in biomaterial applications. Purification process scalability and purification performance are important factors for the evaluation of potential industrial-scale production of ELPs. Salt-induced precipitation, inverse transition cycling (ITC), and immobilized metal ion affinity chromatography (IMAC) were assessed as purification protocols for a polyhistidine-tagged hydrophobic ELP showing low-temperature transition behavior. IMAC achieved a purity of 86% and the lowest nucleic acid contamination of all processes. Metal ion leakage did not propagate chemical modifications and could be successfully removed through size-exclusion chromatography. The simplest approach using a high-salt precipitation resulted in a 60% higher target molecule yield compared to both other approaches, with the drawback of a lower purity of 60% and higher nucleic acid contamination. An additional ITC purification led to the highest purity of 88% and high nucleic acid removal. However, expensive temperature-dependent centrifugation steps are required and aggregation effects even at low temperatures have to be considered for the investigated ELP. Therefore, ITC and IMAC are promising downstream processes for biomedical applications with scale-dependent economical costs to be considered, while salt-induced precipitation may be a fast and simple alternative for large-scale bio-based polymer production.
Collapse
Affiliation(s)
- Sandra Haas
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Monika Desombre
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Frank Kirschhöfer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Matthias C. Huber
- Center for Biosystems Analysis, Albert‐Ludwigs‐University Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Stefan M. Schiller
- Center for Biosystems Analysis, Albert‐Ludwigs‐University Freiburg, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences, Section IV: Molecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- *Correspondence: Jürgen Hubbuch,
| |
Collapse
|
34
|
Gueta O, Sheinenzon O, Azulay R, Shalit H, Strugach DS, Hadar D, Gelkop S, Milo A, Amiram M. Tuning the Properties of Protein-Based Polymers Using High-Performance Orthogonal Translation Systems for the Incorporation of Aromatic Non-Canonical Amino Acids. Front Bioeng Biotechnol 2022; 10:913057. [PMID: 35711629 PMCID: PMC9195583 DOI: 10.3389/fbioe.2022.913057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 12/28/2022] Open
Abstract
The incorporation of non-canonical amino acids (ncAAs) using engineered aminoacyl-tRNA synthetases (aaRSs) has emerged as a powerful methodology to expand the chemical repertoire of proteins. However, the low efficiencies of typical aaRS variants limit the incorporation of ncAAs to only one or a few sites within a protein chain, hindering the design of protein-based polymers (PBPs) in which multi-site ncAA incorporation can be used to impart new properties and functions. Here, we determined the substrate specificities of 11 recently developed high-performance aaRS variants and identified those that enable an efficient multi-site incorporation of 15 different aromatic ncAAs. We used these aaRS variants to produce libraries of two temperature-responsive PBPs-elastin- and resilin-like polypeptides (ELPs and RLPs, respectively)-that bear multiple instances of each ncAA. We show that incorporating such aromatic ncAAs into the protein structure of ELPs and RLPs can affect their temperature responsiveness, secondary structure, and self-assembly propensity, yielding new and diverse families of ELPs and RLPs, each from a single DNA template. Finally, using a molecular model, we demonstrate that the temperature-responsive behavior of RLPs is strongly affected by both the hydrophobicity and the size of the unnatural aromatic side-chain. The ability to efficiently incorporate multiple instances of diverse ncAAs alongside the 20 natural amino acids can help to elucidate the effect of ncAA incorporation on these and many other PBPs, with the aim of designing additional precise and chemically diverse polymers with new or improved properties.
Collapse
Affiliation(s)
- Osher Gueta
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ortal Sheinenzon
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Rotem Azulay
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Hadas Shalit
- Department of Chemistry, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sigal Gelkop
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
35
|
Lima LF, Sousa MGDC, Rodrigues GR, de Oliveira KBS, Pereira AM, da Costa A, Machado R, Franco OL, Dias SC. Elastin-like Polypeptides in Development of Nanomaterials for Application in the Medical Field. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.874790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elastin-like polypeptides (ELPs) are biopolymers formed by amino acid sequences derived from tropoelastin. These biomolecules can be soluble below critical temperatures, forming aggregates at higher temperatures, which makes them an interesting source for the design of different nanobiomaterials. These nanobiomaterials can be obtained from heterologous expression in several organisms such as bacteria, fungi, and plants. Thanks to the many advantages of ELPs, they have been used in the biomedical field to develop nanoparticles, nanofibers, and nanocomposites. These nanostructures can be used in multiple applications such as drug delivery systems, treatments of type 2 diabetes, cardiovascular diseases, tissue repair, and cancer therapy. Thus, this review aims to shed some light on the main advances in elastin-like-based nanomaterials, their possible expression forms, and importance to the medical field.
Collapse
|
36
|
Guo H, Ju Y, Choi M, Edman MC, Louie SG, Hamm-Alvarez SF, MacKay JA. Supra-lacrimal protein-based carriers for cyclosporine A reduce Th17-mediated autoimmunity in murine model of Sjögren's syndrome. Biomaterials 2022; 283:121441. [PMID: 35306230 PMCID: PMC8982551 DOI: 10.1016/j.biomaterials.2022.121441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 01/11/2023]
Abstract
Sjögren's syndrome (SS) is a multifactorial autoimmune disease with principal symptoms including inflammation and loss of function of lacrimal glands (LG) and salivary glands. While glandular infiltrates includes both B- and T-cells, CD4+ T cells are strongly implicated. Utilizing the male non-obese diabetic (NOD) mouse model of SS, this work: 1) identifies clinically-relevant elevations in cytokines (IL-17A, IL-2) in LG-derived CD4+ T cells; and 2) explores tissue-specific immunosuppression of SS using a novel protein-based drug carrier to concentrate cyclosporine A (CsA) directly in the LG. As a potent immunosuppressant, topical ophthalmic CsA is approved for dry eye disorders; however, it cannot effectively resolve inflammation due to limited accumulation in the LG. Systemic CsA has dose-limiting side effects that also limit its ability to block LG inflammation. Using elastin-like polypeptides (ELPs) fused genetically to cyclophilin, the intracellular cognate receptor of CsA, this manuscript reports a sustained-release formulation of CsA that maintains therapeutic drug concentrations in the LG and extends intervals between doses. This formulation blocked both in vitro Th17 cell differentiation and IL-17A secretion. In vivo treatment significantly decreased the abundance of Th17.1 cells, a helper cell population sharing phenotypes of both Th17 and Th1, in the LG of diseased NOD mice. Treatment with even a single dose of the sustained-release formulation was effective enough to improve basal levels of tear production. Thus, this sustained-release formulation suppressed local LG inflammation driven through IL-17 dependent pathways, while improving ocular surface function.
Collapse
Affiliation(s)
- Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States.
| | - Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo St., Room 4900, Mail Code 6103, Los Angeles, CA, 90033, United States.
| | - Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States.
| | - Maria C Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo St., Room 4900, Mail Code 6103, Los Angeles, CA, 90033, United States.
| | - Stan G Louie
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States.
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo St., Room 4900, Mail Code 6103, Los Angeles, CA, 90033, United States.
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90033, United States; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, 1450 San Pablo St., Room 4900, Mail Code 6103, Los Angeles, CA, 90033, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA, 90089, United States.
| |
Collapse
|
37
|
Hadar D, Strugach DS, Amiram M. Conjugates of Recombinant Protein‐Based Polymers: Combining Precision with Chemical Diversity. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dagan Hadar
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Daniela S. Strugach
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev P.O. Box 653 Beer-Sheva 8410501 Israel
| |
Collapse
|
38
|
Gerszberg A, Hnatuszko-Konka K. Compendium on Food Crop Plants as a Platform for Pharmaceutical Protein Production. Int J Mol Sci 2022; 23:3236. [PMID: 35328657 PMCID: PMC8951019 DOI: 10.3390/ijms23063236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in crop biotechnology related to the availability of molecular tools and methods developed for transformation and regeneration of specific plant species have been observed. As a consequence, the interest in plant molecular farming aimed at producing the desired therapeutic proteins has significantly increased. Since the middle of the 1980s, recombinant pharmaceuticals have transformed the treatment of many serious diseases and nowadays are used in all branches of medicine. The available systems of the synthesis include wild-type or modified mammalian cells, plants or plant cell cultures, insects, yeast, fungi, or bacteria. Undeniable benefits such as well-characterised breeding conditions, safety, and relatively low costs of production make plants an attractive yet competitive platform for biopharmaceutical production. Some of the vegetable plants that have edible tubers, fruits, leaves, or seeds may be desirable as inexpensive bioreactors because these organs can provide edible vaccines and thus omit the purification step of the final product. Some crucial facts in the development of plant-made pharmaceuticals are presented here in brief. Although crop systems do not require more strictly dedicated optimization of methodologies at any stages of the of biopharmaceutical production process, here we recall the complete framework of such a project, along with theoretical background. Thus, a brief review of the advantages and disadvantages of different systems, the principles for the selection of cis elements for the expression cassettes, and available methods of plant transformation, through to the protein recovery and purification stage, are all presented here. We also outline the achievements in the production of biopharmaceuticals in economically important crop plants and provide examples of their clinical trials and commercialization.
Collapse
Affiliation(s)
- Aneta Gerszberg
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Katarzyna Hnatuszko-Konka
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
39
|
Sarangthem V, Sharma H, Goel R, Ghose S, Park RW, Mohanty S, Chaudhuri TK, Dinda AK, Singh TD. Application of elastin-like polypeptide (ELP) containing extra-cellular matrix (ECM) binding ligands in regenerative medicine. Int J Biol Macromol 2022; 207:443-453. [PMID: 35276294 DOI: 10.1016/j.ijbiomac.2022.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 12/26/2022]
Abstract
Extracellular matrix (ECM) molecules play an important role in regulating molecular signaling associated with proliferation, migration, differentiation, and tissue repair. The identification of new kinds of ECM mimic biomaterials to recapitulate critical functions of biological systems are important for various applications in tissue engineering and regenerative medicine. The use of human elastin derived materials with controlled biological properties and other functionalities to improve their cell-response was proposed. Herein, we reported genetic encoded synthesis of ELP (elastin-like polypeptide) containing ECM domains like RGD (integrin binding ligand) and YIGSR (laminin-selective receptor binding ligand) to regulate cell behaviour in more complex ways, and also better model natural matrices. Thermal responsiveness of the ELPs and structural conformation were determined to confirm its phase transition behaviour. The fusion ELPs derivatives were analysed for mechanical involvement of growth mechanism, regenerative, and healing processes. The designed fusion ELPs promoted fast and strong attachment of fibroblast cells. The fusion ELP derivatives enhanced the migration of keratinocyte cells which of crucial for wound healing. Together it provides a profound matrix for endothelial cells and significantly enhanced tube formation of HUVEC cells. Thus, strategy of using cell adhesive ELP biopolymer emphasizing the role of bioactive ELPs as next generation skin substitutes for regenerative medicine.
Collapse
Affiliation(s)
- Vijaya Sarangthem
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Harshita Sharma
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ridhima Goel
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sampa Ghose
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, Kyungpook National University, School of Medicine, Daegu 41944, Republic of Korea
| | - Sujata Mohanty
- Stem Cell Facility, DBT Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tapan Kumar Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Thoudam Debraj Singh
- Department of Medical Oncology Laboratory, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
40
|
Hauptstein N, Meinel L, Lühmann T. Bioconjugation strategies and clinical implications of Interferon-bioconjugates. Eur J Pharm Biopharm 2022; 172:157-167. [PMID: 35149191 DOI: 10.1016/j.ejpb.2022.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
Abstract
Interferons (IFN) are immunomodulating, antiviral and antiproliferative cytokines for treatment of multiple indications, including cancer, hepatitis, and autoimmune disease. The first IFNs were discovered in 1957, first approved in 1986, and are nowadays listed in the WHO model list of essential Medicines. Three classes of IFNs are known; IFN-α2a and IFN-β belonging to type-I IFNs, IFN-γ a type-II IFN approved for some hereditary diseases and IFN-λs, which form the newest class of type-III IFNs. IFN-λs were discovered in the last decade with fascinating yet under discovered pharmaceutical potential. This article reviews available IFN drugs, their field and route of application, while also outlining available and future strategies for bioconjugation to further optimize pharmaceutical and clinical performances of all three available IFN classes.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), DE-97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany.
| |
Collapse
|
41
|
Liu H, Prachyathipsakul T, Koyasseril-Yehiya TM, Le SP, Thayumanavan S. Molecular bases for temperature sensitivity in supramolecular assemblies and their applications as thermoresponsive soft materials. MATERIALS HORIZONS 2022; 9:164-193. [PMID: 34549764 PMCID: PMC8757657 DOI: 10.1039/d1mh01091c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Thermoresponsive supramolecular assemblies have been extensively explored in diverse formats, from injectable hydrogels to nanoscale carriers, for a variety of applications including drug delivery, tissue engineering and thermo-controlled catalysis. Understanding the molecular bases behind thermal sensitivity of materials is fundamentally important for the rational design of assemblies with optimal combination of properties and predictable tunability for specific applications. In this review, we summarize the recent advances in this area with a specific focus on the parameters and factors that influence thermoresponsive properties of soft materials. We summarize and analyze the effects of structures and architectures of molecules, hydrophilic and lipophilic balance, concentration, components and external additives upon the thermoresponsiveness of the corresponding molecular assemblies.
Collapse
Affiliation(s)
- Hongxu Liu
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | | | | | - Stephanie P Le
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Centre for Bioactive Delivery, Institute for Applied Life Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
42
|
Patra R, Ghosal K, Saha R, Sarkar P, Chattopadhyay S, Sarkar K. Advances in the Development of Biodegradable Polymeric Materials for Biomedical Applications with Respect to Their Synthesis Procedures, Degradation Properties, Toxicity, Stability and Applications. ENCYCLOPEDIA OF MATERIALS: PLASTICS AND POLYMERS 2022:567-592. [DOI: 10.1016/b978-0-12-820352-1.00252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Karamitros CS, Somody CM, Agnello G, Rowlinson S. Engineering of the Recombinant Expression and PEGylation Efficiency of the Therapeutic Enzyme Human Thymidine Phosphorylase. Front Bioeng Biotechnol 2021; 9:793985. [PMID: 34976980 PMCID: PMC8718881 DOI: 10.3389/fbioe.2021.793985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/12/2021] [Indexed: 12/01/2022] Open
Abstract
Human thymidine phosphorylase (HsTP) is an enzyme with important implications in the field of rare metabolic diseases. Defective mutations of HsTP lead to mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), a disease with a high unmet medical need that is associated with severe neurological and gastrointestinal complications. Current efforts focus on the development of an enzyme replacement therapy (ERT) using the Escherichia coli ortholog (EcTP). However, bacterial enzymes are counter-indicated for human therapeutic applications because they are recognized as foreign by the human immune system, thereby eliciting adverse immune responses and raising significant safety and efficacy risks. Thus, it is critical to utilize the HsTP enzyme as starting scaffold for pre-clinical drug development, thus de-risking the safety concerns associated with the use of bacterial enzymes. However, HsTP expresses very poorly in E. coli, whereas its PEGylation, a crucial chemical modification for achieving long serum persistence of therapeutic enzymes, is highly inefficient and negatively affects its catalytic activity. Here we focused on the engineering of the recombinant expression profile of HsTP in E. coli cells, as well as on the optimization of its PEGylation efficiency aiming at the development of an alternative therapeutic approach for MNGIE. We show that phylogenetic and structural analysis of proteins can provide important insights for the rational design of N’-terminus-truncation constructs which exhibit significantly improved recombinant expression levels. In addition, we developed and implemented a criteria-driven rational surface engineering strategy for the substitution of arginine-to-lysine and lysine-to-arginine residues to achieve more efficient, homogeneous and reproducible PEGylation without negatively affecting the enzymatic catalytic activity upon PEGylation. Collectively, our proposed strategies provide an effective way to optimize enzyme PEGylation and E. coli recombinant expression and are likely applicable for other proteins and enzymes.
Collapse
|
44
|
Chae YK, Um Y, Kim H. A simple and sensitive detection of the binding ligands by using the receptor aggregation and NMR spectroscopy: a test case of the maltose binding protein. JOURNAL OF BIOMOLECULAR NMR 2021; 75:371-381. [PMID: 34524563 PMCID: PMC8441238 DOI: 10.1007/s10858-021-00381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Protein-ligand interaction is one of the highlights of molecular recognition. The most popular application of this type of interaction is drug development which requires a high throughput screening of a ligand that binds to the target protein. Our goal was to find a binding ligand with a simple detection, and once this type of ligand was found, other methods could then be used to measure the detailed kinetic or thermodynamic parameters. We started with the idea that the ligand NMR signal would disappear if it was bound to the non-tumbling mass. In order to create the non-tumbling mass, we tried the aggregates of a target protein, which was fused to the elastin-like polypeptide. We chose the maltose binding proteinas a test case, and we tried it with several sugars, which included maltose, glucose, sucrose, lactose, galactose, maltotriose, and β-cyclodextrin. The maltose signal in the H-1 NMR spectrum disappeared completely as hoped around the protein to ligand ratio of 1:3 at 298 K where the proteins aggregated. The protein signals also disappeared upon aggregation except for the fast-moving part, which resulted in a cleaner background than the monomeric form. Since we only needed to look for a disappearing signal amongst those from the mixture, it should be useful in high throughput screening. Other types of sugars except for the maltotriose and β-cyclodextrin, which are siblings of the maltose, did not seem to bind at all. We believe that our system would be especially more effective when dealing with a smaller target protein, so both the protein and the bound ligand would lose their signals only when the aggregates formed. We hope that our proposed method would contribute to accelerating the development of the potent drug candidates by simultaneously identifying several binders directly from a mixture.
Collapse
Affiliation(s)
- Young Kee Chae
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea.
| | - Yoonjin Um
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea
| | - Hakbeom Kim
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea
| |
Collapse
|
45
|
Nelson DW, Gilbert RJ. Extracellular Matrix-Mimetic Hydrogels for Treating Neural Tissue Injury: A Focus on Fibrin, Hyaluronic Acid, and Elastin-Like Polypeptide Hydrogels. Adv Healthc Mater 2021; 10:e2101329. [PMID: 34494398 PMCID: PMC8599642 DOI: 10.1002/adhm.202101329] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Neurological and functional recovery is limited following central nervous system injury and severe injury to the peripheral nervous system. Extracellular matrix (ECM)-mimetic hydrogels are of particular interest as regenerative scaffolds for the injured nervous system as they provide 3D bioactive interfaces that modulate cellular response to the injury environment and provide naturally degradable scaffolding for effective tissue remodeling. In this review, three unique ECM-mimetic hydrogels used in models of neural injury are reviewed: fibrin hydrogels, which rely on a naturally occurring enzymatic gelation, hyaluronic acid hydrogels, which require chemical modification prior to chemical crosslinking, and elastin-like polypeptide (ELP) hydrogels, which exhibit a temperature-sensitive gelation. The hydrogels are reviewed by summarizing their unique biological properties, their use as drug depots, and their combination with other biomaterials, such as electrospun fibers and nanoparticles. This review is the first to focus on these three ECM-mimetic hydrogels for their use in neural tissue engineering. Additionally, this is the first review to summarize the use of ELP hydrogels for nervous system applications. ECM-mimetic hydrogels have shown great promise in preclinical models of neural injury and future advancements in their design and use can likely lead to viable treatments for patients with neural injury.
Collapse
Affiliation(s)
- Derek W Nelson
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| |
Collapse
|
46
|
Chander S, Kulkarni GT, Dhiman N, Kharkwal H. Protein-Based Nanohydrogels for Bioactive Delivery. Front Chem 2021; 9:573748. [PMID: 34307293 PMCID: PMC8299995 DOI: 10.3389/fchem.2021.573748] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogels possess a unique three-dimensional, cross-linked network of polymers capable of absorbing large amounts of water and biological fluids without dissolving. Nanohydrogels (NGs) or nanogels are composed of diverse types of polymers of synthetic or natural origin. Their combination is bound by a chemical covalent bond or is physically cross-linked with non-covalent bonds like electrostatic interactions, hydrophobic interactions, and hydrogen bonding. Its remarkable ability to absorb water or other fluids is mainly attributed to hydrophilic groups like hydroxyl, amide, and sulphate, etc. Natural biomolecules such as protein- or peptide-based nanohydrogels are an important category of hydrogels which possess high biocompatibility and metabolic degradability. The preparation of protein nanohydrogels and the subsequent encapsulation process generally involve use of environment friendly solvents and can be fabricated using different proteins, such as fibroins, albumin, collagen, elastin, gelatin, and lipoprotein, etc. involving emulsion, electrospray, and desolvation methods to name a few. Nanohydrogels are excellent biomaterials with broad applications in the areas of regenerative medicine, tissue engineering, and drug delivery due to certain advantages like biodegradability, biocompatibility, tunable mechanical strength, molecular binding abilities, and customizable responses to certain stimuli like ionic concentration, pH, and temperature. The present review aims to provide an insightful analysis of protein/peptide nanohydrogels including their preparation, biophysiochemical aspects, and applications in diverse disciplines like in drug delivery, immunotherapy, intracellular delivery, nutraceutical delivery, cell adhesion, and wound dressing. Naturally occurring structural proteins that are being explored in protein nanohydrogels, along with their unique properties, are also discussed briefly. Further, the review also covers the advantages, limitations, overview of clinical potential, toxicity aspects, stability issues, and future perspectives of protein nanohydrogels.
Collapse
Affiliation(s)
- Subhash Chander
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| | - Giriraj T. Kulkarni
- Amity Institute of Pharmacy, Amity University, Noida, India
- Gokaraju Rangaraju College of Pharmacy, Hyderabad, India
| | | | - Harsha Kharkwal
- Amity Institute of Phytochemistry and Phytomedicine, Amity University, Noida, India
| |
Collapse
|
47
|
Kang HJ, Kumar S, D'Elia A, Dash B, Nanda V, Hsia HC, Yarmush ML, Berthiaume F. Self-assembled elastin-like polypeptide fusion protein coacervates as competitive inhibitors of advanced glycation end-products enhance diabetic wound healing. J Control Release 2021; 333:176-187. [PMID: 33781808 PMCID: PMC10927318 DOI: 10.1016/j.jconrel.2021.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023]
Abstract
Chronic and non-healing skin wounds are some of the most significant complications in patients with advanced diabetes. A contributing mechanism to this pathology is the non-enzymatic glycation of proteins due to hyperglycemia, leading to the formation of advanced glycation end products (AGEs). AGEs bind to the receptor for AGEs (RAGE), which triggers pro-inflammatory signals that may inhibit the proliferative phase of wound healing. Soluble forms of RAGE (sRAGE) may be used as a competitive inhibitor of AGE-mediated signaling; however, sRAGE is short-lived in the highly proteolytic wound environment. We developed a recombinant fusion protein containing the binding domain of RAGE (vRAGE) linked to elastin-like polypeptides (ELPs) that self-assembles into coacervates at around 30-31 °C. The coacervate size was concentration and temperature-dependent, ranging between 500 and 1600 nm. vRAGE-ELP reversed several AGE-mediated changes in cultured human umbilical vein endothelial cells, including a decrease in viable cell number, an increase in levels of reactive oxygen species (ROS), and an increased expression of the pro-inflammatory marker, intercellular adhesion molecule-1 (ICAM-1). vRAGE-ELP was stable in elastase in vitro for 7 days. When used in a single topical application on full-thickness excisional skin wounds in diabetic mice, wound closure was accelerated, with 90% and 100% wound closure on post-wounding days 28 and 35, respectively, compared to 62% and 85% on the same days in animals treated with vehicle control, consisting of ELP alone. This coacervate system topically delivering a competitive inhibitor of AGEs has potential for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Hwan June Kang
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Arielle D'Elia
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Biraja Dash
- Department of Surgery (Plastic), Yale School of Medicine, New Haven, CT 06510, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Henry C Hsia
- Department of Surgery (Plastic), Yale School of Medicine, New Haven, CT 06510, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
48
|
A dose-escalating toxicology study of the candidate biologic ELP-VEGF. Sci Rep 2021; 11:6216. [PMID: 33737643 PMCID: PMC7973730 DOI: 10.1038/s41598-021-85693-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
Vascular Endothelial Growth Factor (VEGF), a key mediator of angiogenesis and vascular repair, is reduced in chronic ischemic renal diseases, leading to microvascular rarefaction and deterioration of renal function. We developed a chimeric fusion of human VEGF-A121 with the carrier protein Elastin-like Polypeptide (ELP-VEGF) to induce therapeutic angiogenesis via targeted renal VEGF therapy. We previously showed that ELP-VEGF improves renal vascular density, renal fibrosis, and renal function in swine models of chronic renal diseases. However, VEGF is a potent cytokine that induces angiogenesis and increases vascular permeability, which could cause undesired off-target effects or be deleterious in a patient with a solid tumor. Therefore, the current study aims to define the toxicological profile of ELP-VEGF and assess its risk for exacerbating tumor progression and vascularity using rodent models. A dose escalating toxicology assessment of ELP-VEGF was performed by administering a bolus intravenous injection at doses ranging from 0.1 to 200 mg/kg in Sprague Dawley (SD) rats. Blood pressure, body weight, and glomerular filtration rate (GFR) were quantified longitudinally, and terminal blood sampling and renal vascular density measurements were made 14 days after treatment. Additionally, the effects of a single administration of ELP-VEGF (0.1-10 mg/kg) on tumor growth rate, mass, and vascular density were examined in a mouse model of breast cancer. At doses up to 200 mg/kg, ELP-VEGF had no effect on body weight, caused no changes in plasma or urinary markers of renal injury, and did not induce renal fibrosis or other histopathological findings in SD rats. At the highest doses (100-200 mg/kg), ELP-VEGF caused an acute, transient hypotension (30 min), increased GFR, and reduced renal microvascular density 14 days after injection. In a mouse tumor model, ELP-VEGF did not affect tumor growth rate or tumor mass, but analysis of tumor vascular density by micro-computed tomography (μCT) revealed significant, dose dependent increases in tumor vascularity after ELP-VEGF administration. ELP-VEGF did not induce toxicity in the therapeutic dosing range, and doses one hundred times higher than the expected maximum therapeutic dose were needed to observe any adverse signs in rats. In breast tumor-bearing mice, ELP-VEGF therapy induced a dose-dependent increase in tumor vascularity, demanding caution for potential use in a patient suffering from kidney disease but with known or suspected malignancy.
Collapse
|
49
|
Wang B, Pan R, Zhu W, Xu Y, Tian Y, Endo M, Sugiyama H, Yang Y, Qian X. Short intrinsically disordered polypeptide-oligonucleotide conjugates for programmed self-assembly of nanospheres with temperature-dependent size controllability. SOFT MATTER 2021; 17:1184-1188. [PMID: 33527954 DOI: 10.1039/d0sm01817a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A series of short intrinsically disordered polypeptide conjugated oligonucleotides (IDPOCs) were rationally developed and assembled into well-defined nanospheres. The nanospheres exhibited excellent reversible thermoresponsive regulation of their contraction and expansion. Furthermore, the nanospheres showed biocompatibility, drug encapsulation and effective cellular uptake.
Collapse
Affiliation(s)
- Bin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Rizhao Pan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Weiping Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ye Tian
- College of Engineering and Applied Science, Nanjing University, Nanjing, 210093, China
| | - Masayuki Endo
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, 606-8502, Kyoto, Japan
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China. and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
50
|
Tyrpak DR, Li Y, Lei S, Avila H, MacKay JA. Single-Cell Quantification of the Transition Temperature of Intracellular Elastin-like Polypeptides. ACS Biomater Sci Eng 2021; 7:428-440. [PMID: 33455201 PMCID: PMC8375696 DOI: 10.1021/acsbiomaterials.0c01117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Elastin-like polypeptides (ELPs) are modular, stimuli-responsive materials that self-assemble into protein-rich microdomains in response to heating. By cloning ELPs to effector proteins, expressed intracellular fusions can even modulate cellular pathways. A critical step in engineering these fusions is to determine and control their intracellular phase transition temperature (Tt). To do so, this Method paper describes a simple live-cell imaging technique to estimate the Tt of non-fluorescent ELP fusion proteins by co-transfection with a fluorescent ELP marker. Intracellular microdomain formation can then be visualized in live cells through the co-assembly of the non-fluorescent and fluorescent ELP fusion proteins. If the two ELP fusions have different Tt, the intracellular ELP mixture phase separates at the temperature corresponding to the fusion with the lower Tt. In addition, co-assembled ELP microdomains often exhibit pronounced differences in size or number, compared to single transfected treatments. These features enable live-cell imaging experiments and image analysis to determine the intracellular Tt of a library of related ELP fusions. As a case study, we employ the recently reported Caveolin1-ELP library (CAV1-ELPs). In addition to providing a detailed protocol, we also report the development of a useful FIJI plugin named SIAL (Simple Image Analysis Library), which contains programs for image randomization and blinding, phenotype scoring, and ROI selection. These tasks are important parts of the protocol detailed here and are also commonly employed in other image analysis workflows.
Collapse
Affiliation(s)
- David R Tyrpak
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Yaocun Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Siqi Lei
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - Hugo Avila
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | - John Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy of the University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
- Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, 1450 San Pablo Street, Los Angeles, California 90033, United States
- Biomedical Engineering, University of Southern California Viterbi School of Engineering, 1042 Downey Way, Los Angeles, California 90089, United States
| |
Collapse
|