1
|
Rajkumari S, Singh J, Agrawal U, Agrawal S. Myeloid-derived suppressor cells in cancer: Current knowledge and future perspectives. Int Immunopharmacol 2024; 142:112949. [PMID: 39236460 DOI: 10.1016/j.intimp.2024.112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
MDSCs (myeloid-derived suppressor cells) are crucial for immune system evasion in cancer. They accumulate in peripheral blood and tumor microenvironment, suppressing immune cells like T-cells, natural killer cells and dendritic cells. They promote tumor angiogenesis and metastasis by secreting cytokines and growth factors and contribute to a tumor-promoting environment. The accumulation of MDSCs in cancer patients has been linked to poor prognosis and resistance to various cancer therapies. Targeting MDSCs and their immunosuppressive mechanisms may improve treatment outcomes and enhance immune surveillance by developing drugs that inhibit MDSC function, by preventing their accumulation and by disrupting the tumor-promoting environment. This review presents a detailed overview of the MDSC research in cancer with regulation of their development and function. The relevance of MDSC as a prognostic and predictive biomarker in different types of cancers, along with recent advancements on the therapeutic approaches to target MDSCs are discussed in detail.
Collapse
Affiliation(s)
- Sunanda Rajkumari
- ICMR National Institute of Medical Statistics, Ansari Nagar, New Delhi 110029, India
| | - Jaspreet Singh
- ICMR National Institute of Pathology, Safdarjung Hospital Campus, Ansari Nagar, New Delhi 110029, India
| | - Usha Agrawal
- Asian Institute of Public Health University (AIPH) University, 1001 Haridamada, Jatani, Near IIT Bhubaneswar, Bhubaneswar 751002, India
| | - Sandeep Agrawal
- Discovery Research Division, Indian Council of Medical Research, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
2
|
Obeagu EI, Obeagu GU. Breastfeeding's protective role in alleviating breast cancer burden: a comprehensive review. Ann Med Surg (Lond) 2024; 86:2805-2811. [PMID: 38694322 PMCID: PMC11060284 DOI: 10.1097/ms9.0000000000001914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/26/2024] [Indexed: 05/04/2024] Open
Abstract
Breastfeeding, an essential aspect of infant care, has garnered recognition beyond its immediate health benefits, revealing a profound and lasting impact on women's health. Emerging research has unveiled a compelling relationship between breastfeeding and its enduring role in reducing the risk of ovarian cancer. This narrative review aims to comprehensively examine the lifelong impact of breastfeeding on ovarian cancer prevention, transcending infancy and delving into the mechanisms and implications for women's health. Epidemiological evidence consistently demonstrates an inverse association between breastfeeding and the risk of ovarian cancer. Prolonged durations of breastfeeding correlate with a significant reduction in the likelihood of developing ovarian malignancies, underscoring the protective influence of sustained lactation. The mechanisms underlying breastfeeding's impact on ovarian cancer prevention involve hormonal modulation and cellular changes. Breastfeeding contributes to reduced ovulatory cycles and oestrogen exposure, mitigating hormonal influences linked to ovarian cancer development. Moreover, the cellular alterations induced by breastfeeding within the ovarian microenvironment create an environment less conducive to malignant transformations. In conclusion, this paper consolidates evidence demonstrating breastfeeding's enduring impact on reducing ovarian cancer risk. It emphasizes the need for continued research, supportive interventions, and societal engagement to promote breastfeeding practices. Embracing breastfeeding not only provides immediate health benefits but also represents a formidable strategy in lifelong ovarian cancer prevention, offering a promising pathway towards enhanced women's health and well-being.
Collapse
|
3
|
Al-Alem L, Prendergast JM, Clark J, Zarrella B, Zarrella DT, Hill SJ, Growdon WB, Pooladanda V, Spriggs DR, Cramer D, Elias KM, Nazer RI, Skates SJ, Behrens J, Dransfield DT, Rueda BR. Sialyl-Tn serves as a potential therapeutic target for ovarian cancer. J Ovarian Res 2024; 17:71. [PMID: 38566237 PMCID: PMC10985924 DOI: 10.1186/s13048-024-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Ovarian cancer remains the deadliest of the gynecologic cancers in the United States. There have been limited advances in treatment strategies that have seen marked increases in overall survival. Thus, it is essential to continue developing and validating new treatment strategies and markers to identify patients who would benefit from the new strategy. In this report, we sought to further validate applications for a novel humanized anti-Sialyl Tn antibody-drug conjugate (anti-STn-ADC) in ovarian cancer. METHODS We aimed to further test a humanized anti-STn-ADC in sialyl-Tn (STn) positive and negative ovarian cancer cell line, patient-derived organoid (PDO), and patient-derived xenograft (PDX) models. Furthermore, we sought to determine whether serum STn levels would reflect STn positivity in the tumor samples enabling us to identify patients that an anti-STn-ADC strategy would best serve. We developed a custom ELISA with high specificity and sensitivity, that was used to assess whether circulating STn levels would correlate with stage, progression-free survival, overall survival, and its value in augmenting CA-125 as a diagnostic. Lastly, we assessed whether the serum levels reflected what was observed via immunohistochemical analysis in a subset of tumor samples. RESULTS Our in vitro experiments further define the specificity of the anti-STn-ADC. The ovarian cancer PDO, and PDX models provide additional support for an anti-STn-ADC-based strategy for targeting ovarian cancer. The custom serum ELISA was informative in potential triaging of patients with elevated levels of STn. However, it was not sensitive enough to add value to existing CA-125 levels for a diagnostic. While the ELISA identified non-serous ovarian tumors with low CA-125 levels, the sample numbers were too small to provide any confidence the STn ELISA would meaningfully add to CA-125 for diagnosis. CONCLUSIONS Our preclinical data support the concept that an anti-STn-ADC may be a viable option for treating patients with elevated STn levels. Moreover, our STn-based ELISA could complement IHC in identifying patients with whom an anti-STn-based strategy might be more effective.
Collapse
Affiliation(s)
- Linah Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Justin Clark
- Siamab Therapeutics, Inc, Newton, MA, 02458, USA
| | - Bianca Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Dominique T Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Sarah J Hill
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Whitfield B Growdon
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Venkatesh Pooladanda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - David R Spriggs
- Division of Hematology-Oncology, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Daniel Cramer
- Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Kevin M Elias
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | | | - Steven J Skates
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jeff Behrens
- Siamab Therapeutics, Inc, Newton, MA, 02458, USA
| | | | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Li J, Yang H, Zhang L, Zhang S, Dai Y. Metabolic reprogramming and interventions in endometrial carcinoma. Biomed Pharmacother 2023; 161:114526. [PMID: 36933381 DOI: 10.1016/j.biopha.2023.114526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer cells are usually featured by metabolic adaptations that facilitate their growth, invasion, and metastasis. Thus, reprogramming of intracellular energy metabolism is currently one of the hotspots in the field of cancer research. Whereas aerobic glycolysis (known as the Warburg effect) has long been considered a dominant form of energy metabolism in cancer cells, emerging evidence indicates that other metabolic forms, especially oxidative phosphorylation (OXPHOS), may play a critical role at least in some types of cancer. Of note, women with metabolic syndromes (MetS), including obesity, hyperglycemia, dyslipidemia, and hypertension, have an increased risk of developing endometrial carcinoma (EC), suggesting a close link between metabolism and EC. Interestingly, the metabolic preferences vary among EC cell types, particularly cancer stem cells and chemotherapy-resistant cells. Currently, it is commonly accepted that glycolysis is the main energy provider in EC cells, while OXPHOS is reduced or impaired. Moreover, agents specifically targeting the glycolysis and/or OXPHOS pathways can inhibit tumor cell growth and promote chemosensitization. For example, metformin and weight control not only reduce the incidence of EC but also improve the prognosis of EC patients. In this review, we comprehensively overview the current in-depth understanding of the relationship between metabolism and EC and provide up-to-date insights into the development of novel therapies targeting energy metabolism for auxiliary treatment in combination with chemotherapy for EC, especially those resistant to conventional chemotherapy.
Collapse
Affiliation(s)
- Jiajia Li
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China; Department of Gynecologic Oncology, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Hongmei Yang
- Department of Critical Care Medicine, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Lingyi Zhang
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Songling Zhang
- Department of Gynecologic Oncology, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, Jilin 130012, China.
| | - Yun Dai
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
5
|
Ding H, Zhang J, Zhang F, Xu Y, Liang W, Yu Y. Nanotechnological approaches for diagnosis and treatment of ovarian cancer: a review of recent trends. Drug Deliv 2022; 29:3218-3232. [PMID: 36259505 PMCID: PMC9586634 DOI: 10.1080/10717544.2022.2132032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formulations from nanotechnology platform promote therapeutic drug delivery and offer various advantages such as biocompatibility, non-inflammatory effects, high therapeutic output, biodegradability, non-toxicity, and biocompatibility in comparison with free drug delivery. Due to inherent shortcomings of conventional drug delivery to cancerous tissues, alternative nanotechnological-based approaches have been developed for such ailments. Ovarian cancer is the leading gynecological cancer with higher mortality rates due to its reoccurrence and late diagnosis. In recent years, the field of medical nanotechnology has witnessed significant progress in addressing existing problems and improving the diagnosis and therapy of various diseases including cancer. Nevertheless, the literature and current reviews on nanotechnology are mainly focused on its applications in other cancers or diseases. In this review, we focused on the nanoscale drug delivery systems for ovarian cancer targeted therapy and diagnosis, and different nanocarriers systems including dendrimers, nanoparticles, liposomes, nanocapsules, and nanomicelles for ovarian cancer have been discussed. In comparison to non-functionalized counterparts of nanoformulations, the therapeutic potential and preferential targeting of ovarian cancer through ligand functionalized nanoformulations’ development has been reviewed. Furthermore, numerous biomarkers such as prostatic, mucin 1, CA-125, apoptosis repeat baculoviral inhibitor-5, human epididymis protein-4, and e-cadherin have been identified and elucidated in this review for the assessment of ovarian cancer. Nanomaterial biosensor-based tumor markers and their various types for ovarian cancer diagnosis are explained in this article. In association, different nanocarrier approaches for the ovarian cancer therapy have also been underpinned. To ensure ovarian cancer control and efficient detection, there is an urgent need for faster and less costly medical tools in the arena of oncology.
Collapse
Affiliation(s)
- Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital, Shaoxing University, Shaoxing, China
| | - Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital, Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China.,Obstetrics and Gynecology Hospital, Shaoxing University, Shaoxing, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Yijun Yu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
6
|
Adeniyi O, Mashazi P. Kirigami paper-based colorimetric immunosensor integrating smartphone readout for determination of humoral autoantibody immune response. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Choi HY, Ahn JH, Kwon H, Yim JH, Lee D, Choi JH. Citromycin Isolated from the Antarctic Marine-Derived Fungi, Sporothrix sp., Inhibits Ovarian Cancer Cell Invasion via Suppression of ERK Signaling. Mar Drugs 2022; 20:md20050275. [PMID: 35621926 PMCID: PMC9143255 DOI: 10.3390/md20050275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, microorganisms and their metabolites in the Antarctic marine environment have attracted attention as useful sources for novel therapeutics, including anticancer drugs. Here, we investigated the effects of citromycin, isolated from the Antarctic marine-derived fungus, Sporothrix sp., on human ovarian cancer cells. Citromycin inhibited the migration and invasion of human ovarian cancer SKOV3 and A2780 cells, but had no cytotoxic activity against them. Additionally, it inhibited the expression of epithelial–mesenchymal transition (EMT) markers and the activation of matrix metalloproteinase (MMP)-2 and MMP9. Moreover, extracellular signal-regulated kinase (ERK)-1/2 signaling was inhibited after citromycin treatment, and the ectopic expression of ERK negated the anti-invasive activity of citromycin. Our findings suggest that citromycin inhibits the migration and invasion of human ovarian cancer cells by downregulating the expression levels of EMT markers and MMP-2/9 via inhibition of the ERK1/2 pathway.
Collapse
Affiliation(s)
- He Yun Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea;
| | - Ji-Hye Ahn
- Department of Oriental Pharmacy, Woosuk University, Jeonju 55338, Korea;
| | - Haeun Kwon
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.K.); (D.L.)
| | - Joung Han Yim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon 21990, Korea;
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (H.K.); (D.L.)
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Korea;
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
8
|
Wang X, Wang F, Li S, Yin G, Pu X. Preparation and in vitro evaluation of thermosensitive liposomes targeting for ovarian cancer. Curr Drug Deliv 2022; 19:940-948. [PMID: 35319368 DOI: 10.2174/1567201819666220321110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/09/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Liposomes have been widely used in drug delivery systems because the encapsulation of liposomes changes the biological distribution profile and improves the therapeutic indices of various drugs. Thermosensitive liposomes have been proven to be a precise and effective method for cancer therapy in many preclinical studies. However, the lack of specific targeting ability to cancer cells limited their application in safe and efficient chemotherapy. MATERIALS AND METHODS In the present study, an ovarian targeting ligand namely WSGFPGVWGASVK (WSG) screened by phage display in vivo was grafted on the thermosensitive phospholipids to prepare the liposomes targeting ovarian cancer cells. WSG was first grafted onto the hydrophilic terminal of DSPE-PEG2000 molecules, and then the WSG modified thermosensitive liposomes (WSG-Lipo) were prepared by thin-film hydration method. Doxorubicin hydrochloride (DOX) was used as a model drug to investigate the drug release behavior of liposomes at different temperatures. The specificity of liposomes to SKOV-3 cells was studied by cell uptake in vitro. RESULTS The WSG-Lipo-DOX could release more DOX at 42°C than at 37°C, showing stronger specificity to SKOV-3 cells and thus selectively inhibiting SKOV-3 cells activity in vitro. CONCLUSION The active targeting liposome showed potential in improving the specificity of thermosensitive liposomes and would be applied in the chemotherapy combined with a thermotherapy.
Collapse
Affiliation(s)
- Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Fang Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Sixie Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
9
|
Xiao H, Wang K, Li D, Wang K, Yu M. Evaluation of FGFR1 as a diagnostic biomarker for ovarian cancer using TCGA and GEO datasets. PeerJ 2021; 9:e10817. [PMID: 33604191 PMCID: PMC7866899 DOI: 10.7717/peerj.10817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Malignant ovarian cancer is associated with the highest mortality of all gynecological tumors. Designing therapeutic targets that are specific to OC tissue is important for optimizing OC therapies. This study aims to identify different expression patterns of genes related to FGFR1 and the usefulness of FGFR1 as diagnostic biomarker for OC. Methods We collected data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. In the TCGA cohort we analyzed clinical information according to patient characteristics, including age, stage, grade, longest dimension of the tumor and the presence of a residual tumor. GEO data served as a validation set. We obtained data on differentially expressed genes (DEGs) from the two microarray datasets. We then used gene set enrichment analysis (GSEA) to analyze the DEG data in order to identify enriched pathways related to FGFR1. Results Differential expression analysis revealed that FGFR1 was significantly downregulated in OC specimens. 303 patients were included in the TCGA cohort. The GEO dataset confirmed these findings using information on 75 Asian patients. The GSE105437 and GSE12470 database highlighted the significant diagnostic value of FGFR1 in identifying OC (AUC = 1, p = 0.0009 and AUC = 0.8256, p = 0.0015 respectively). Conclusions Our study examined existing TCGA and GEO datasets for novel factors associated with OC and identified FGFR1 as a potential diagnostic factor. Further investigation is warranted to characterize the role played by FGFR1 in OC.
Collapse
Affiliation(s)
- Huiting Xiao
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Kun Wang
- Department of Urologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dan Li
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ke Wang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Min Yu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
10
|
Adeniyi O, Sicwetsha S, Adesina A, Mashazi P. Immunoassay detection of tumor-associated autoantibodies using protein G bioconjugated to nanomagnet-silica decorated with Au@Pd nanoparticles. Talanta 2021; 226:122127. [PMID: 33676681 DOI: 10.1016/j.talanta.2021.122127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022]
Abstract
A colorimetric immunosensor was developed for the detection of tumor-associated anti-p53 autoantibodies (anti-p53aAbs). The immunosensor platform was prepared by immobilizing human-protein (p53Ag) onto a high binding 96-well plate. The immunoassay was based on the immunometric sandwich protocol, and protein G functionalized nanomagnet-silica nanoparticles decorated with Au@Pd (Fe3O4@SiO2-NH2-Au@Pd0.30NPs-protG) was used as the detection nanobioprobe. The Fe3O4@SiO2-NH2-Au@Pd0.30NPs-protG exhibited a high binding affinity for the captured anti-p53aAbs and high catalytic performance towards the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The oxidation of TMB resulted in significant color change and a UV-vis absorption signal. The detection was achieved by measuring the changes in UV-Vis absorption as the concentrations of anti-p53aAbs changed. The apparent binding affinity (KD) between the p53aAbs and Fe3O4@SiO2-NH2-Au@Pd0.30NPs-protG was 35.2 ng mL-1. The plot of change in the absorption intensity against the logarithm of anti-p53aAbs was linear within 1.0-500.0 ng mL-1 with a correlation coefficient (R2) of 0.98. The detection limit (LoD) using 3σ was calculated to be 15 pg mL-1, which is lower than the conventional HRP-label based colorimetric immunoassay. The real sample detection was investigated using the serum recovery method. The recovery of the anti-p53aAbs ranges from 98.5% to 105.7%, demonstrating its potential for practical applications.
Collapse
Affiliation(s)
- Omotayo Adeniyi
- Department of Chemistry, P.O. Box 94, Makhanda, 6140, South Africa
| | | | - Abiola Adesina
- Department of Chemistry, P.O. Box 94, Makhanda, 6140, South Africa
| | - Philani Mashazi
- Department of Chemistry, P.O. Box 94, Makhanda, 6140, South Africa; Institute for Nanotechnology Innovation Rhodes University, P.O. Box 94, Makhanda, 6140, South Africa.
| |
Collapse
|
11
|
Placha D, Jampilek J. Chronic Inflammatory Diseases, Anti-Inflammatory Agents and Their Delivery Nanosystems. Pharmaceutics 2021; 13:pharmaceutics13010064. [PMID: 33419176 PMCID: PMC7825503 DOI: 10.3390/pharmaceutics13010064] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory diseases, whether caused by excessive stress on certain tissues/parts of the body or arising from infections accompanying autoimmune or secondary diseases, have become a problem, especially in the Western world today. Whether these are inflammations of visceral organs, joints, bones, or the like, they are always a physiological reaction of the body, which always tries to eradicate noxious agents and restore tissue homeostasis. Unfortunately, this often results in damage, often irreversible, to the affected tissues. Nevertheless, these inflammatory reactions of the body are the results of excessive stress, strain, and the generally unhealthy environment, in which the people of Western civilization live. The pathophysiology and pathobiochemistry of inflammatory/autoimmune processes are being studied in deep detail, and pharmaceutical companies are constantly developing new drugs that modulate/suppress inflammatory responses and endogenous pro-inflammatory agents. In addition to new specifically targeted drugs for a variety of pro-inflammatory agents, a strategy can be found for the use of older drugs, which are formulated into special nanodrug delivery systems with targeted distribution and often modified release. This contribution summarizes the current state of research and development of nanoformulated anti-inflammatory agents from both conventional drug classes and experimental drugs or dietary supplements used to alleviate inflammatory reactions.
Collapse
Affiliation(s)
- Daniela Placha
- Nanotechnology Centre, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB—Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
- Correspondence: (D.P.); (J.J.)
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
- Correspondence: (D.P.); (J.J.)
| |
Collapse
|
12
|
Nanotechnology in ovarian cancer: Diagnosis and treatment. Life Sci 2020; 266:118914. [PMID: 33340527 DOI: 10.1016/j.lfs.2020.118914] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
To overcome the drawbacks of conventional delivery, this review spotlights a number of nanoscale drug delivery systems, including nanoparticles, liposomes, nano micelles, branched dendrimers, nanocapsules, and nanostructured lipid formulations for the targeted therapy of ovarian cancer. These nanoformulations offer numerous advantages to promote therapeutic drug delivery such as nontoxicity, biocompatibility, good biodegradability, increased therapeutic impact than free drugs, and non-inflammatory effects. Importantly, the development of specific ligands functionalized nanoformulations enable preferential targeting of ovarian tumors and eventually amplify the therapeutic potential compared to nonfunctionalized counterparts. Ovarian cancer is typically identified by biomarker assessment such as CA125, HE4, Mucin 1, and prostatic. There is, nevertheless, a tremendous demand for less costly, faster, and compact medical tools, both for timely detection and ovarian cancer control. This paper explored multiple types of tumor marker-based on nanomaterial biosensors. Initially, we mention different forms of ovarian cancer biomarkers involving CA125, human epididymis protein 4 (HE4), mucin 1 (MUC1), and prostate. It is accompanied by a brief description of new nanotechnology methods for diagnosis. Nanobiosensors for evaluating ovarian cancer biomarkers can be categorized based on electrochemical, optical, paper-based, giant magnetoresistive, and lab-on-a-chip devices.
Collapse
|
13
|
Vanza JD, Patel RB, Patel MR. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
TRPV1 Antagonist DWP05195 Induces ER Stress-Dependent Apoptosis through the ROS-p38-CHOP Pathway in Human Ovarian Cancer Cells. Cancers (Basel) 2020; 12:cancers12061702. [PMID: 32604833 PMCID: PMC7352786 DOI: 10.3390/cancers12061702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/25/2022] Open
Abstract
In addition to their analgesic activity, transient receptor potential vanilloid 1 (TRPV1) agonists and antagonists demonstrate profound anti-cancer activities in various human cancers. In the present study, we investigated the anti-cancer activity of a novel TRPV1 antagonist, DWP05195, and evaluated its molecular mechanism in human ovarian cancer cells. DWP05195 demonstrated potent growth inhibitory effects in all five ovarian cancer cell lines examined. DWP05195 induced apoptosis through the activation of caspase-3, -8, and -9. DWP05195 induced C/EBP homologous protein (CHOP) expression and endoplasmic reticulum (ER) stress. Sodium phenylbutyrate (4-PBA), an ER-stress inhibitor, and CHOP knockdown significantly suppressed DWP5195-induced cell death. DWP05195-enhanced CHOP expression stimulated intrinsic and extrinsic apoptotic pathways through the regulation of Bcl2-like11 (BIM), death receptor 4 (DR4), and DR5. DWP05195-induced cell death was associated with increased reactive oxygen species (ROS) levels and p38 pathway activation. Pre-treatment with the antioxidant N-acetyl-L-cysteine (NAC) significantly suppressed DWP05195-induced CHOP expression and p38 activation. Inhibition of NADPH oxidase (NOX) through p47phox knockdown abolished DWP05195-induced CHOP expression and cell death. Taken together, the findings indicate that DWP05195 induces ER stress-induced apoptosis via the ROS-p38-CHOP pathway in human ovarian cancer cells.
Collapse
|
15
|
de Castro ACH, Alves LM, Siquieroli ACS, Madurro JM, Brito-Madurro AG. Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104746] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Zhu W, Niu J, He M, Zhang L, Lv X, Liu F, Jiang L, Zhang J, Yu Z, Zhao L, Bi J, Yan Y, Wei Q, Huo H, Fan Y, Chen Y, Ding J, Wei M. SNORD89 promotes stemness phenotype of ovarian cancer cells by regulating Notch1-c-Myc pathway. J Transl Med 2019; 17:259. [PMID: 31395064 PMCID: PMC6686521 DOI: 10.1186/s12967-019-2005-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022] Open
Abstract
Background Ovarian cancer is the leading cause of death in gynecological cancer. Cancer stem cells (CSCs) contribute to the occurrence, progression and resistance. Small nucleolar RNAs (SnoRNAs), a class of small molecule non-coding RNA, involve in the cancer cell stemness and tumorigenesis. Methods In this study, we screened out SNORNAs related to ovarian patient’s prognosis by analyzing the data of 379 cases of ovarian cancer patients in the TCGA database, and analyzed the difference of SNORNAs expression between OVCAR-3 (OV) sphere-forming (OS) cells and OV cells. After overexpression or knockdown SNORD89, the expression of Nanog, CD44, and CD133 was measured by qRT-PCR or flow cytometry analysis in OV, CAOV-3 (CA) and OS cells, respectively. CCK-8 assays, plate clone formation assay and soft agar colony formation assay were carried out to evaluate the changes of cell proliferation and self-renewal ability. Scratch migration assay and trans-well invasion analysis were used for assessing the changes of migration and invasion ability. Results High expression of SNORD89 indicates the poor prognosis of ovarian cancer patients and was associated with patients’ age, therapy outcome. SNORD89 highly expressed in ovarian cancer stem cells. The overexpression of SNORD89 resulted in the increased stemness markers, S phase cell cycle, cell proliferation, invasion and migration ability in OV and CA cells. Conversely, these phenomena were reversed after SNORD89 silencing in OS cells. Further, we found that SNORD89 could upregulate c-Myc and Notch1 expression in mRNA and protein levels. SNORD89 deteriorates the prognosis of ovarian cancer patients by regulating Notch1-c-Myc pathway to promote cell stemness and acts as an oncogene in ovarian tumorigenesis. Consequently, SNORD89 can be a novel prognostic biomarker and therapeutic target for ovarian cancer. Electronic supplementary material The online version of this article (10.1186/s12967-019-2005-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Jumin Niu
- Shenyang Women's and Children's Hospital, Shenyang, Liaoning, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Liwen Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Fangxiao Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Jia Bi
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Qian Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Hong Huo
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Yue Fan
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China.,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Jian Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China. .,Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China. .,Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
17
|
Vhora I, Lalani R, Bhatt P, Patil S, Misra A. Lipid-nucleic acid nanoparticles of novel ionizable lipids for systemic BMP-9 gene delivery to bone-marrow mesenchymal stem cells for osteoinduction. Int J Pharm 2019; 563:324-336. [PMID: 30954673 DOI: 10.1016/j.ijpharm.2019.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 01/14/2023]
Abstract
Rational design of novel ionizable lipids for development of lipid-nucleic acid nanoparticles (LNP) is required for safe and effective systemic gene delivery for osteoporosis. LNPs require suitable characteristics for intravenous administration and effective accumulation in bone marrow for enhanced transfection. Hence, lipids with C18 tail and ionizable headgroup (Boc-His-ODA/BHODA and His-ODA/HODA) were synthesized and characterized physicochemically. LNPs were prepared with bone morphogenetic protein-9 gene (BHODA-LNP, HODA-LNP, and bone-homing peptide targeted HODA-LNP - HODA-LNPT). Thorough physicochemical (electrolyte stability, DNase I and serum stability) and biological (hemolysis, ROS induction, cytotoxicity and transfection) characterization was carried out followed by acute toxicity studies and therapeutic performance studies in ovariectomized rat model. Lipids with pH dependent ionization were successfully synthesized. LNPs thereof were ∼100 nm size with stability against electrolytes, DNase I and serum and exhibited low hemolytic potential demonstrating suitability for intravenous administration. LNPs exhibited minimal cytotoxicity, non-significant ROS induction and high transfection. In vivo studies demonstrated safety and improved bone regeneration in OVX rats with HODA-LNPT showing significantly better performance. Synthesized ionizable lipids offer safe and effective alternative for preparation of LNPs for gene delivery. Targeted BMP-9 LNP show potential for systemic osteoporosis treatment.
Collapse
Affiliation(s)
- Imran Vhora
- Department of Pharmaceutics, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan Campus, Vadodara 390001, Gujarat, India
| | - Rohan Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan Campus, Vadodara 390001, Gujarat, India
| | - Priyanka Bhatt
- Department of Pharmaceutics, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan Campus, Vadodara 390001, Gujarat, India; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., MDC30, Tampa, FL 33612, United States
| | - Sushilkumar Patil
- Department of Pharmaceutics, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan Campus, Vadodara 390001, Gujarat, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Kalabhavan Campus, Vadodara 390001, Gujarat, India.
| |
Collapse
|
18
|
Li X, Chen W, Jin Y, Xue R, Su J, Mu Z, Li J, Jiang S. miR-142-5p enhances cisplatin-induced apoptosis in ovarian cancer cells by targeting multiple anti-apoptotic genes. Biochem Pharmacol 2019; 161:98-112. [DOI: 10.1016/j.bcp.2019.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 01/09/2019] [Indexed: 01/02/2023]
|
19
|
Ghosh S, Lalani R, Patel V, Bardoliwala D, Maiti K, Banerjee S, Bhowmick S, Misra A. Combinatorial nanocarriers against drug resistance in hematological cancers: Opportunities and emerging strategies. J Control Release 2019; 296:114-139. [DOI: 10.1016/j.jconrel.2019.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/16/2022]
|
20
|
Gandhi M, Bhatt P, Chauhan G, Gupta S, Misra A, Mashru R. IGF-II-Conjugated Nanocarrier for Brain-Targeted Delivery of p11 Gene for Depression. AAPS PharmSciTech 2019; 20:50. [PMID: 30617637 DOI: 10.1208/s12249-018-1206-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/03/2018] [Indexed: 02/02/2023] Open
Abstract
Gene therapy involving p11 cDNA has been thought to be a futuristic approach for the effective management of depression as the existing treatment regimen presents many issues regarding late onset of action, patient withdrawal and their side effects. For the effective transfection of p11 gene intracellularly, two cationic lipids based on phospholipid DOPE conjugated to basic amino acids histidine and arginine were synthesised, used for liposome formulation and evaluated for their ability as gene delivery vectors. They were further converted using IGF-II mAb into immunoliposomes for CNS targeting and mAb conjugation to liposomes were characterised by SDS-PAGE. They were further analysed by in vitro characterisation studies that include erythrocyte aggregation study, electrolyte-induced study, heparin compatibility study and serum stability studies. SHSY5Y cells were used for conducting cytotoxicity of synthesised lipids and live imaging of cell uptake for 25 min. Finally, the brain distribution studies and western blot were carried out in animals to evaluate them for their BBB permeation ability and effects on p11 protein which is believed to be a culprit. These formulated liposomes from synthesised lipids offer a promising approach for the treatment of depression.
Collapse
|
21
|
Starbuck K, Al-Alem L, Eavarone DA, Hernandez SF, Bellio C, Prendergast JM, Stein J, Dransfield DT, Zarrella B, Growdon WB, Behrens J, Foster R, Rueda BR. Treatment of ovarian cancer by targeting the tumor stem cell-associated carbohydrate antigen, Sialyl-Thomsen-nouveau. Oncotarget 2018; 9:23289-23305. [PMID: 29796189 PMCID: PMC5955411 DOI: 10.18632/oncotarget.25289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/08/2018] [Indexed: 01/29/2023] Open
Abstract
Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo, depleting STn+ tumor cells. In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations.
Collapse
Affiliation(s)
- Kristen Starbuck
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Linah Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Silvia Fatima Hernandez
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chiara Bellio
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | | | - Bianca Zarrella
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Whitfield B. Growdon
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Rosemary Foster
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bo R. Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Division of Gynecologic Oncology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival. Oncotarget 2018; 7:80633-80654. [PMID: 27811362 PMCID: PMC5348346 DOI: 10.18632/oncotarget.13017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/22/2016] [Indexed: 12/17/2022] Open
Abstract
Ovarian carcinoma is the most lethal gynecologic tumor worldwide. Despite having developed molecular diagnostic tools and targeted therapies over the past few decades, patient survival is still quite poor. Numerous studies suggest that microRNAs are key regulators of many fundamental biological processes, including neoplasia and tumor progression. miR-222 is one of those miRNAs that has attracted much attention for its multiple roles in human diseases, especially cancer. The potential role of microRNAs in ovarian cancer has attracted much attention in recent years. Some of these microRNAs have been suggested as potential therapeutic targets for EOC patients. In this study, we sought to investigate the biologic functions of miR-222-3p in EOC carcinogenesis. Herein, we examined the expression of miR-222-3p in EOC patients, mouse models and cell lines, and found that higher expression of miR-222-3p was associated with better overall survival in EOC patients, and its level was negatively correlated with tumor growth in vivo. Furthermore, in-vitro experiments indicated that miR-222-3p inhibited EOC cell proliferation and migration, and decreased the phosphorylation of AKT. We identified GNAI2 as a target of miR-222-3p. We also found that GNAI2 promoted EOC cell proliferation, and is an activator of the PI3K/AKT pathway. We describe the characterization of a novel regulatory axis in ovarian cancer cells, miR-222-3p/GNAI2/AKT and its potential application as a therapeutic target for EOC patients.
Collapse
|
23
|
Samanta S, Tamura S, Dubeau L, Mhawech-Fauceglia P, Miyagi Y, Kato H, Lieberman R, Buckanovich RJ, Lin YG, Neamati N. Expression of protein disulfide isomerase family members correlates with tumor progression and patient survival in ovarian cancer. Oncotarget 2017; 8:103543-103556. [PMID: 29262583 PMCID: PMC5732749 DOI: 10.18632/oncotarget.21569] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Objective Protein disulfide isomerase (PDI) is an oxidoreductase that is overexpressed in several cancers. PDI family members (PDIs) play a role in various diseases including cancer. Select PDIs were reported as useful markers in other cancers but their expression in ovarian cancer has not been thoroughly assessed. We sought to evaluate the expression of PDI, PDIA6, PDIR, ERp57, ERp72 and AGR3 in ovarian cancer patient samples and examine their prognostic significance. Methods TMA samples from 415 tissues collected from three cancer centers (UM, USC, and KCCRI) were used to assess the expression levels of PDI family proteins using IHC. Results We observed significant increases in PDI (p = 9.16E-36), PDIA6 (p = 5.51E-33), PDIR (p = 1.81E-12), ERp57 (p = 9.13E-07), ERp72 (p = 3.65E-22), and AGR3 (p = 4.56E-24) expression in ovarian cancers compared to normal tissues. Expression of PDI family members also increases during disease progression (p <0.001). All PDI family members are overexpressed in serous ovarian cancer (p<0.001). However, PDI, PDIA6, PDIR, ERp72 and AGR3 are more significantly overexpressed (p<0.001) than ERp57 (p<0.05) in clear cell ovarian carcinoma. Importantly, overexpression of PDI family members is associated with poor survival in ovarian cancer (p = 0.045 for PDI, p = 0.047 for PDIR, p = 0.037 for ERp57, p = 0.046 for ERp72, p = 0.040 for AGR3) with the exception of PDIA6 (p = 0.381). Conclusions Our findings demonstrate that select PDI family members (PDI, PDIR, ERp72, ERp57 and AGR3) are potential prognostic markers for ovarian cancer.
Collapse
Affiliation(s)
- Soma Samanta
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Shuzo Tamura
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Louis Dubeau
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paulette Mhawech-Fauceglia
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yohei Miyagi
- Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Hisamori Kato
- Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Rich Lieberman
- Department of Internal Medicine, Division of Hematology Oncology, Division of Gynecologic Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ronald J Buckanovich
- Department of Internal Medicine, Division of Hematology Oncology, Division of Gynecologic Oncology, University of Michigan, Ann Arbor, Michigan.,Current/Present affiliation: Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yvonne G Lin
- USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Current/Present affiliation: Genentech-Roche, South San Francisco, California, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Yang L, Guo G, Sun L, Li C, Zhang H. Efficacy and safety of traditional chemotherapies for patients with ovarian neoplasm: a network meta-analysis. Oncotarget 2017; 8:59867-59877. [PMID: 28938689 PMCID: PMC5601785 DOI: 10.18632/oncotarget.16729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/24/2017] [Indexed: 11/25/2022] Open
Abstract
Background Ovarian neoplasm is a kind of high risky cancer among female. This paper assessed the efficacy and safety of twelve therapies and figured out the superior chemotherapeutic drug for ovarian cancer through network meta-analysis (NMA). Method Eligible randomized controlled trials (RCTs) were retrieved from electronic databases. Primary outcomes concerning efficacy, overall survival (OS) and progression-free survival (PFS), were presented as hazard ratio (HR) and the associated 95% credible interval(CrI), while outcomes concerning safety were assessed by odds ratio (OR) and the corresponding 95% CrI. Surface under the cumulative ranking curve (SUCRA) was calculated under each survival and safety outcome in order to show the rankings of tested therapies. Result Electronic databases such as PubMed and Embase were searched to finally obtain 19 eligible studies of 16290 patients. In accordance of primary outcomes, when it came to 3-y PFS, paclitaxel/epirubicin/carboplatin (Pa/E/Ca) and pegylated liposomal doxorubicin/ paclitaxel/ carboplatin (PLD/Pa/Ca) were preferred compared to carboplatin (Ca) (HR= 0.80, 95% CrI= 0.67-0.96; HR= 0.83, 95% CrI= 0.69-0.99). According to 5y-PFS, Pa/E/Ca was notably better than Ca (HR= 0.80, 95% CrI= 0.65-0.99). As to adverse effects, Ca was superior to Pa/E/Ca in neuropathy (HR=0.05, 95% CrI=0.02-0.19). Pa/E/Ca showed high rankings in 3y-PFS (SUCRA=0.749), 5y-OS (SUCRA=0.738) and 5y-PFS (SUCRA=0.798) while (PLD/Pa/Ca) in 3y-OS (SUCRA=0.737), 5y-OS (SUCRA=0.687) and 5y-PFS (SUCRA=0.712). Besides, Pa/E/Ca ranked the third with a SUCRA of 0.661 in neutropenia. Conclusion PLD/Pa/Ca, PLD/Ca and Pa/E/Ca are highly recommended as potential therapeutically choices for patients with ovarian cancer. But considering the lack of safety data for PLD/Pa/Ca, this intervention should be taken with caution.
Collapse
Affiliation(s)
- Lili Yang
- Department of Gynecology and Obstetrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Gongliang Guo
- Department of Cardiology, China Japan Union Hospital Jilin University, Changchun, Jilin, China
| | - Liqun Sun
- Outpatient Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chenhao Li
- Department of Nephropathy, The First Hospital of Jilin University, Changchun, Jilin China
| | - Haipeng Zhang
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
25
|
Jiang XP, Rui XH, Guo CX, Huang YQ, Li Q, Xu Y. A network meta-analysis of eight chemotherapy regimens for treatment of advanced ovarian cancer. Oncotarget 2017; 8:19125-19136. [PMID: 27835912 PMCID: PMC5386673 DOI: 10.18632/oncotarget.13253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/19/2016] [Indexed: 11/25/2022] Open
Abstract
This study compared the short-term efficacies of different chemotherapy regimens in the treatment of advanced ovarian cancer (AOC) through pair-wise and network meta-analyses (NMA). Randomized controlled trials (RCTs) identified in a comprehensive online literature search met our inclusion criteria. Direct and indirect evidence was combined to compare odds ratios (OR) and surfaces under the cumulative ranking curves (SUCRA) across the different treatment regimens. Twelve eligible RCTs were finally included, involving eight regimens (Paclitaxel + Carboplatin [PC], Gemcitabine + Carboplatin [GC], Carboplatin, Pegylated Liposomal Doxorubicin + Carboplatin [PLD + Carboplatin], Paclitaxel, Paclitaxel + Carboplatin + Topotecan [PC + Topotecan], Paclitaxel + Carboplatin + Epirubicin [PC + Epirubicin] and Docetaxel + Carboplatin [DC]). The NMA results revealed that in terms of overall response rate (ORR) and disease control rate (DCR), PC (ORR: OR=2.59, 95%CI=1.20-6.22; DCR: OR=2.58, 95%CI=1.05-6.82) and GC (ORR: OR=2.08, 95%CI=1.08-4.37; DCR: OR=2.43, 95%CI=1.07-5.80) were more effective against AOC than Carboplatin alone. Similarly, PC (OR=0.21, 95%CI=0.05-0.69), GC (OR=0.31, 95%CI=0.09-0.90) and PLD + Carboplatin (OR=0.22, 95%CI=0.04-0.92) slowed disease progression better than Carboplatin alone. We also found that PC was more efficacious against AOC than Carboplatin or Paclitaxel single-agent chemotherapy. Combination chemotherapy is thus recommended for AOC, and should guide subsequent drug development and treatment strategies.
Collapse
Affiliation(s)
- Xi-Ping Jiang
- Department of Gynecology, the First People's Hospital of Changzhou, Changzhou 213003, P. R. China
| | - Xiao-Hui Rui
- Department of Gynecology, the First People's Hospital of Changzhou, Changzhou 213003, P. R. China
| | - Cai-Xia Guo
- Department of Gynecology, the First People's Hospital of Changzhou, Changzhou 213003, P. R. China
| | - Ya-Qing Huang
- Department of Gynecology, the First People's Hospital of Changzhou, Changzhou 213003, P. R. China
| | - Qin Li
- Department of Gynecology, the First People's Hospital of Changzhou, Changzhou 213003, P. R. China
| | - Yun Xu
- Department of Gynecology, the First People's Hospital of Changzhou, Changzhou 213003, P. R. China
| |
Collapse
|
26
|
Prendergast JM, Galvao da Silva AP, Eavarone DA, Ghaderi D, Zhang M, Brady D, Wicks J, DeSander J, Behrens J, Rueda BR. Novel anti-Sialyl-Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity. MAbs 2017; 9:615-627. [PMID: 28281872 PMCID: PMC5419082 DOI: 10.1080/19420862.2017.1290752] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Targeted therapeutics that can differentiate between normal and malignant tumor cells represent the ideal standard for the development of a successful anti-cancer strategy. The Sialyl-Thomsen-nouveau antigen (STn or Sialyl-Tn, also known as CD175s) is rarely seen in normal adult tissues, but it is abundantly expressed in many types of human epithelial cancers. We have identified novel antibodies that specifically target with high affinity the STn glycan independent of its carrier protein, affording the potential to recognize a wider array of cancer-specific sialylated proteins. A panel of murine monoclonal anti-STn therapeutic antibodies were generated and their binding specificity and efficacy were characterized in vitro and in in vivo murine cancer models. A subset of these antibodies were conjugated to monomethyl auristatin E (MMAE) to generate antibody-drug conjugates (ADCs). These ADCs demonstrated in vitro efficacy in STn-expressing cell lines and significant tumor growth inhibition in STn-expressing tumor xenograft cancer models with no evidence of overt toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Mai Zhang
- a Siamab Therapeutics, Inc. , Newton , MA , USA
| | - Dane Brady
- b Alizée Pathology, LLC , Thurmont , MD , USA
| | - Joan Wicks
- b Alizée Pathology, LLC , Thurmont , MD , USA
| | | | | | - Bo R Rueda
- c Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology , Massachusetts General Hospital , Boston , MA , USA.,d Harvard Medical School , Boston , MA , USA
| |
Collapse
|
27
|
Gu G, Chen Y, Duan C, Zhou L, Chen C, Chen J, Cheng J, Shi N, Jin Y, Xi Q, Zhong J. Overexpression of ARF1 is associated with cell proliferation and migration through PI3K signal pathway in ovarian cancer. Oncol Rep 2017; 37:1511-1520. [DOI: 10.3892/or.2017.5388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/15/2016] [Indexed: 11/06/2022] Open
|