1
|
Sannigrahi A, De N, Bhunia D, Bhadra J. Peptide nucleic acids: Recent advancements and future opportunities in biomedical applications. Bioorg Chem 2025; 155:108146. [PMID: 39817998 DOI: 10.1016/j.bioorg.2025.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges. In Addition, we explore future perspectives and potential limitations of PNA-based technologies, highlighting the need for further research and development to fully realize their therapeutic and biotechnological potential.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Nayan De
- Institute for System Biology, 401 Terry Ave N, Seattle, WA 98109, USA
| | - Debmalya Bhunia
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| | - Jhuma Bhadra
- Department of Chemistry, Sarojini Naidu College for Women, Kolkata 700028, India.
| |
Collapse
|
2
|
Yadav SK, Dhuri K, Gamiotea-Turro D, Cormier MK, Patel V, Yadawa AK, Pathuri M, Bahal R, Verma R. Exploring the therapeutic potential of sγPNA-141: Pharmacodynamics and mechanistic insights during ischemic stroke recovery. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102355. [PMID: 39507400 PMCID: PMC11539414 DOI: 10.1016/j.omtn.2024.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
MicroRNA-141-3p plays a detrimental role in the pathology of ischemic stroke, presenting a new target for stroke treatment. This study introduces and validates a novel class of peptide nucleic acid (PNA)-based miR-141-3p inhibitors known as serine gamma PNA-141 (sγPNA-141) for ischemic stroke treatment. After synthesis, physicochemical characterization, and nanoparticle encapsulation of sγPNA-141, we compared its safety and efficacy with traditional phosphorothioate- and regular PNA-based anti-miR-141-3p (PNA-141) in vitro, followed by detailed in vivo and ex vivo efficacy testing of sγPNA-141 for treating ischemic stroke using a mouse model. sγPNA-141 demonstrated higher affinity and specificity toward miR-141-3p, and when applied post-stroke, demonstrated decreased brain damage, enhanced neuroprotective proteins, reduced tissue atrophy, swift improvement in functional deficits, and improvement in learning and memory during long-term recovery. Overall, our data show sγPNA-141 has neuroprotective and neuro-rehabilitative effects during stroke recovery. Furthermore, we demonstrated sγPNA-141's effects are mediated by the TGF-β-SMAD2/3 pathway. In summary, the present findings suggest that sγPNA-141 could be a potentially novel and effective therapeutic modality for the treatment of ischemic stroke.
Collapse
Affiliation(s)
| | - Karishma Dhuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | | | | | - Vraj Patel
- Department of Neuroscience, UConn Health, Farmington, CT 06032, USA
| | | | - Mounika Pathuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Rajkumar Verma
- Department of Neuroscience, UConn Health, Farmington, CT 06032, USA
| |
Collapse
|
3
|
Kumar V, Wahane A, Tham MS, Somlo S, Gupta A, Bahal R. Efficient and selective kidney targeting by chemically modified carbohydrate conjugates. Mol Ther 2024; 32:4383-4400. [PMID: 39532098 PMCID: PMC11638880 DOI: 10.1016/j.ymthe.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
We investigated a renal tubule-targeting carbohydrate (RENTAC) that can selectively deliver small-molecule and nucleic acid analogs to the proximal convoluted tubules of the kidney following systemic delivery in mice. We comprehensively evaluated anti-miR-21-peptide nucleic acid-RENTAC, and fluorophore-RENTAC conjugates in cell culture and in vivo. We established that RENTAC conjugates showed megalin- and cubilin-dependent endocytic uptake in the immortalized kidney cell line. In vivo biodistribution studies confirmed the retention of RENTAC conjugates in the kidneys for several days compared with other organs. Immunofluorescence staining confirmed the selective distribution of the RENTAC conjugates in proximal convoluted tubules. We further demonstrated proximal convoluted tubule targeting features of RENTAC conjugates in a folic acid-induced kidney fibrosis mouse model. As a biological readout, we targeted miR-33 using antisense peptide nucleic acid (PNA) 33-RENTAC conjugates in the fibrotic kidney disease model. The targeted delivery of PNA 33-RENTAC resulted in slower fibrosis progression and decreased collagen deposition. We also confirmed that the RENTAC ligand did not exert any adverse reactions. Thus, we established that the RENTAC ligand can be used for broad clinical applications targeting the kidneys selectively.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ming Shen Tham
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stefan Somlo
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Anisha Gupta
- School of Pharmacy, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
4
|
Giancola JB, Raines RT. Endosomolytic Peptides Enable the Cellular Delivery of Peptide Nucleic Acids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599558. [PMID: 38948866 PMCID: PMC11213006 DOI: 10.1101/2024.06.18.599558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Precision genetic medicine enlists antisense oligonucleotides (ASOs) to bind to nucleic acid targets important for human disease. Peptide nucleic acids (PNAs) have many desirable attributes as ASOs but lack cellular permeability. Here, we use an assay based on the corrective splicing of an mRNA to assess the ability of synthetic peptides to deliver a functional PNA into a human cell. We find that the endosomolytic peptides L17E and L17ER 4 are highly efficacious delivery vehicles. Co-treatment of a PNA with low micromolar L17E or L17ER 4 enables robust corrective splicing in nearly all treated cells. Peptide-PNA conjugates are even more effective. These results enhance the utility of PNAs as research tools and potential therapeutic agents.
Collapse
|
5
|
MacLelland V, Kravitz M, Gupta A. Therapeutic and diagnostic applications of antisense peptide nucleic acids. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102086. [PMID: 38204913 PMCID: PMC10777018 DOI: 10.1016/j.omtn.2023.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peptide nucleic acids (PNAs) are synthetic nucleic acid analogs with a neutral N-(2-aminoethyl) glycine backbone. PNAs possess unique physicochemical characteristics such as increased resistance to enzymatic degradation, ionic strength and stability over a wide range of temperatures and pH, and low intrinsic electrostatic repulsion against complementary target oligonucleotides. PNA has been widely used as an antisense oligonucleotide (ASO). Despite the favorable characteristics of PNA, in comparison with other ASO technologies, the use of antisense PNA for novel therapeutics has lagged. This review provides a brief overview of PNA, its antisense mechanisms of action, delivery strategies, and highlights successful applications of PNA, focusing on anti-pathogenic, anti-neurodegenerative disease, anti-cancer, and diagnostic agents. For each application, several studies are discussed focusing on the different target sites of the PNA, design of different PNAs and the therapeutic outcome in different cell lines and animal models. Thereafter, persisting limitations slowing the successful integration of antisense PNA therapeutics are discussed in order to highlight actionable next steps in the development and optimization of PNA as an ASO.
Collapse
Affiliation(s)
- Victoria MacLelland
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Madeline Kravitz
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| | - Anisha Gupta
- Department of Pharmaceutical Sciences, University of Saint Joseph, West Hartford, CT 06117, USA
| |
Collapse
|
6
|
Singh G, Monga V. Peptide Nucleic Acids: Recent Developments in the Synthesis and Backbone Modifications. Bioorg Chem 2023; 141:106860. [PMID: 37748328 DOI: 10.1016/j.bioorg.2023.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
Nucleic acid represents the ideal drug candidate for protein targets that are hard to target or against which drug development is not easy. Peptide nucleic acids (PNAs) are synthesized by attaching modified peptide backbones generally derived from repetitive N-2-aminoethyl glycine units in place of the regular phosphodiester backbone and represent synthetic impersonator of nucleic acids that offers an exciting research field due to their fascinating spectrum of biotechnological, diagnostic and potential therapeutic applications. The semi-rigid peptide nucleic acid backbone serves as a nearly-perfect template for attaching complimentary base pairs on DNA or RNA in a sequence-dependent manner as described by Watson-Crick models. PNAs and their analogues are endowed with exceptionally high affinity and specificity for receptor sites, essentially due to their polyamide backbone's uncharged and flexible nature. The present review compiled various strategies to modify the polypeptide backbone for improving the target selectivity and stability of the PNAs in the body. The investigated biological activities carried out on PNAs have also been summarized in the present review.
Collapse
Affiliation(s)
- Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
7
|
Gasparello J, Papi C, Zurlo M, Volpi S, Gambari R, Corradini R, Casnati A, Sansone F, Finotti A. Cationic Calix[4]arene Vectors to Efficiently Deliver AntimiRNA Peptide Nucleic Acids (PNAs) and miRNA Mimics. Pharmaceutics 2023; 15:2121. [PMID: 37631335 PMCID: PMC10460053 DOI: 10.3390/pharmaceutics15082121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most appealing approaches for regulating gene expression, named the "microRNA therapeutic" method, is based on the regulation of the activity of microRNAs (miRNAs), the intracellular levels of which are dysregulated in many diseases, including cancer. This can be achieved by miRNA inhibition with antimiRNA molecules in the case of overexpressed microRNAs, or by using miRNA-mimics to restore downregulated microRNAs that are associated with the target disease. The development of new efficient, low-toxic, and targeted vectors of such molecules represents a key topic in the field of the pharmacological modulation of microRNAs. We compared the delivery efficiency of a small library of cationic calix[4]arene vectors complexed with fluorescent antimiRNA molecules (Peptide Nucleic Acids, PNAs), pre-miRNA (microRNA precursors), and mature microRNAs, in glioma- and colon-cancer cellular models. The transfection was assayed by cytofluorimetry, cell imaging assays, and RT-qPCR. The calix[4]arene-based vectors were shown to be powerful tools to facilitate the uptake of both neutral (PNAs) and negatively charged (pre-miRNAs and mature microRNAs) molecules showing low toxicity in transfected cells and ability to compete with commercially available vectors in terms of delivery efficiency. These results could be of great interest to validate microRNA therapeutics approaches for future application in personalized treatment and precision medicine.
Collapse
Affiliation(s)
- Jessica Gasparello
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.); (R.G.)
| | - Chiara Papi
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.); (R.G.)
| | - Matteo Zurlo
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.); (R.G.)
| | - Stefano Volpi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (R.C.); (A.C.)
| | - Roberto Gambari
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.); (R.G.)
| | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (R.C.); (A.C.)
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (R.C.); (A.C.)
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (R.C.); (A.C.)
| | - Alessia Finotti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (J.G.); (C.P.); (M.Z.); (R.G.)
| |
Collapse
|
8
|
Zheng H, Clausse V, Amarasekara H, Mazur SJ, Botos I, Appella DH. Variation of Tetrahydrofurans in Thyclotides Enhances Oligonucleotide Binding and Cellular Uptake of Peptide Nucleic Acids. JACS AU 2023; 3:1952-1964. [PMID: 37502163 PMCID: PMC10369417 DOI: 10.1021/jacsau.3c00198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Selective incorporation of conformational constraints into thyclotides can be used to modulate their binding to complementary oligonucleotides, increase polarity, and optimize uptake into HCT116 cells without assistance from moieties known to promote cell uptake. The X-ray structure and biophysical studies of a thyclotide-DNA duplex reveal that incorporation of tetrahydrofurans into an aegPNA backbone promotes a helical conformation that enhances binding to complementary DNA and RNA. Selective incorporation of tetrahydrofurans into the aegPNA backbone allows polarity to be increased incrementally so that uptake into HCT116 cells can be optimized. The enhanced binding, polarity, and cellular uptake properties of thyclotides were used to demonstrate effective inhibition of microRNA-21 in HCT116 cells.
Collapse
Affiliation(s)
- Hongchao Zheng
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Victor Clausse
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Harsha Amarasekara
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Sharlyn J. Mazur
- Laboratory
of Cell Biology, National Cancer Institute,
National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, United States
| | - Istvan Botos
- Laboratory
of Molecular Biology, National Institute
of Diabetes and Digestive and Kidney Diseases, National Institutes
of Health, Department of Health and Human Services, Bethesda, Maryland 20892, United States
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK), National Institutes of Health, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| |
Collapse
|
9
|
Freeman FE, Dosta P, Shanley LC, Ramirez Tamez N, Riojas Javelly CJ, Mahon OR, Kelly DJ, Artzi N. Localized Nanoparticle-Mediated Delivery of miR-29b Normalizes the Dysregulation of Bone Homeostasis Caused by Osteosarcoma whilst Simultaneously Inhibiting Tumor Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207877. [PMID: 36994935 DOI: 10.1002/adma.202207877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/06/2023] [Indexed: 06/09/2023]
Abstract
Patients diagnosed with osteosarcoma undergo extensive surgical intervention and chemotherapy resulting in dismal prognosis and compromised quality of life owing to poor bone regeneration, which is further compromised with chemotherapy delivery. This study aims to investigate if localized delivery of miR-29b-which is shown to promote bone formation by inducing osteoblast differentiation and also to suppress prostate and cervical tumor growth-can suppress osteosarcoma tumors whilst simultaneously normalizing the dysregulation of bone homeostasis caused by osteosarcoma. Thus, the therapeutic potential of microRNA (miR)-29b is studied to promote bone remodeling in an orthotopic model of osteosarcoma (rather than in bone defect models using healthy mice), and in the context of chemotherapy, that is clinically relevant. A formulation of miR-29b:nanoparticles are developed that are delivered via a hyaluronic-based hydrogel to enable local and sustained release of the therapy and to study the potential of attenuating tumor growth whilst normalizing bone homeostasis. It is found that when miR-29b is delivered along with systemic chemotherapy, compared to chemotherapy alone, the therapy provided a significant decrease in tumor burden, an increase in mouse survival, and a significant decrease in osteolysis thereby normalizing the dysregulation of bone lysis activity caused by the tumor.
Collapse
Affiliation(s)
- Fiona E Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02 YN77, Ireland
- School of Mechanical and Materials Engineering, Engineering and Materials Science Centre, University College Dublin, Dublin, D04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Pere Dosta
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Lianne C Shanley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02 YN77, Ireland
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Natalia Ramirez Tamez
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cristobal J Riojas Javelly
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Olwyn R Mahon
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- School of Medicine, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02 YN77, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Tramontano C, De Stefano L, Rea I. Diatom-Based Nanomedicine for Colorectal Cancer Treatment: New Approaches for Old Challenges. Mar Drugs 2023; 21:md21050266. [PMID: 37233460 DOI: 10.3390/md21050266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer is among the most prevalent and lethal cancers globally. To address this emergency, countries have developed diffuse screening programs and innovative surgical techniques with a consequent decrease in mortality rates in non-metastatic patients. However, five years after diagnosis, metastatic CRC is still characterized by less than 20% survival. Most patients with metastatic CRC cannot be surgically treated. For them, the only option is treatment with conventional chemotherapies, which cause harmful side effects in normal tissues. In this context, nanomedicine can help traditional medicine overcome its limits. Diatomite nanoparticles (DNPs) are innovative nano-based drug delivery systems derived from the powder of diatom shells. Diatomite is a porous biosilica largely found in many areas of the world and approved by the Food and Drug Administration (FDA) for pharmaceutical and animal feed formulations. Diatomite nanoparticles with a size between 300 and 400 nm were shown to be biocompatible nanocarriers capable of delivering chemotherapeutic agents against specific targets while reducing off-target effects. This review discusses the treatment of colorectal cancer with conventional methods, highlighting the drawbacks of standard medicine and exploring innovative options based on the use of diatomite-based drug delivery systems. Three targeted treatments are considered: anti-angiogenetic drugs, antimetastatic drugs, and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Chiara Tramontano
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Luca De Stefano
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Ilaria Rea
- Institute of Applied Science and Intelligent Systems (ISASI), National Research Council of Italy-Naples Unit, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
11
|
Clausse V, Zheng H, Amarasekara H, Kruhlak M, Appella DH. Thyclotides, tetrahydrofuran-modified peptide nucleic acids that efficiently penetrate cells and inhibit microRNA-21. Nucleic Acids Res 2022; 50:10839-10856. [PMID: 36215040 DOI: 10.1093/nar/gkac864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Peptide nucleic acids (PNAs) are promising therapeutic molecules for gene modulation; however, they suffer from poor cell uptake. Delivery of PNAs into cells requires conjugation of the PNA to another large molecule, typically a cell-penetrating peptide or nanoparticle. In this study, we describe a new PNA-based molecule with cyclic tetrahydrofuran (THF) backbone modifications that in some cases considerably improve cell uptake. We refer to these THF-PNA oligomers as thyclotides. With THF groups at every position of the oligomer, the cell uptake of thyclotides targeted to miR-21 is enhanced compared with the corresponding unmodified PNA based on an aminoethylglycine backbone. An optimized thyclotide can efficiently enter cells without the use of cell-penetrating peptides, bind miR-21, its designated microRNA target, decrease expression of miR-21 and increase expression of three downstream targets (PTEN, Cdc25a and KRIT1). Using a plasmid with the PTEN-3'UTR coupled with luciferase, we further confirmed that a miR-21-targeted thyclotide prevents miR-21 from binding to its target RNA. Additionally, the thyclotide shows no cytotoxicity when administered at 200 times its active concentration. We propose that thyclotides be further explored as therapeutic candidates to modulate miRNA levels.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harsha Amarasekara
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Kruhlak
- Microscopy Core Facility, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Pan YJ, Liu BW, Pei DS. The Role of Alternative Splicing in Cancer: Regulatory Mechanism, Therapeutic Strategy, and Bioinformatics Application. DNA Cell Biol 2022; 41:790-809. [PMID: 35947859 DOI: 10.1089/dna.2022.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
[Formula: see text] Alternative splicing (AS) can generate distinct transcripts and subsequent isoforms that play differential functions from the same pre-mRNA. Recently, increasing numbers of studies have emerged, unmasking the association between AS and cancer. In this review, we arranged AS events that are closely related to cancer progression and presented promising treatments based on AS for cancer therapy. Obtaining proliferative capacity, acquiring invasive properties, gaining angiogenic features, shifting metabolic ability, and getting immune escape inclination are all splicing events involved in biological processes. Spliceosome-targeted and antisense oligonucleotide technologies are two novel strategies that are hopeful in tumor therapy. In addition, bioinformatics applications based on AS were summarized for better prediction and elucidation of regulatory routines mingled in. Together, we aimed to provide a better understanding of complicated AS events associated with cancer biology and reveal AS a promising target of cancer treatment in the future.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Bo-Wen Liu
- Department of General Surgery, Xuzhou Medical University, Xuzhou, China
| | - Dong-Sheng Pei
- Department of Pathology, Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Luks VL, Mandl H, DiRito J, Barone C, Freedman-Weiss MR, Ricciardi AS, Tietjen GG, Egan ME, Saltzman WM, Stitelman DH. Surface conjugation of antibodies improves nanoparticle uptake in bronchial epithelial cells. PLoS One 2022; 17:e0266218. [PMID: 35385514 PMCID: PMC8986008 DOI: 10.1371/journal.pone.0266218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Advances in Molecular Therapy have made gene editing through systemic or topical administration of reagents a feasible strategy to treat genetic diseases in a rational manner. Encapsulation of therapeutic agents in nanoparticles can improve intracellular delivery of therapeutic agents, provided that the nanoparticles are efficiently taken up within the target cells. In prior work we had established proof-of-principle that nanoparticles carrying gene editing reagents can mediate site-specific gene editing in fetal and adult animals in vivo that results in functional disease improvement in rodent models of β-thalassemia and cystic fibrosis. Modification of the surface of nanoparticles to include targeting molecules (e.g. antibodies) holds the promise of improving cellular uptake and specific cellular binding. METHODS AND FINDINGS To improve particle uptake for diseases of the airway, like cystic fibrosis, our group tested the impact of nanoparticle surface modification with cell surface marker antibodies on uptake in human bronchial epithelial cells in vitro. Binding kinetics of antibodies (Podoplanin, Muc 1, Surfactant Protein C, and Intracellular Adhesion Molecule-1 (ICAM)) were determined to select appropriate antibodies for cellular targeting. The best target-specific antibody among those screened was ICAM antibody. Surface conjugation of nanoparticles with antibodies against ICAM improved cellular uptake in bronchial epithelial cells up to 24-fold. CONCLUSIONS This is a first demonstration of improved nanoparticle uptake in epithelial cells using conjugation of target specific antibodies. Improved binding, uptake or specificity of particles delivered systemically or to the luminal surface of the airway would potentially improve efficacy, reduce the necessary dose and thus safety of administered therapeutic agents. Incremental improvement in the efficacy and safety of particle-based therapeutic strategies may allow genetic diseases such as cystic fibrosis to be cured on a fundamental genetic level before birth or shortly after birth.
Collapse
Affiliation(s)
- Valerie L. Luks
- Department of Surgery, Yale University, New Haven, CT, United States of America
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Hanna Mandl
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Jenna DiRito
- Department of Surgery, Yale University, New Haven, CT, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Christina Barone
- Department of Pediatrics, Yale University, New Haven, CT, United States of America
| | | | - Adele S. Ricciardi
- Department of Surgery, Yale University, New Haven, CT, United States of America
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Gregory G. Tietjen
- Department of Surgery, Yale University, New Haven, CT, United States of America
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Marie E. Egan
- Department of Pediatrics, Yale University, New Haven, CT, United States of America
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - David H. Stitelman
- Department of Surgery, Yale University, New Haven, CT, United States of America
| |
Collapse
|
14
|
Patil NA, Thombare VJ, Li R, He X, Lu J, Yu HH, Wickremasinghe H, Pamulapati K, Azad MAK, Velkov T, Roberts KD, Li J. An Efficient Approach for the Design and Synthesis of Antimicrobial Peptide-Peptide Nucleic Acid Conjugates. Front Chem 2022; 10:843163. [PMID: 35372270 PMCID: PMC8964499 DOI: 10.3389/fchem.2022.843163] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 01/23/2023] Open
Abstract
Peptide-Peptide Nucleic Acid (PNA) conjugates targeting essential bacterial genes have shown significant potential in developing novel antisense antimicrobials. The majority of efforts in this area are focused on identifying different PNA targets and the selection of peptides to deliver the peptide-PNA conjugates to Gram-negative bacteria. Notably, the selection of a linkage strategy to form peptide-PNA conjugate plays an important role in the effective delivery of PNAs. Recently, a unique Cysteine- 2-Cyanoisonicotinamide (Cys-CINA) click chemistry has been employed for the synthesis of cyclic peptides. Considering the high selectivity of this chemistry, we investigated the efficiency of Cys-CINA conjugation to synthesize novel antimicrobial peptide-PNA conjugates. The PNA targeting acyl carrier protein gene (acpP), when conjugated to the membrane-active antimicrobial peptides (polymyxin), showed improvement in antimicrobial activity against multidrug-resistant Gram-negative Acinetobacter baumannii. Thus, indicating that the Cys-CINA conjugation is an effective strategy to link the antisense oligonucleotides with antimicrobial peptides. Therefore, the Cys-CINA conjugation opens an exciting prospect for antimicrobial drug development.
Collapse
Affiliation(s)
- Nitin A. Patil
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- *Correspondence: Nitin A. Patil,
| | - Varsha J. Thombare
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rong Li
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Xiaoji He
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jing Lu
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Heidi H. Yu
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Hasini Wickremasinghe
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Kavya Pamulapati
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mohammad A. K. Azad
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kade D. Roberts
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jian Li
- Infection and Immunity Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Shai A, Galouk E, Miari R, Tareef H, Sammar M, Zeidan M, Rayan A, Falah M. Inhibiting mutant KRAS G12D gene expression using novel peptide nucleic acid‑based antisense: A potential new drug candidate for pancreatic cancer. Oncol Lett 2022; 23:130. [PMID: 35251350 PMCID: PMC8895471 DOI: 10.3892/ol.2022.13250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
KRAS mutations, which are the main cause of the pathogenesis of lethal pancreatic adenocarcinomas, impair the functioning of the GTPase subunit, thus rendering it constitutively active and signaling intracellular pathways that end with cell transformation. In the present study, the AsPC-1 cell line, which has a G12D-mutated KRAS gene sequence, was utilized as a cellular model to test peptide nucleic acid-based antisense technology. The use of peptide nucleic acids (PNAs) that are built to exhibit improved hybridization specificity and have an affinity for complementary RNA and DNA sequences, as well as a simple chemical structure and high biological stability that affords resistance to nucleases and proteases, enabled targeting of the KRAS-mutated gene to inhibit its expression at the translation level. Because PNA-based antisense molecules should be capable of binding to KRAS mRNA sequences, PNAs were utilized to target the mRNA of the mutated KRAS gene, a strategy that could lead to the development of a novel drug for pancreatic cancer. Moreover, it was demonstrated that introducing new PNA to cells inhibited the growth of cancer cells and induced apoptotic death and, notably, that it can inhibit G12D-mutated KRAS gene expression, as demonstrated by RT-PCR and western blotting. Altogether, these data strongly suggest that the use of PNA-based antisense agents is an attractive therapeutic approach to treating KRAS-driven cancers and may lead to the development of novel drugs that target the expression of other mutated genes.
Collapse
Affiliation(s)
- Ayelet Shai
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Evleen Galouk
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Reem Miari
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Hala Tareef
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| | - Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College, Karmiel 2161002, Israel
| | - Mouhammad Zeidan
- Molecular Genetics and Virology Laboratory, Al‑Qasemi Center of Research Excellence, Baka EL‑Garbiah 30100, Israel
| | - Anwar Rayan
- Faculty of Science, Al‑Qasemi Academic College, Baka EL‑Garbiah 30100, Israel
| | - Mizied Falah
- Oncology Department, Galilee Medical Center, Nahariya 2210001, Israel
| |
Collapse
|
16
|
Malik S, Kumar V, Liu CH, Shih KC, Krueger S, Nieh MP, Bahal R. Head on Comparison of Self- and Nano-assemblies of Gamma Peptide Nucleic Acid Amphiphiles. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2109552. [PMID: 35210986 PMCID: PMC8863176 DOI: 10.1002/adfm.202109552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 05/14/2023]
Abstract
Peptide nucleic acids (PNAs) are nucleic acid analogs with superior hybridization properties and enzymatic stability than deoxyribonucleic acid (DNA). In addition to gene targeting applications, PNAs have garnered significant attention as bio-polymer due to the Watson-Crick -based molecular recognition and flexibility of synthesis. Here, we engineered PNA amphiphiles using chemically modified gamma PNA (8 mer in length) containing hydrophilic diethylene glycol units at the gamma position and covalently conjugated lauric acid (C12) as a hydrophobic moiety. Gamma PNA (γPNA) amphiphiles self-assemble into spherical vesicles. Further, we formulate nano-assemblies using the amphiphilic γPNA as a polymer via ethanol injection-based protocols. We perform comprehensive head-on comparison of the physicochemical and cellular uptake properties of PNA derived self- and nano-assemblies. Small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) analysis reveal ellipsoidal morphology of γPNA nano-assemblies that results in superior cellular delivery compate to the spherical self-assembly. Next, we compare the functional activities of γPNA self-and nano-assemblies in lymphoma cells via multiple endpoints, including gene expression, cell viability, and apoptosis-based assays. Overall, we establish that γPNA amphiphile is a functionally active bio-polymer to formulate nano-assemblies for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Chung-Hao Liu
- Polymer Program, Institute of Material Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT, 06269, USA
| | - Kuo-Chih Shih
- Polymer Program, Institute of Material Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT, 06269, USA
| | - Susan Krueger
- National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, USA
| | - Mu-Ping Nieh
- Polymer Program, Institute of Material Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT, 06269, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
17
|
Dhuri K, Gaddam RR, Vikram A, Slack FJ, Bahal R. Therapeutic Potential of Chemically Modified, Synthetic, Triplex Peptide Nucleic Acid-Based Oncomir Inhibitors for Cancer Therapy. Cancer Res 2021; 81:5613-5624. [PMID: 34548334 DOI: 10.1158/0008-5472.can-21-0736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
miRNA-155 (miR-155) is overexpressed in various types of lymphomas and leukemias, suggesting that targeting miR-155 could be a potential platform for the development of precision medicine. Here, we tested the anticancer activity of novel, chemically modified, triplex peptide nucleic acid (PNA)-based antimiRs compared with the current state-of-the-art conventional full-length antimiRs. Next-generation modified PNAs that bound miR-155 by Watson-Crick and Hoogsteen domains possessed superior therapeutic efficacy in vivo and ex vivo compared with conventional full-length anti-miR-155. The efficacy of anti-miR-155 targeting in multiple lymphoma cell lines was comprehensively corroborated by gene expression, Western blot analysis, and cell viability-based functional studies. Finally, preclinical testing in vivo in xenograft mouse models containing lymphoma cell lines demonstrated that treatment with the miR-155-targeting next-generation antimiR resulted in a significant decrease in miR-155 expression, followed by reduced tumor growth. These findings support the effective therapeutic application of chemically modified triplex PNAs to target miR-155 to treat lymphoma. Overall, the present proof-of-concept study further implicates the potential for next-generation triplex gamma PNAs to target other miRNAs for treating cancer. SIGNIFICANCE: This study demonstrates the utility of novel oncomiR inhibitors as cancer therapeutics, providing a new approach for targeting miRNAs and other noncoding RNAs.
Collapse
Affiliation(s)
- Karishma Dhuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Ravinder Reddy Gaddam
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
| | - Ajit Vikram
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, Iowa
| | - Frank J Slack
- Department of Pathology, HMS Initiative for RNA Medicine, BIDMC Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
18
|
Wahane A, Malik S, Shih KC, Gaddam RR, Chen C, Liu Y, Nieh MP, Vikram A, Bahal R. Dual-Modality Poly-l-histidine Nanoparticles to Deliver Peptide Nucleic Acids and Paclitaxel for In Vivo Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45244-45258. [PMID: 34524806 DOI: 10.1021/acsami.1c11981] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cationic polymeric nanoformulations have been explored to increase the transfection efficiency of small molecules and nucleic acid-based drugs. However, an excessive positive charge density often leads to severe cell and tissue-based toxicity that restricts the clinical translation of cationic polymeric nanoformulations. Herein, we investigate a series of cationic poly(lactic-co-glycolic acid) (PLGA)-histidine-based nanoformulations for enhanced cytoplasmic delivery with minimal toxicity. PLGA/poly-l-histidine nanoparticles show promising physico-biochemical features and transfection efficiency in a series of in vitro and cell culture-based studies. Further, the use of acetone/dichloromethane as a solvent mixture during the formulation process significantly improves the morphology and size distribution of PLGA/poly-l-histidine nanoparticles. PLGA/poly-l-histidine nanoformulations undergo clathrin-mediated endocytosis. A contrast-matched small-angle neutron scattering experiment confirmed poly-l-histidine's distribution on the PLGA nanoformulations. PLGA/poly-l-histidine formulations containing paclitaxel as a small molecule-based drug and peptide nucleic acids targeting microRNA-155 as nucleic acid analog are efficacious in in vitro and in vivo studies. PLGA/poly-l-histidine NPs significantly decrease tumor growth in PNA-155 (∼6 fold) and paclitaxel (∼6.5 fold) treatment groups in a lymphoma cell line derived xenograft mice model without inducing any toxicity. Hence, PLGA/poly-l-histidine nanoformulations exhibit substantial transfection efficiency and are safe to deliver reagents ranging from small molecules to synthetic nucleic acid analogs and can serve as a novel platform for drug delivery.
Collapse
Affiliation(s)
- Aniket Wahane
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Kuo-Chih Shih
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ravinder Reddy Gaddam
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Chaohao Chen
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yun Liu
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, 191 Auditorium Road, Storrs, Connecticut 06269, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ajit Vikram
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
19
|
Perera JDR, Carufe KEW, Glazer PM. Peptide nucleic acids and their role in gene regulation and editing. Biopolymers 2021; 112:e23460. [PMID: 34129732 DOI: 10.1002/bip.23460] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
The unique properties of peptide nucleic acid (PNA) makes it a desirable candidate to be used in therapeutic and biotechnological interventions. It has been broadly utilized for numerous applications, with a major focus in regulation of gene expression, and more recently in gene editing. While the classic PNA design has mainly been employed to date, chemical modifications of the PNA backbone and nucleobases provide an avenue to advance the technology further. This review aims to discuss the recent developments in PNA based gene manipulation techniques and the use of novel chemical modifications to improve the current state of PNA mediated gene targeting.
Collapse
Affiliation(s)
- J Dinithi R Perera
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kelly E W Carufe
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
20
|
Sarkar S, Armitage BA. Targeting a Potential G-Quadruplex Forming Sequence Found in the West Nile Virus Genome by Complementary Gamma-Peptide Nucleic Acid Oligomers. ACS Infect Dis 2021; 7:1445-1456. [PMID: 33886274 DOI: 10.1021/acsinfecdis.0c00793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the United States, West Nile virus (WNV) infects approximately 2500 people per year, of which 100-200 cases are fatal. No antiviral drug or vaccine is currently available for WNV. In this study, we designed gamma-modified peptide nucleic acid (γPNA) oligomers to target a newly identified guanine-rich gene sequence in the WNV genome. The target is found in the NS5 protein-coding region and was previously predicted to fold into a G-quadruplex (GQ) structure. Biophysical techniques such as UV melting analysis, circular dichroism spectroscopy, and fluorescence spectroscopy demonstrated that the target RNA indeed folds into a moderately stable GQ structure at physiological temperature and potassium concentration. Successful invasion of the GQ by three complementary γPNAs was also characterized by the above-mentioned biophysical techniques. The γPNAs showed very strong binding to the target with low femtomolar affinity at physiological temperature. Targeting this potential guanine quadruplex forming sequence (PQS) and other related sequences with γPNA may represent a new approach for inhibiting both WNV replication and transcription, thereby representing a generally useful antiviral strategy.
Collapse
Affiliation(s)
- Srijani Sarkar
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| | - Bruce A. Armitage
- Department of Chemistry and Center for Nucleic Acids Science and Technology, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213-3890, United States
| |
Collapse
|
21
|
Dhuri K, Vyas RN, Blumenfeld L, Verma R, Bahal R. Nanoparticle Delivered Anti-miR-141-3p for Stroke Therapy. Cells 2021; 10:cells10051011. [PMID: 33922958 PMCID: PMC8145654 DOI: 10.3390/cells10051011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 01/14/2023] Open
Abstract
Ischemic stroke and factors modifying ischemic stroke responses, such as social isolation, contribute to long-term disability worldwide. Several studies demonstrated that the aberrant levels of microRNAs contribute to ischemic stroke injury. In prior studies, we established that miR-141-3p increases after ischemic stroke and post-stroke isolation. Herein, we explored two different anti-miR oligonucleotides; peptide nucleic acid (PNAs) and phosphorothioates (PS) for ischemic stroke therapy. We used US FDA approved biocompatible poly (lactic-co-glycolic acid) (PLGA)-based nanoparticle formulations for delivery. The PNA and PS anti-miRs were encapsulated in PLGA nanoparticles by double emulsion solvent evaporation technique. All the formulated nanoparticles showed uniform morphology, size, distribution, and surface charge density. Nanoparticles also exhibited a controlled nucleic acid release profile for 48 h. Further, we performed in vivo studies in the mouse model of ischemic stroke. Ischemic stroke was induced by transient (60 min) occlusion of middle cerebral artery occlusion followed by a reperfusion for 48 or 72 h. We assessed the blood-brain barrier permeability of PLGA NPs containing fluorophore (TAMRA) anti-miR probe after systemic delivery. Confocal imaging shows uptake of fluorophore tagged anti-miR in the brain parenchyma. Next, we evaluated the therapeutic efficacy after systemic delivery of nanoparticles containing PNA and PS anti-miR-141-3p in mice after stroke. Post-treatment differentially reduced both miR-141-3p levels in brain tissue and infarct injury. We noted PNA-based anti-miR showed superior efficacy compared to PS-based anti-miR. Herein, we successfully established that nanoparticles encapsulating PNA or PS-based anti-miRs-141-3p probes could be used as a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Karishma Dhuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Rutesh N. Vyas
- Department of Neurosciences, UConn Health, Farmington, CT 06032, USA; (R.N.V.); (L.B.)
| | - Leslie Blumenfeld
- Department of Neurosciences, UConn Health, Farmington, CT 06032, USA; (R.N.V.); (L.B.)
| | - Rajkumar Verma
- Department of Neurosciences, UConn Health, Farmington, CT 06032, USA; (R.N.V.); (L.B.)
- Correspondence: (R.V.); (R.B.)
| | - Raman Bahal
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
- Correspondence: (R.V.); (R.B.)
| |
Collapse
|
22
|
State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Mikrochim Acta 2021; 188:168. [PMID: 33884514 DOI: 10.1007/s00604-021-04827-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Metal-organic frameworks (MOFs) have captured substantial attention of an increasing number of scientists working in sensing analysis fields, due to their large surface area, high porosity, and tunable structure. Recently, MOFs as attractive fluorescence quenchers have been extensively investigated. Given their high quenching efficiency toward the fluorescence intensity of dyes-labeled specific biological recognition molecules, such as nucleic acids, MOFs have been widely developed to switch fluorescence biosensors with low background fluorescence signal. These strategies not only lead to specificity, simplicity, and low cost of biosensors, but also possess advantages such as ultrasensitive, rapid, and multiple detection of switch fluorescence methods. At present, researches of the analysis of switch fluorescence biosensors based on MOFs and nucleic acids mainly focus on sensing of different types of in vitro and intracellular analytes, indicating their increasing potential. In this review, we briefly introduce the principle of switch fluorescence biosensor and the mechanism of fluorescence quenching of MOFs, and mainly discuss and summarize the state-of-the-art advances of MOFs and nucleic acids-based switch fluorescence biosensors over the years 2013 to 2020. Most of them have been proposed to the in vitro detection of different types of analytes, showing their wide scope and applicability, such as deoxyribonucleic acid (DNAs), ribonucleic acid (RNAs), proteins, enzymes, antibiotics, and heavy metal ions. Besides, some of them have also been applied to the bioimaging of intracellular analytes, emerging their potential for biomedical applications, for example, cellular adenosine triphosphate (ATP) and subcellular glutathione (GSH). Finally, the remaining challenges in this sensing field and prospects for future research trends are addressed. Graphical abstract.
Collapse
|
23
|
Saha K, Sontheimer EJ, Brooks PJ, Dwinell MR, Gersbach CA, Liu DR, Murray SA, Tsai SQ, Wilson RC, Anderson DG, Asokan A, Banfield JF, Bankiewicz KS, Bao G, Bulte JWM, Bursac N, Campbell JM, Carlson DF, Chaikof EL, Chen ZY, Cheng RH, Clark KJ, Curiel DT, Dahlman JE, Deverman BE, Dickinson ME, Doudna JA, Ekker SC, Emborg ME, Feng G, Freedman BS, Gamm DM, Gao G, Ghiran IC, Glazer PM, Gong S, Heaney JD, Hennebold JD, Hinson JT, Khvorova A, Kiani S, Lagor WR, Lam KS, Leong KW, Levine JE, Lewis JA, Lutz CM, Ly DH, Maragh S, McCray PB, McDevitt TC, Mirochnitchenko O, Morizane R, Murthy N, Prather RS, Ronald JA, Roy S, Roy S, Sabbisetti V, Saltzman WM, Santangelo PJ, Segal DJ, Shimoyama M, Skala MC, Tarantal AF, Tilton JC, Truskey GA, Vandsburger M, Watts JK, Wells KD, Wolfe SA, Xu Q, Xue W, Yi G, Zhou J. The NIH Somatic Cell Genome Editing program. Nature 2021; 592:195-204. [PMID: 33828315 PMCID: PMC8026397 DOI: 10.1038/s41586-021-03191-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.
Collapse
Affiliation(s)
- Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical History & Bioethics, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA.
| | - P J Brooks
- Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - David R Liu
- Merkin Institute of Transformative Technologies, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | | | - Shengdar Q Tsai
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ross C Wilson
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aravind Asokan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zheng-Yi Chen
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - R Holland Cheng
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Benjamin E Deverman
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Marina E Emborg
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin S Freedman
- Division of Nephrology, University of Washington, Seattle, WA, USA
- Kidney Research Institute, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ionita C Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - John T Hinson
- Pat and Jim Calhoun Cardiology Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Samira Kiani
- Pittsburgh Liver Research Center, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jon E Levine
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Danith H Ly
- Department of Chemistry, Carnegie-Mellon University, Pittsburgh, PA, USA
| | - Samantha Maragh
- Biomarker and Genomic Sciences Group, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Paul B McCray
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Todd C McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Oleg Mirochnitchenko
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD, USA
| | - Ryuji Morizane
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Niren Murthy
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - John A Ronald
- Robarts Research Institute and Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Sushmita Roy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David J Segal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Mary Shimoyama
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melissa C Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Alice F Tarantal
- Department of Pediatrics, University of California, Davis, Davis, CA, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, USA
- School of Medicine, University of California, Davis, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - John C Tilton
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Moriel Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Worcester, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Guohua Yi
- Department of Pulmonary Immunology, University of Texas Health Sciences Center at Tyler, Tyler, TX, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT, USA
| |
Collapse
|
24
|
Eller KA, Aunins TR, Courtney CM, Campos JK, Otoupal PB, Erickson KE, Madinger NE, Chatterjee A. Facile accelerated specific therapeutic (FAST) platform develops antisense therapies to counter multidrug-resistant bacteria. Commun Biol 2021; 4:331. [PMID: 33712689 PMCID: PMC7955031 DOI: 10.1038/s42003-021-01856-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance. To address this, we have developed a Facile Accelerated Specific Therapeutic (FAST) platform that can develop effective peptide nucleic acid (PNA) therapies against MDR bacteria within a week. Our FAST platform uses a bioinformatics toolbox to design sequence-specific PNAs targeting non-traditional pathways/genes of bacteria, then performs in-situ synthesis, validation, and efficacy testing of selected PNAs. As a proof of concept, these PNAs were tested against five MDR clinical isolates: carbapenem-resistant Escherichia coli, extended-spectrum beta-lactamase Klebsiella pneumoniae, New Delhi Metallo-beta-lactamase-1 carrying Klebsiella pneumoniae, and MDR Salmonella enterica. PNAs showed significant growth inhibition for 82% of treatments, with nearly 18% of treatments leading to greater than 97% decrease. Further, these PNAs are capable of potentiating antibiotic activity in the clinical isolates despite presence of cognate resistance genes. Finally, the FAST platform offers a novel delivery approach to overcome limited transport of PNAs into mammalian cells by repurposing the bacterial Type III secretion system in conjunction with a kill switch that is effective at eliminating 99.6% of an intracellular Salmonella infection in human epithelial cells.
Collapse
Affiliation(s)
- Kristen A Eller
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Thomas R Aunins
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Colleen M Courtney
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Sachi Bioworks, Inc, Boulder, CO, 80301, USA
| | - Jocelyn K Campos
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Peter B Otoupal
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Keesha E Erickson
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nancy E Madinger
- Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Anushree Chatterjee
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Sachi Bioworks, Inc, Boulder, CO, 80301, USA.
- Biomedical Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Antimicrobial Regeneration Consortium, Boulder, CO, 80301, USA.
| |
Collapse
|
25
|
Volpi S, Cancelli U, Neri M, Corradini R. Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals (Basel) 2020; 14:14. [PMID: 33375595 PMCID: PMC7823687 DOI: 10.3390/ph14010014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The number of applications of peptide nucleic acids (PNAs)-oligonucleotide analogs with a polyamide backbone-is continuously increasing in both in vitro and cellular systems and, parallel to this, delivery systems able to bring PNAs to their targets have been developed. This review is intended to give to the readers an overview on the available carriers for these oligonucleotide mimics, with a particular emphasis on newly developed multi-component- and multifunctional vehicles which boosted PNA research in recent years. The following approaches will be discussed: (a) conjugation with carrier molecules and peptides; (b) liposome formulations; (c) polymer nanoparticles; (d) inorganic porous nanoparticles; (e) carbon based nanocarriers; and (f) self-assembled and supramolecular systems. New therapeutic strategies enabled by the combination of PNA and proper delivery systems are discussed.
Collapse
Affiliation(s)
| | | | | | - Roberto Corradini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (S.V.); (U.C.); (M.N.)
| |
Collapse
|
26
|
Liu Y, Cao F, Sun B, Bellanti JA, Zheng SG. Magnetic nanoparticles: A new diagnostic and treatment platform for rheumatoid arthritis. J Leukoc Biol 2020; 109:415-424. [PMID: 32967052 DOI: 10.1002/jlb.5mr0420-008rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition characterized by articular synovitis that eventually leads to the destruction of cartilage and bone in the joints with resulting pain and disability. The current therapies for RA are divided into 4 categories: non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, nonbiological disease-modifying anti-rheumatic drugs (DMARDs), and biological DMARDs. Each drug grouping is beset with significant setbacks that not only include limited drug bioavailability and high clearance, but also varying degrees of drug toxicity to normal tissues. Recently, nanotechnology has provided a promising tool for the development of novel therapeutic and diagnostic systems in the area of malignant and inflammatory diseases. Among these, magnetic nanoparticles (MNPs) have provided an attractive carrier option for delivery of therapeutic agents. Armed with an extra magnetic probe, MNPs are capable of more accurately targeting the local lesion with avoidance of unpleasant systemic side effects. This review aims to provide an introduction to the applications of magnetic nanoparticles in RA, focusing on the latest advances, challenges, and opportunities for future development.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fenglin Cao
- Department of Internal Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
27
|
Montazersaheb S, Avci ÇB, Bagca BG, Ay NPO, Tarhriz V, Nielsen PE, Charoudeh HN, Hejazi MS. Targeting TdT gene expression in Molt-4 cells by PNA-octaarginine conjugates. Int J Biol Macromol 2020; 164:4583-4590. [PMID: 32941907 DOI: 10.1016/j.ijbiomac.2020.09.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
Peptide nucleic acid (PNA) is an amide based structural nucleic acid mimic with potential applications in gene therapeutic drug discovery. In the present study, we evaluated and compared the effects on gene expression, cell viability and apoptosis of two antisense PNA-d-octaarginine conjugates, targeting sequences at the AUG translation start site or the 5'-UTR of the TdT (terminal deoxynucleotidyl transferase) gene, as well as a sense oligomer corresponding to the 5'-UTR-antisense, in Molt-4 cells. The protein level of TdT was determined by flow cytometry, and qPCR was used for mRNA expression analysis. Mismatch PNAs were used as control to address the sequence/target spcifity of the biological effects. The results showed that treatment with the AUG- and to slightly lesser extent with the 5'-UTR-antisense PNAs reduced the TdT mRNA as wel as the protein level, whereas only very low effect was observed for the 5'-UTR-sense PNA. A parallel effect was observed on reduced cell survival and increased rate of apoptosis. Our findings suggest that antisense PNAs can inhibit expression of the TdT gene and induce apoptosis in Molt-4 cells.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avci
- Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | | | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
Singh KRB, Sridevi P, Singh RP. Potential applications of peptide nucleic acid in biomedical domain. ENGINEERING REPORTS : OPEN ACCESS 2020; 2:e12238. [PMID: 32838227 PMCID: PMC7404446 DOI: 10.1002/eng2.12238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 05/03/2023]
Abstract
Peptide Nucleic Acid (PNA) are DNA/RNA synthetic analogs with 2-([2-aminoethyl] amino) acetic acid backbone. They partake unique antisense and antigene properties, just due to its inhibitory effect on transcription and translation; they also undergo complementary binding to RNA/DNA with high affinity and specificity. Hence, to date, many methods utilizing PNA for diagnosis and treatment of various diseases namely cancer, AIDS, human papillomavirus, and so on, have been designed and developed. They are being used widely in polymerase chain reaction modulation/mutation, fluorescent in-situ hybridization, and in microarray as a probe; they are also utilized in many in-vitro and in-vivo assays and for developing micro and nano-sized biosensor/chip/array technologies. Earlier reviews, focused only on PNA properties, structure, and modifications related to diagnostics and therapeutics; our review emphasizes on PNA properties and synthesis along with its potential applications in diagnosis and therapeutics. Furthermore, prospects in biomedical applications of PNAs are being discussed in depth.
Collapse
Affiliation(s)
- Kshitij RB Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Parikipandla Sridevi
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of ScienceIndira Gandhi National Tribal UniversityAmarkantakMadhya Pradesh484887India
| |
Collapse
|
29
|
Malik S, Lim J, Slack FJ, Braddock DT, Bahal R. Next generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles. J Control Release 2020; 327:406-419. [PMID: 32835710 DOI: 10.1016/j.jconrel.2020.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Selective inhibition of microRNAs (miRNAs) offers a new avenue for cancer therapeutics. While most of the current anti-miRNA (antimiR) reagents target full length miRNAs, here we investigate novel nanoparticle-delivered short PNA probes containing cationic domains targeting the seed region of the miRNA for effective antimiR therapy. For proof of concept, we tested PNAs targeting miRNA-155 and employed poly(lactic-co-glycolic acid) (PLGA)-based nanoparticle formulation for delivery. A comprehensive evaluation of PLGA nanoparticles (NPs) containing short PNA probes showed significantly superior loading, release profile, and uniform size distribution, compared to conventional non-cationic PNA probes. Confocal microscopy and flow cytometry analyses showed efficient transfection efficiency and uniform distribution of PLGA NPs containing short PNA probes in the cytoplasm. Functional analysis also confirmed efficient miRNA-155 inhibition including an effect on its downstream target proteins. Further, reduced tumor growth was observed after systemic delivery of PLGA nanoparticles containing short PNA probes in vivo in a xenograft mouse model following inhibition of miR-155. There was no evidence of acute or chronic toxicity associated with systemic delivery of PLGA NPs containing short PNA probes in the mice. Overall, in this paper we present a novel antimiR strategy based on PLGA nanoparticle delivered short PNA probes for potential cancer therapy.
Collapse
Affiliation(s)
- Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Jihoon Lim
- Department of Pathology, BIDMC Cancer Center, Harvard Medical School, 330, Brookline Ave, Boston, MA 02215, USA
| | - Frank J Slack
- Department of Pathology, BIDMC Cancer Center, Harvard Medical School, 330, Brookline Ave, Boston, MA 02215, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
30
|
Jiang Z, Thayumanavan S. Non-cationic Material Design for Nucleic Acid Delivery. ADVANCED THERAPEUTICS 2020; 3:1900206. [PMID: 34164572 PMCID: PMC8218910 DOI: 10.1002/adtp.201900206] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022]
Abstract
Nucleic acid delivery provides effective options to control intracellular gene expression and protein production. Efficient delivery of nucleic acid typically requires delivery vehicles to facilitate the entry of nucleic acid into cells. Among non-viral delivery vehicles, cationic materials are favored because of their high loading capacity of nucleic acids and prominent cellular uptake efficiency through electrostatic interaction. However, cationic moieties at high dosage tend to induce severe cytotoxicity due to the interference on cell membrane integrity. In contrast, non-cationic materials present alternative delivery approaches with less safety concerns than cationic materials. In this Progress Report, principles of non-cationic material design for nucleic acid delivery are discussed. Examples of such non-cationic platforms are highlighted, including complexation or conjugation with nucleic acids and self-assembled nucleic acid structures.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
31
|
Muangkaew P, Vilaivan T. Modulation of DNA and RNA by PNA. Bioorg Med Chem Lett 2020; 30:127064. [PMID: 32147357 DOI: 10.1016/j.bmcl.2020.127064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
Peptide nucleic acid (PNA), a synthetic DNA mimic that is devoid of the (deoxy)ribose-phosphate backbone yet still perfectly retains the ability to recognize natural nucleic acids in a sequence-specific fashion, can be employed as a tool to modulate gene expressions via several different mechanisms. The unique strength of PNA compared to other oligonucleotide analogs is its ability to bind to nucleic acid targets with secondary structures such as double-stranded and quadruplex DNA as well as RNA. This digest aims to introduce general readers to the advancement in the area of modulation of DNA/RNA functions by PNA, its current status and future research opportunities, with emphasis on recent progress in new targeting modes of structured DNA/RNA by PNA and PNA-mediated gene editing.
Collapse
Affiliation(s)
- Penthip Muangkaew
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
32
|
Peptide Nucleic Acids and Gene Editing: Perspectives on Structure and Repair. Molecules 2020; 25:molecules25030735. [PMID: 32046275 PMCID: PMC7037966 DOI: 10.3390/molecules25030735] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Unusual nucleic acid structures are salient triggers of endogenous repair and can occur in sequence-specific contexts. Peptide nucleic acids (PNAs) rely on these principles to achieve non-enzymatic gene editing. By forming high-affinity heterotriplex structures within the genome, PNAs have been used to correct multiple human disease-relevant mutations with low off-target effects. Advances in molecular design, chemical modification, and delivery have enabled systemic in vivo application of PNAs resulting in detectable editing in preclinical mouse models. In a model of β-thalassemia, treated animals demonstrated clinically relevant protein restoration and disease phenotype amelioration, suggesting a potential for curative therapeutic application of PNAs to monogenic disorders. This review discusses the rationale and advances of PNA technologies and their application to gene editing with an emphasis on structural biochemistry and repair.
Collapse
|
33
|
Tahmasbi Rad A, Malik S, Yang L, Oberoi-Khanuja TK, Nieh MP, Bahal R. A universal discoidal nanoplatform for the intracellular delivery of PNAs. NANOSCALE 2019; 11:12517-12529. [PMID: 31188378 DOI: 10.1039/c9nr03667a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peptide nucleic acids (PNAs) have gained considerable attention due to their remarkable potential in gene editing and targeting-based strategies. However, cellular delivery of PNAs remains a challenge in developing their broader therapeutic applications. Here, we investigated a novel complex made of lipid bicelles and PNA-based carriers for the efficient delivery of PNAs. For proof of concept, PNAs targeting microRNA (miR) 210 and 155 were tested. Comprehensive evaluation of positive as well as negative charge-containing bicelles with PNA : lipid ratios of 1 : 100, 1 : 1000, and 1 : 2500 was performed. The negatively charged bicelles with a PNA : lipid molar ratio of 1 : 2500 yielded a discoidal shape with a uniform diameter of ∼30 nm and a bilayer thickness of 5 nm, while the positively charged bicellar system contained irregular vesicles after the incorporation of PNA. Small-angle X-ray scattering (SAXS) analysis was performed to provide insight into how the hydrophobic PNAs interact with bicelles. Further, flow cytometry followed by confocal microscopy analyses substantiate the superior transfection efficiency of bicelles containing dye-conjugated antimiR PNAs. Functional analysis also confirmed miR inhibition by PNA oligomers delivered by bicelles. The nanodiscoidal complex opens a new pathway to deliver PNAs, which, on their own, are a great challenge to be endocytosed into cells.
Collapse
Affiliation(s)
- Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA. and Polymer Program, Institute of Materials Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, USA
| | - Shipra Malik
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| | - Lin Yang
- National Synchrotron Light Source - II, Brookhaven National Laboratory, Upton, NY, USA
| | | | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA. and Polymer Program, Institute of Materials Sciences, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269, USA and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Raman Bahal
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
34
|
Cauteruccio S, Licandro E, Panigati M, D'Alfonso G, Maiorana S. Modifying the properties of organic molecules by conjugation with metal complexes: The case of peptide nucleic acids and of the intrinsically chiral thiahelicenes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Cauteruccio S, Panigati M, Veronese L, Zaffaroni N, Folini M, Licandro E. Luminescent dinuclear rhenium(I) PNA conjugates for microRNA-21 targeting: Synthesis, chemico-physical and biological characterization. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
36
|
Malik S, Bahal R. Investigation of PLGA nanoparticles in conjunction with nuclear localization sequence for enhanced delivery of antimiR phosphorothioates in cancer cells in vitro. J Nanobiotechnology 2019; 17:57. [PMID: 31010426 PMCID: PMC6475967 DOI: 10.1186/s12951-019-0490-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/13/2019] [Indexed: 01/14/2023] Open
Abstract
Numerous first generation phosphorothioates (PS) and their derivatives have shown promise targeting mRNA for therapeutic applications and also gained market approval for their use as a drug. However, PS have not been explored for targeting microRNAs (miRNAs or miRs). In particular, efficient delivery remains a critical cog in PS-based antimiR applications. In this study, we tested and characterized a series of poly-lactic-co-glycolic-acid (PLGA) polymers of different molecular weights that can encapsulate the optimum amount of antimiR-155 PS with uniform morphology and surface charge density. We found that nuclear localization sequence substantially increases loading of antimiR-155 PS in PLGA nanoparticles. Further, in a battery of cell culture studies, we confirmed that PLGA nanoparticles encapsulated nuclear localization sequence/antimiR-155 PS combination undergoes significant intracellular delivery and results in reduced expression of miR-155. In conclusion, we successfully demonstrate the feasibility and promise of optimized PLGA nanoparticles based PS delivery in combination with nuclear localization sequence for antimiRs based therapeutics.
Collapse
Affiliation(s)
- Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, CT, 06269-3092, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, CT, 06269-3092, USA.
| |
Collapse
|
37
|
Sato T, Sakamoto N, Nishizawa S. Kinetic and thermodynamic analysis of triplex formation between peptide nucleic acid and double-stranded RNA. Org Biomol Chem 2019; 16:1178-1187. [PMID: 29376179 DOI: 10.1039/c7ob02912h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Kinetics and thermodynamics of triplex formation between 9-mer homopyrimidine PNA (H2N-Lys-TCTCCTCCC-CONH2) and double-stranded RNA (dsRNA, 5'-AGAGGAGGG-3'/3'-UCUCCUCCC-5') at acidic pH were studied by means of a stopped-flow technique and isothermal titration calorimetry (ITC). These results revealed the following main findings: (i) the stable PNA-dsRNA triplex formation mostly originated from the large association rate constant (kon), which was dominated by both the charge neutral PNA backbone and the protonation level of the PNA cytosine. (ii) The temperature dependence of the enthalpy change (ΔH) and kon suggested that the association phase of the PNA-dsRNA triplex formation comprised a non-directional nucleation-zipping mechanism that was coupled with the conformational transition of the unbound PNA. (iii) The destabilization by a mismatch in the dsRNA sequence mainly resulted from the decreased magnitude of both kon and ΔH. (iv) There was sequence and position dependence of the mismatch on ΔH and the activation energy (Eon), which illustrated the importance of base pairing in the middle of the sequence. Our results for the first time revealed an association mechanism for the PNA-dsRNA triplex formation. A set of the kinetic and thermodynamic data we reported here will also expand the scope of understanding for nucleic acid recognition by PNA.
Collapse
Affiliation(s)
- Takaya Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.
| | | | | |
Collapse
|
38
|
Kesy J, Patil KM, Kumar SR, Shu Z, Yong HY, Zimmermann L, Ong AAL, Toh DFK, Krishna MS, Yang L, Decout JL, Luo D, Prabakaran M, Chen G, Kierzek E. A Short Chemically Modified dsRNA-Binding PNA (dbPNA) Inhibits Influenza Viral Replication by Targeting Viral RNA Panhandle Structure. Bioconjug Chem 2019; 30:931-943. [PMID: 30721034 DOI: 10.1021/acs.bioconjchem.9b00039] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNAs play critical roles in diverse catalytic and regulatory biological processes and are emerging as important disease biomarkers and therapeutic targets. Thus, developing chemical compounds for targeting any desired RNA structures has great potential in biomedical applications. The viral and cellular RNA sequence and structure databases lay the groundwork for developing RNA-binding chemical ligands through the recognition of both RNA sequence and RNA structure. Influenza A virion consists of eight segments of negative-strand viral RNA (vRNA), all of which contain a highly conserved panhandle duplex structure formed between the first 13 nucleotides at the 5' end and the last 12 nucleotides at the 3' end. Here, we report our binding and cell culture anti-influenza assays of a short 10-mer chemically modified double-stranded RNA (dsRNA)-binding peptide nucleic acid (PNA) designed to bind to the panhandle duplex structure through novel major-groove PNA·RNA2 triplex formation. We demonstrated that incorporation of chemically modified PNA residues thio-pseudoisocytosine (L) and guanidine-modified 5-methyl cytosine (Q) previously developed by us facilitates the sequence-specific recognition of Watson-Crick G-C and C-G pairs, respectively, at physiologically relevant conditions. Significantly, the chemically modified dsRNA-binding PNA (dbPNA) shows selective binding to the dsRNA region in panhandle structure over a single-stranded RNA (ssRNA) and a dsDNA containing the same sequence. The panhandle structure is not accessible to traditional antisense DNA or RNA with a similar length. Conjugation of the dbPNA with an aminosugar neamine enhances the cellular uptake. We observed that 2-5 μM dbPNA-neamine conjugate results in a significant reduction of viral replication. In addition, the 10-mer dbPNA inhibits innate immune receptor RIG-I binding to panhandle structure and thus RIG-I ATPase activity. These findings would provide the foundation for developing novel dbPNAs for the detection of influenza viral RNAs and therapeutics with optimal antiviral and immunomodulatory activities.
Collapse
Affiliation(s)
- Julita Kesy
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | | | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Hui Yee Yong
- Lee Kong Chian School of Medicine , Nanyang Technological University , EMB 03-07, 59 Nanyang Drive , 636921 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , EMB 06-01, 59 Nanyang Drive , 636921 , Singapore.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 636921 , Singapore
| | - Louis Zimmermann
- Département de Pharmacochimie Moléculaire , University Grenoble Alpes, CNRS, ICMG FR 2607, UMR 5063 , 470 Rue de la Chimie , F-38041 Grenoble , France
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Lixia Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Jean-Luc Decout
- Département de Pharmacochimie Moléculaire , University Grenoble Alpes, CNRS, ICMG FR 2607, UMR 5063 , 470 Rue de la Chimie , F-38041 Grenoble , France
| | - Dahai Luo
- Lee Kong Chian School of Medicine , Nanyang Technological University , EMB 03-07, 59 Nanyang Drive , 636921 , Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , EMB 06-01, 59 Nanyang Drive , 636921 , Singapore
| | - Mookkan Prabakaran
- Temasek Life Science Laboratory, 1 Research Link , National University of Singapore , 117604 , Singapore
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 , Singapore
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| |
Collapse
|
39
|
Campbell B, Hood T, Shank N. Synthesis of a new disulfide Fmoc monomer for creating biologically susceptible linkages in peptide nucleic acid oligomers. Bioorg Chem 2018; 84:394-398. [PMID: 30551065 DOI: 10.1016/j.bioorg.2018.11.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/28/2022]
Abstract
Peptide nucleic acids (PNA) are one of many synthetic mimics of DNA and RNA that have found applications as biological probes, as nano-scaffold components, and in diagnostics. In an effort to use PNA as constructs for cellular delivery we investigated the possibility of installing a biologically susceptible disulfide bond in the backbone of a PNA oligomer. Here we report the synthesis of a new abasic Fmoc monomer containing a disulfide bond that can be incorporated into a PNA oligomer (DS-PNA) using standard solid phase peptide synthesis. The disulfide bond survives cleavage from the resin and DS-PNA forms duplexes with complementary PNA oligomers. Initial studies aimed at determining if the disulfide bond is cleavable to reducing agents while in a duplex are explored using UV thermal analysis and HPLC.
Collapse
Affiliation(s)
- Brandon Campbell
- Department of Chemistry and Biochemistry, Georgia Southern University, Savannah, GA, USA
| | - Taylor Hood
- Department of Chemistry and Biochemistry, Georgia Southern University, Savannah, GA, USA
| | - Nathaniel Shank
- Department of Chemistry and Biochemistry, Georgia Southern University, Savannah, GA, USA.
| |
Collapse
|
40
|
Patil KM, Toh DFK, Yuan Z, Meng Z, Shu Z, Zhang H, Ong A, Krishna MS, Lu L, Lu Y, Chen G. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs. Nucleic Acids Res 2018; 46:7506-7521. [PMID: 30011039 PMCID: PMC6125629 DOI: 10.1093/nar/gky631] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/09/2018] [Accepted: 07/03/2018] [Indexed: 01/16/2023] Open
Abstract
Double-stranded RNA (dsRNA) structures form triplexes and RNA-protein complexes through binding to single-stranded RNA (ssRNA) regions and proteins, respectively, for diverse biological functions. Hence, targeting dsRNAs through major-groove triplex formation is a promising strategy for the development of chemical probes and potential therapeutics. Short (e.g., 6-10 mer) chemically-modified Peptide Nucleic Acids (PNAs) have been developed that bind to dsRNAs sequence specifically at physiological conditions. For example, a PNA incorporating a modified base thio-pseudoisocytosine (L) has an enhanced recognition of a G-C pair in an RNA duplex through major-groove L·G-C base triple formation at physiological pH, with reduced pH dependence as observed for C+·G-C base triple formation. Currently, an unmodified T base is often incorporated into PNAs to recognize a Watson-Crick A-U pair through major-groove T·A-U base triple formation. A substitution of the 5-methyl group in T by hydrogen and halogen atoms (F, Cl, Br, and I) causes a decrease of the pKa of N3 nitrogen atom, which may result in improved hydrogen bonding in addition to enhanced base stacking interactions. Here, we synthesized a series of PNAs incorporating uracil and halouracils, followed by binding studies by non-denaturing polyacrylamide gel electrophoresis, circular dichroism, and thermal melting. Our results suggest that replacing T with uracil and halouracils may enhance the recognition of an A-U pair by PNA·RNA2 triplex formation in a sequence-dependent manner, underscoring the importance of local stacking interactions. Incorporating bromouracils and chlorouracils into a PNA results in a significantly reduced pH dependence of triplex formation even for PNAs containing C bases, likely due to an upshift of the apparent pKa of N3 atoms of C bases. Thus, halogenation and other chemical modifications may be utilized to enhance hydrogen bonding of the adjacent base triples and thus triplex formation. Furthermore, our experimental and computational modelling data suggest that PNA·RNA2 triplexes may be stabilized by incorporating a BrUL step but not an LBrU step, in dsRNA-binding PNAs.
Collapse
Affiliation(s)
- Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhen Yuan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhenyu Meng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Zhiyu Shu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Haiping Zhang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Alan Ann Lerk Ong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Manchugondanahalli S Krishna
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yunpeng Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
41
|
Abstract
The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like β-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.
Collapse
Affiliation(s)
- Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
42
|
Duan T, He L, Tokura Y, Liu X, Wu Y, Shi Z. Construction of tunable peptide nucleic acid junctions. Chem Commun (Camb) 2018; 54:2846-2849. [PMID: 29364308 DOI: 10.1039/c8cc00108a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report here the construction of 3-way and 4-way peptide nucleic acid (PNA) junctions as basic structural units for PNA nanostructuring. The incorporation of amino acid residues into PNA chains makes PNA nanostructures with more structural complexity and architectural flexibility possible, as exemplified by building 3-way PNA junctions with tunable nanopores. Given that PNA nanostructures have good thermal and enzymatic stabilities, they are expected to have broad potential applications in biosensing, drug delivery and bioengineering.
Collapse
Affiliation(s)
- Tanghui Duan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, 430074 Hongshan, Wuhan, P. R. China.
| | | | | | | | | | | |
Collapse
|
43
|
Khoshnejad M, Greineder CF, Pulsipher KW, Villa CH, Altun B, Pan DC, Tsourkas A, Dmochowski IJ, Muzykantov VR. Ferritin Nanocages with Biologically Orthogonal Conjugation for Vascular Targeting and Imaging. Bioconjug Chem 2018; 29:1209-1218. [PMID: 29429330 DOI: 10.1021/acs.bioconjchem.8b00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Genetic incorporation of biologically orthogonal functional groups into macromolecules has the potential to yield efficient, controlled, reproducible, site-specific conjugation of affinity ligands, contrast agents, or therapeutic cargoes. Here, we applied this approach to ferritin, a ubiquitous iron-storage protein that self-assembles into multimeric nanocages with remarkable stability, size uniformity (12 nm), and endogenous capacity for loading and transport of a variety of inorganic and organic cargoes. The unnatural amino acid, 4-azidophenylalanine (4-AzF), was incorporated at different sites in the human ferritin light chain (hFTL) to allow site-specific conjugation of alkyne-containing small molecules or affinity ligands to the exterior surface of the nanocage. The optimal positioning of the 4-AzF residue was evaluated by screening a library of variants for the efficiency of copper-free click conjugation. One of the engineered ferritins, hFTL-5X, was found to accommodate ∼14 small-molecule fluorophores (AlexaFluor 488) and 3-4 IgG molecules per nanocage. Intravascular injection in mice of radiolabeled hFTL-5X carrying antibody to cell adhesion molecule ICAM-1, but not control IgG, enabled specific targeting to the lung due to high basal expression of ICAM-1 (43.3 ± 6.99 vs 3.48 ± 0.14%ID/g for Ab vs IgG). Treatment of mice with endotoxin known to stimulate inflammatory ICAM-1 overexpression resulted in 2-fold enhancement of pulmonary targeting (84.4 ± 12.89 vs 43.3 ± 6.99%ID/g). Likewise, injection of fluorescent, ICAM-targeted hFTL-5X nanocages revealed the effect of endotoxin by enhancement of near-infrared signal, indicating potential utility of this approach for both vascular targeting and imaging.
Collapse
|
44
|
Quijano E, Bahal R, Ricciardi A, Saltzman WM, Glazer PM. Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:583-598. [PMID: 29259523 PMCID: PMC5733847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Since their invention in 1991, peptide nucleic acids (PNAs) have been used in a myriad of chemical and biological assays. More recently, peptide nucleic acids have also been demonstrated to hold great potential as therapeutic agents because of their physiological stability, affinity for target nucleic acids, and versatility. While recent modifications in their design have further improved their potency, their preclinical development has reached new heights due to their combination with recent advancements in drug delivery. This review focuses on recent advances in PNA therapeutic applications, in which chemical modifications are made to improve PNA function and nanoparticles are used to enhance PNA delivery.
Collapse
Affiliation(s)
- Elias Quijano
- Department of Genetics, Yale University, New Haven, CT
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| | - Adele Ricciardi
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT
| |
Collapse
|
45
|
Puah RY, Jia H, Maraswami M, Toh DFK, Ero R, Yang L, Patil KM, Ong AAL, Krishna MS, Sun R, Tong C, Huang M, Chen X, Loh TP, Gao YG, Liu DX, Chen G. Selective Binding to mRNA Duplex Regions by Chemically Modified Peptide Nucleic Acids Stimulates Ribosomal Frameshifting. Biochemistry 2017; 57:149-159. [PMID: 29116759 DOI: 10.1021/acs.biochem.7b00744] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Minus-one programmed ribosomal frameshifting (-1 PRF) allows the precise maintenance of the ratio between viral proteins and is involved in the regulation of the half-lives of cellular mRNAs. Minus-one ribosomal frameshifting is activated by several stimulatory elements such as a heptameric slippery sequence (X XXY YYZ) and an mRNA secondary structure (hairpin or pseudoknot) that is positioned 2-8 nucleotides downstream from the slippery site. Upon -1 RF, the ribosomal reading frame is shifted from the normal zero frame to the -1 frame with the heptameric slippery sequence decoded as XXX YYY Z instead of X XXY YYZ. Our research group has developed chemically modified peptide nucleic acid (PNA) L and Q monomers to recognize G-C and C-G Watson-Crick base pairs, respectively, through major-groove parallel PNA·RNA-RNA triplex formation. L- and Q-incorporated PNAs show selective binding to double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). The sequence specificity and structural selectivity of L- and Q-modified PNAs may allow the precise targeting of desired viral and cellular RNA structures, and thus may serve as valuable biological tools for mechanistic studies and potential therapeutics for fighting diseases. Here, for the first time, we demonstrate by cell-free in vitro translation assays using rabbit reticulocyte lysate that the dsRNA-specific chemically modified PNAs targeting model mRNA hairpins stimulate -1 RF (from 2% to 32%). An unmodified control PNA, however, shows nonspecific inhibition of translation. Our results suggest that the modified dsRNA-binding PNAs may be advantageous for targeting structured RNAs.
Collapse
Affiliation(s)
| | | | | | | | - Rya Ero
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | | | | | | | | | | | | | - Mei Huang
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | | | | | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University , 60 Nanyang Drive, Singapore 637551.,Guangdong Province Key Laboratory Microbial Signals & Disease Co, and Integrative Microbiology Research Centre, South China Agricultural University , Guangzhou 510642, Guangdong, People's Republic of China
| | | |
Collapse
|
46
|
Toh DFK, Patil KM, Chen G. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids. J Vis Exp 2017:56221. [PMID: 28994801 PMCID: PMC5752312 DOI: 10.3791/56221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. Thus, there is great potential in developing chemical probes and therapeutic ligands for the recognition of RNA sequence and structure. Chemically modified Peptide Nucleic Acid (PNA) oligomers have been recently developed that can recognize RNA duplexes in a sequence-specific manner. PNAs are chemically stable with a neutral peptide-like backbone. PNAs can be synthesized relatively easily by the manual Boc-chemistry solid-phase peptide synthesis method. PNAs are purified by reverse-phase HPLC, followed by molecular weight characterization by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Non-denaturing polyacrylamide gel electrophoresis (PAGE) technique facilitates the imaging of the triplex formation, because carefully designed free RNA duplex constructs and PNA bound triplexes often show different migration rates. Non-denaturing PAGE with ethidium bromide post staining is often an easy and informative technique for characterizing the binding affinities and specificities of PNA oligomers. Typically, multiple RNA hairpins or duplexes with single base pair mutations can be used to characterize PNA binding properties, such as binding affinities and specificities. 2-Aminopurine is an isomer of adenine (6-aminopurine); the 2-aminopurine fluorescence intensity is sensitive to local structural environment changes, and is suitable for the monitoring of triplex formation with the 2-aminopurine residue incorporated near the PNA binding site. 2-Aminopurine fluorescence titration can also be used to confirm the binding selectivity of modified PNAs towards targeted double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). UV-absorbance-detected thermal melting experiments allow the measurement of the thermal stability of PNA-RNA duplexes and PNA·RNA2 triplexes. Here, we describe the synthesis and purification of PNA oligomers incorporating modified residues, and describe biochemical and biophysical methods for characterization of the recognition of RNA duplexes by the modified PNAs.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University;
| |
Collapse
|
47
|
Gupta A, Quijano E, Liu Y, Bahal R, Scanlon SE, Song E, Hsieh WC, Braddock DE, Ly DH, Saltzman WM, Glazer PM. Anti-tumor Activity of miniPEG-γ-Modified PNAs to Inhibit MicroRNA-210 for Cancer Therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:111-119. [PMID: 29246289 PMCID: PMC5633812 DOI: 10.1016/j.omtn.2017.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRs) are frequently overexpressed in human cancers. In particular, miR-210 is induced in hypoxic cells and acts to orchestrate the adaptation of tumor cells to hypoxia. Silencing oncogenic miRs such as miR-210 may therefore offer a promising approach to anticancer therapy. We have developed a miR-210 inhibition strategy based on a new class of conformationally preorganized antisense γ peptide nucleic acids (γPNAs) that possess vastly superior RNA-binding affinity, improved solubility, and favorable biocompatibility. For cellular delivery, we encapsulated the γPNAs in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). Our results show that γPNAs targeting miR-210 cause significant delay in growth of a human tumor xenograft in mice compared to conventional PNAs. Further, histopathological analyses show considerable necrosis, fibrosis, and reduced cell proliferation in γPNA-treated tumors compared to controls. Overall, our work provides a chemical framework for a novel anti-miR therapeutic approach using γPNAs that should facilitate rational design of agents to potently inhibit oncogenic microRNAs.
Collapse
Affiliation(s)
- Anisha Gupta
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Elias Quijano
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Susan E Scanlon
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Eric Song
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Wei-Che Hsieh
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Danith H Ly
- Department of Chemistry and Center for Nucleic Acids Science and Technology (CNAST), Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA; Department of Genetics, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
48
|
Synthesis of innovative biochemical active mixed ligand metal(II) complexes with thiazole containing Schiff base: In vitro
antimicrobial profile. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Abstract
A new approach, based on the use of peptide nucleic acid molecules to form triple helices and promote locus-specific recombination, demonstrates potential for in vivo gene correction at clinically significant levels and may provide a promising avenue for gene therapy.
Collapse
Affiliation(s)
- Bertrand Jordan
- UMR 7268 ADÉS, Aix-Marseille, Université/EFS/CNRS, Espace éthique méditerranéen, hôpital d'adultes la Timone, 264, rue Saint-Pierre, 13385 Marseille Cedex 05, France - CoReBio PACA, case 901, parc scientifique de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|
50
|
Abstract
The i.p. administration of chemotherapy in ovarian and uterine serous carcinoma patients by biodegradable nanoparticles may represent a highly effective way to suppress peritoneal carcinomatosis. However, the efficacy of nanoparticles loaded with chemotherapeutic agents is currently hampered by their fast clearance by lymphatic drainage. Here, we show that a unique formulation of bioadhesive nanoparticles (BNPs) can interact with mesothelial cells in the abdominal cavity and significantly extend the retention of the nanoparticles in the peritoneal space. BNPs loaded with a potent chemotherapeutic agent [epothilone B (EB)] showed significantly lower systemic toxicity and higher therapeutic efficacy against i.p. chemotherapy-resistant uterine serous carcinoma-derived xenografts compared with free EB and non-BNPs loaded with EB.
Collapse
|