1
|
Liu M, Yao C, Liu S, Xiu J, Li X, Yang H, Zhang J, Zhao X. Intelligent response micelles with high andrographolide loading for the effective treatment of atherosclerosis. Int J Pharm 2024; 665:124705. [PMID: 39307442 DOI: 10.1016/j.ijpharm.2024.124705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease which associated with a maladaptive immune response driven by macrophages. In the development of AS, macrophages have gradually become new therapeutic targets due to their involvement in numerous inflammatory-related pathological processes in AS. However, despite significant breakthroughs in the development of macrophages targeting nanocarriers, unsatisfactory drug loading, and inexact drug release limited the development of nano-therapy. Therefore, developing a high drug-loading nanocarrier that can accurately release drugs at AS lesions is quite essential. Herein, we optimized double moieties coupled mPEG-PLA copolymer micelles via phenylboronic acid (PBA)-terminated on the hydrophobic chain and cRGD coupled in hydrophilic chain to enhance AS therapy. The micelles loaded with andrographolide (AND) exhibited advanced drug loading capacity, as PBA could form a reversible boronic ester with AND at physiological pH. The cRGD-modified AND-loaded micelles (RPPPA) could be efficaciously internalized by macrophages and efficiently prevent macrophages from differentiating to foam cells. After intravenous administration, RPPPA could accumulate in plaques and exert therapeutic effects. The optimistic therapeutic results of atherosclerosis were shown in RPPPA, included the fewer plaques, a smaller necrotic core, a more stabilized fibrous cap, and lower macrophages and MMP-9, compared with the control group. To sum up, the proposed encouraging therapy can contribute to high drug loading, exact target, and precise drug release as well as reduce inflammation for AS treatment.
Collapse
Affiliation(s)
- Min Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chen Yao
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Siyi Liu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jingya Xiu
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiaofang Li
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Han Yang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jiulong Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| | - Xiuli Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Hu J, Li Y, Xie X, Song Y, Yan W, Luo Y, Jiang Y. The therapeutic potential of andrographolide in cancer treatment. Biomed Pharmacother 2024; 180:117438. [PMID: 39298908 DOI: 10.1016/j.biopha.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer poses a substantial global health challenge, necessitating the widespread use of chemotherapy and radiotherapy. Despite these efforts, issues like resistance development and severe side effects remain. As such, the search for more effective alternatives is critical. Andrographolide, a naturally occurring compound, has recently gained attention for its extensive biological activities. This review explores the role of andrographolide in cancer therapy, especially focusing on the molecular mechanisms that drive its anti-tumor properties. It also examines innovative methods to enhance andrographolide's bioavailability, thus boosting its effectiveness against cancer. Notably, andrographolide has potential for use in combination with various clinical drugs, and both preclinical and clinical studies provide strong evidence supporting its broader anticancer applications. Additionally, this paper proposes future research directions for andrographolide's anti-cancer effects and discusses the challenges in its clinical usage along with current research efforts to address these issues. In summary, this review underscores andrographolide's potential roles and contributes to the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Jiaxuan Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yi Li
- Department of Anesthesiology, Ganzhou Key Laboratory of Anesthesiology, Ganzhou Key Laboratory of Osteoporosis Research, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Yan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
3
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
4
|
Yang L, Li H, Luo A, Zhang Y, Chen H, Zhu L, Yang D. Macrophage membrane-camouflaged pH-sensitive nanoparticles for targeted therapy of oral squamous cell carcinoma. J Nanobiotechnology 2024; 22:168. [PMID: 38610015 PMCID: PMC11015647 DOI: 10.1186/s12951-024-02433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Oral cancer is the most common malignant tumor of the head and neck, and 90% of cases are oral squamous cell carcinoma (OSCC). Chemotherapy is an important component of comprehensive treatment for OSCC. However, the clinical treatment effect of chemotherapy drugs, such as doxorubicin (DOX), is limited due to the lack of tumor targeting and rapid clearance by the immune system. Thus, based on the tumor-targeting and immune evasion abilities of macrophages, macrophage membrane-encapsulated poly(methyl vinyl ether alt maleic anhydride)-phenylboronic acid-doxorubicin nanoparticles (MM@PMVEMA-PBA-DOX NPs), briefly as MM@DOX NPs, were designed to target OSCC. The boronate ester bonds between PBA and DOX responded to the low pH value in the tumor microenvironment, selectively releasing the loaded DOX. RESULTS The results showed that MM@DOX NPs exhibited uniform particle size and typical core-shell structure. As the pH decreased from 7.4 to 5.5, drug release increased from 14 to 21%. The in vitro targeting ability, immune evasion ability, and cytotoxicity of MM@DOX NPs were verified in HN6 and SCC15 cell lines. Compared to free DOX, flow cytometry and fluorescence images demonstrated higher uptake of MM@DOX NPs by tumor cells and lower uptake by macrophages. Cell toxicity and live/dead staining experiments showed that MM@DOX NPs exhibited stronger in vitro antitumor effects than free DOX. The targeting and therapeutic effects were further confirmed in vivo. Based on in vivo biodistribution of the nanoparticles, the accumulation of MM@DOX NPs at the tumor site was increased. The pharmacokinetic results demonstrated a longer half-life of 9.26 h for MM@DOX NPs compared to 1.94 h for free DOX. Moreover, MM@DOX NPs exhibited stronger tumor suppression effects in HN6 tumor-bearing mice and good biocompatibility. CONCLUSIONS Therefore, MM@DOX NPs is a safe and efficient therapeutic platform for OSCC.
Collapse
Affiliation(s)
- Lin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Hongjiao Li
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Aihua Luo
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Yao Zhang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 404100, China.
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, 426 Songshi North Road, Yubei District, Chongqing, 401147, China.
| |
Collapse
|
5
|
MPEG-phenylboronic acid modified doxorubicin as the efficient pathological pH-responsive nanoplatform for potential anti-cancer delivery. Macromol Res 2023. [DOI: 10.1007/s13233-022-00106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Song S, Zhu L, Xu H, Wen Y, Feng R. Phenylboronic acid-installed poly(isobutene-alt-maleic anhydride) polymeric micelles for pH-dependent release of amphotericin B. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Feng R, Zhu L, Teng F, Wang M, Chen S, Song Z, Li H. Phenylboronic acid-modified polymaleic anhydride-F127 micelles for pH-activated targeting delivery of doxorubicin. Colloids Surf B Biointerfaces 2022; 216:112559. [PMID: 35576880 DOI: 10.1016/j.colsurfb.2022.112559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 04/17/2022] [Accepted: 05/08/2022] [Indexed: 01/24/2023]
Abstract
Phenylboronic acid (PBA) is a tumor-targeting molecule which selectively recognizes sialic acid (SA) overexpressed in tumors. In the study, PBA, F127 and ethanolamine were conjugated with poly(maleic anhydride) by one-step reaction to form amphiphilic polymer for doxorubicin encapsulation. Two drug-carrying micelles with different mass ratio of polymer to drug were prepared by dialysis method to study effect of PBA on doxorubicin release, tumor-targeting and antitumor activity. The study results showed that doxorubicin release from the formulations was acid-sensitive and affected by the polymer dosage, and its acid-induced release behavior improved its insertion into DNA base pairs. Formulation with high polymer dosage showed better tumor targeting and antitumor activity, and activity of inhibiting HepG2 with higher content of SA-containing glycosphingolipids was higher than that of anti-B16. In vivo studies on the activity of B16-bearing mice showed that the doxorubicin-loaded micelles could inhibit the tumor growth and were safer than free doxorubicin. Thus, the PBA-modified nano-polymer micelles have potential biomedical applications due to their nanostructure and tumor-targeting ability.
Collapse
Affiliation(s)
- Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Li Zhu
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Fangfang Teng
- Guangrao People's Hospital, No. 180 Huayuan road, Guangrao county, Dongying 257300, Shandong Province, PR China
| | - Min Wang
- Guangrao People's Hospital, No. 180 Huayuan road, Guangrao county, Dongying 257300, Shandong Province, PR China
| | - Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| | - Hongmei Li
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, PR China.
| |
Collapse
|
8
|
Zhang Q, Liu Y, Fei Y, Xie J, Zhao X, Zhong Z, Deng C. Phenylboronic Acid-Functionalized Copolypeptides: Facile Synthesis and Responsive Dual Anticancer Drug Release. Biomacromolecules 2022; 23:2989-2998. [PMID: 35758844 DOI: 10.1021/acs.biomac.2c00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The incorporation of a phenylboronic acid group has appeared as an attractive strategy to build smart drug delivery systems. Here, we report novel synthesis of phenylboronic acid-functionalized copolypeptides based on an l-boronophenylalanine N-carboxyanhydride (BPA-NCA) monomer and their application for robust co-encapsulation and responsive release of dual anticancer drugs. By employing different poly(ethylene glycol) (PEG) initiators and copolymerizing with varying NCA monomers, linear and star PEG-poly(l-boronophenylalanine) copolymers (PEG-PBPA, star-PEG-PBPA), PEG-poly(l-tyrosine-co-l-boronophenylalanine) [PEG-P(Tyr-co-BPA)], PEG-poly(l-lysine-co-l-boronophenylalanine) [PEG-P(Lys-co-BPA)], and PEG-poly(β-benzyl-l-aspartate-co-l-boronophenylalanine) [PEG-P(BLA-co-BPA)] were obtained with controlled compositions. Interestingly, PEG-PBPA self-assembled into uniform micellar nanoparticles that mediated robust co-encapsulation and hydrogen peroxide (H2O2) and acid-responsive release of dual antitumor drugs, curcumin (Cur) and sorafenib tosylate (Sor). These dual drug-loaded nanoparticles (PBN-Cur/Sor) exhibited a greatly enhanced anticancer effect toward U87 MG-luciferase glioblastoma cells. The facile synthesis of phenylboronic acid-functionalized copolypeptides from BPA coupled with their robust drug loading and responsive drug release behaviors make them interesting for construction of smart cancer nanomedicines.
Collapse
Affiliation(s)
- Qiang Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yuanyuan Liu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yucheng Fei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiguo Xie
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Xiaofei Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Jung S, Lee J, Kim WJ. Phenylboronic acid-based core-shell drug delivery platform clasping 1,3-dicarbonyl compounds by a coordinate interaction. Biomater Sci 2021; 9:6851-6864. [PMID: 34494051 DOI: 10.1039/d1bm01169c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Along with the successful commercialization of chemotherapeutics, such as doxorubicin and paclitaxel, numerous natural compounds have been investigated for clinical applications. Recently, curcumin (CUR), a natural compound with various therapeutic effects, has attracted attention for cancer immunotherapy. Most chemotherapeutics, however, have poor water solubility due to their hydrophobicity, which makes them less suited to biomedical applications; CUR is no exception because of its low bioavailability and extremely high hydrophobicity. In the present study, we developed an easy but effective strategy using the interaction between the 1,3-dicarbonyl groups of drugs and phenylboronic acid (PBA) to solubilize hydrophobic drugs. First, we verified the coordinate interaction between 1,3-dicarbonyl and PBA using 3,5-heptanedione as a model compound, followed by CUR as a model drug. A PBA-grafted hydrophilic polymer was used to form a nanoconstruct by coordination bonding with CUR, which then made direct administration of the nanoparticles possible. The nanoconstruct exhibited remarkable loading capability, uniform size, colloidal stability, and pH-responsive drug release, attributed to the formation of core-shell nanoconstructs by coordinate interaction. The therapeutic nanoconstructs successfully showed both chemotherapeutic and anti-PD-L1 anticancer effects in cellular and animal models. Furthermore, we demonstrated the applicability of this technique to other 1,3-dicarbonyl compounds. Overall, our findings suggest a facile, but expandable strategy by applying the coordinate interaction between 1,3-dicarbonyl and PBA, which enables high drug loading and stimuli-responsive drug release.
Collapse
Affiliation(s)
- Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Junseok Lee
- Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,OmniaMed Co., Ltd, Pohang 37673, Republic of Korea
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. .,Department of Chemistry, POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.,OmniaMed Co., Ltd, Pohang 37673, Republic of Korea
| |
Collapse
|
10
|
Zhang Q, Li S, Cai L, Zhu Y, Duan X, Jiang P, Zhong L, Guo K, Tong R. Microenvironment Activatable Nanoprodrug Based on Gripper-like Cyclic Phenylboronic Acid to Precisely and Effectively Alleviate Drug-induced Hepatitis. Theranostics 2021; 11:8301-8321. [PMID: 34373743 PMCID: PMC8344015 DOI: 10.7150/thno.61214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced hepatitis (DIH), which seriously interferes with disease treatment, is one of the most common reasons for termination of new drugs during preclinical studies or post-marketing surveillance. Although antioxidants and anti-inflammatory agents are promising, their nonspecific distribution and insolubility limit their application. Therefore, precise drug release at the disease site is an important way to alleviate DIH and avoid side effects. Methods: A gripper-like hydrophilic cyclic phenylboronic acid (cPBA) was synthesized and a nanoprodrug (cPBA-BE) was established by coupling cPBA with hydrophobic baicalein (BE). The stimuli-responsive release properties and therapeutic effect of cPBA-BE on drug-injured hepatocyte were investigated. The biodistribution and therapeutic effect of cPBA-BE both in acetaminophen-induced acute hepatitis model and rifampicin-induced chronic hepatitis model were further evaluated. Results: cPBA-BE conjugate could self-assemble into nanoprodrug with cPBA as the hydrophilic external layer and BE as the hydrophobic core. In HepaRG cells, cPBA-BE showed stronger cellular uptake. Due to the H2O2- and acid-sensitivity, cPBA-BE could achieve adequate BE release, significantly resist the depletion of GSH, mitochondrial dysfunction, downregulation of inflammation and cell apoptosis in the acetaminophen injured HepaRG cells. Biodistribution showed that cPBA-BE specifically increased the concentration of BE in the liver of DIH mice. cPBA-BE could alleviate acetaminophen-induced acute hepatitis or rifampicin-induced chronic hepatitis more effectively through relieving the oxidative stress, inflammation and block the neutrophil infiltration in liver. Conclusions: cPBA is expected to be a good platform for constructing injectable nanoprodrug with both H2O2 and pH-responsive properties by coupling a wide range of drugs containing o-diol. In this study, the nanoprodrug cPBA-BE was determined to be effective for alleviating the DIH.
Collapse
|
11
|
Yu C, Li L, Hu P, Yang Y, Wei W, Deng X, Wang L, Tay FR, Ma J. Recent Advances in Stimulus-Responsive Nanocarriers for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100540. [PMID: 34306980 PMCID: PMC8292848 DOI: 10.1002/advs.202100540] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Indexed: 05/29/2023]
Abstract
Gene therapy provides a promising strategy for curing monogenetic disorders and complex diseases. However, there are challenges associated with the use of viral delivery vectors. The advent of nanomedicine represents a quantum leap in the application of gene therapy. Recent advances in stimulus-responsive nonviral nanocarriers indicate that they are efficient delivery systems for loading and unloading of therapeutic nucleic acids. Some nanocarriers are responsive to cues derived from the internal environment, such as changes in pH, redox potential, enzyme activity, reactive oxygen species, adenosine triphosphate, and hypoxia. Others are responsive to external stimulations, including temperature gradients, light irradiation, ultrasonic energy, and magnetic field. Multiple stimuli-responsive strategies have also been investigated recently for experimental gene therapy.
Collapse
Affiliation(s)
- Cheng Yu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Long Li
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Pei Hu
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Yan Yang
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Wei Wei
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Xin Deng
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Lu Wang
- Department of OncologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | | | - Jingzhi Ma
- Department of StomatologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| |
Collapse
|
12
|
Malik Z, Parveen R, Parveen B, Zahiruddin S, Aasif Khan M, Khan A, Massey S, Ahmad S, Husain SA. Anticancer potential of andrographolide from Andrographis paniculata (Burm.f.) Nees and its mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113936. [PMID: 33610710 DOI: 10.1016/j.jep.2021.113936] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Synthetic drugs used for cancer treatment have side effects that may be immunosupressive, can cause liver, kidney and cardiac toxicity, and infertility and ovarian failure, among others. Thus, herbal drugs could be used in the cancer treatment as an adjuvant therapy. Andrographis paniculata (Burm.f.) Nees (AP) is one of the traditional herbs used in different alternative medicinal systems such as Ayurveda, Unani, Chinese, Malayi, Siddha, etc. for the treatment of various disorders and diseases including cancer. AIM OF THE STUDY The aim of writing this review is to highlight the medicinal importance of AP and its main phytoconstituent andrographolide (AG). The main emphasis was given on the anticancer activity of AG, its proposed mechanisms of action, novel approaches used to improve its biopharmaceutical properties with the perspective of evidence-based research, and its development as an adjuvant therapy for cancer treatment in future. MATERIALS AND METHODS Literature survey was conducted and research papers were retrieved from different databases such as Pubmed, Google Scholar, ACS, Wiley online library, ScienceDirect, Springer, and Scopus during 1970-2020. Research articles, review articles, and short communications, etc. were used for this purpose. The papers were selected on the basis of exclusion and inclusion criteria. RESULTS Different anticancer mechanisms of AG have been reportedly proven such as cell cycle arrest, apoptosis, NF-κβ inhibition, antiangiogenesis, cytokine inhibition, etc. whereas its pharmacokinetic properties showed its highly protein bound nature, Cyt P400 (CYP) inhibition, low aqueous solubility, poor oral bioavailability, etc. Different novel formulations of AG have been investigated to increase its bioavailability for better efficacy. CONCLUSION This review can provide knowledge about the potential applicability of AP or AG as an adjuvant therapy in cancer treatment. Further research is needed before making any conclusion about the efficacy in humans as an adjuvant therapy in cancer.
Collapse
Affiliation(s)
- Zoya Malik
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India; Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Rabea Parveen
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India; Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sultan Zahiruddin
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Aasif Khan
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Asifa Khan
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sheersh Massey
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
13
|
Kim J, Park H, Saravanakumar G, Kim WJ. Polymer/Aptamer-Integrated Gold Nanoconstruct Suppresses the Inflammatory Process by Scavenging ROS and Capturing Pro-inflammatory Cytokine TNF-α. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9390-9401. [PMID: 33155813 DOI: 10.1021/acsami.0c15727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the present study, we report a rationally designed polymer/aptamer-integrated gold (Au) nanoconstruct capable of scavenging reactive oxygen species (ROS) and capturing tumor necrosis factor alpha (TNF-α) and investigate its potential as an anti-inflammatory agent for the treatment of peritonitis. By taking advantage of specific interactions between ATP and both ATP aptamer and polymeric phenylboronic acid (pPBA), we construct a unique polymer-coated Au nanoconstruct equipped with TNF-α aptamer and ATP aptamer. The formed phenylboronic ester and TNF-α aptamer in the nanoconstruct is capable of scavenging ROS and capturing of TNF-α, respectively. Thus, this combined characteristics enable the nanoconstruct an additive anti-inflammatory effect. Furthermore, we demonstrate the high anti-inflammatory effect of the nanoconstruct in vitro and in vivo using the peritonitis model by monitoring ROS and pro-inflammatory cytokine levels.
Collapse
Affiliation(s)
- Jinseong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeongmok Park
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Gurusamy Saravanakumar
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- OmniaMed Co., Ltd, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
14
|
Lim J, Lee J, Jung S, Kim WJ. Phenylboronic-acid-based nanocomplex as a feasible delivery platform of immune checkpoint inhibitor for potent cancer immunotherapy. J Control Release 2021; 330:1168-1177. [DOI: 10.1016/j.jconrel.2020.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
|
15
|
Wang L, Sheng X, Wang J, Zhang Y. Application of Boronate Bond in Drug Delivery System. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202006060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Jung S, Lee J, Lim J, Suh J, Kim T, Ahn J, Kim WJ, Kim Y. Polymeric Nanoparticles Controlled by On-Chip Self-Assembly Enhance Cancer Treatment Effectiveness. Adv Healthc Mater 2020; 9:e2001633. [PMID: 33073526 PMCID: PMC7677199 DOI: 10.1002/adhm.202001633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 02/05/2023]
Abstract
Nanoparticle (NP)-based drug delivery systems or nanomedicines have broadened the horizon of translational research for decades. Conventional bulk mixing synthesis methods have impeded successful clinical translations of nanomedicines due to the limited ability of the controlled, scalable production with high uniformity. Herein, an on-chip preparation of self-assembled, drug-encapsulated polymeric NPs is presented for their improved uniformity and homogeneity that results in enhanced anti-cancer effect in vitro and in vivo. The NPs are formulated through rapid convective mixing of two aqueous solutions of a hydrophilic polymer and an anti-cancer drug, doxorubicin (DOX), in the swirling microvortex reactor (SMR). Compared to conventional bulk-mixed NPs (BMPs), the microvortex-synthesized NPs (MVPs) exhibit narrower size distributions and better size tunability. It is found that the improved uniformity and homogeneity of the MVPs not only enhance cellular uptake and anti-cancer effect with pH-responsive drug release in vitro, but also result in an improved tumor regression and decreased side effects at off-targeted organs in vivo. The findings demonstrate that uniformly designed NPs with more homogeneous properties can induce a significant enhancement of an anti-cancer effect in vivo. The results show the potential of a high-speed on-chip synthesis as a scalable manufacturing platform for reliable clinical translations of nanomedicines.
Collapse
Affiliation(s)
- Sungjin Jung
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junha Lim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeeyeon Suh
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taeyoung Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jungho Ahn
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
17
|
Feng E, Shen K, Lin F, Lin W, Zhang T, Zhang Y, Lin F, Yang Y, Lin C. Improved osteogenic activity and inhibited bacterial biofilm formation on andrographolide-loaded titania nanotubes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:987. [PMID: 32953787 PMCID: PMC7475475 DOI: 10.21037/atm-20-4901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Delivery of local drugs with a titania nanotube is an attractive approach to combat implant-related infection. Our earlier study has confirmed that nanotubes loaded with gentamicin could significantly improve the antibacterial ability. On this basis, the used andrographolide in this paper has a high antibacterial activity, which cannot only avoid the evolution of antibiotic-resistant bacteria but also has simultaneously excellent biocompatibility with osteogenic cells. Methods Two mg of andrographolide was loaded into titania nanotubes, which were fabricated into different diameters (50 and 100 nm) and 200 nm length by the method of lyophilization and vacuum drying. We chose a standard strain, Staphylococcus epidermidis (American Type Culture Collection 35984), and two clinical isolates, S. aureus 376 and S. epidermidis 389 to research the bacterial adhesion at 6, 12 and 24 hours and biofilm formation at 48, and 72 hours on the andrographolide-loaded nanotubes (NT-A) using the diffusion plate method. Smooth titanium (smooth Ti) and nanotubes with no drug loading (NT) were also inclusive and analyzed. Furthermore, the Sprague-Dawley (SD) rats mesenchymal stem cells were used to assess the influence of nanotubular topographies on the osteogenic differentiation of mesenchymal stem cells. Results Our results showed that NT-A could inhibit bacterial adhesion and biofilm formation on implant surfaces. NT-A and NT, especially those with 100 nm diameters, were found to significantly promoted cell attachment, proliferation, diffusion, and osteogenic differentiation when compared with smooth Ti, while the same diameter in NT-A and NT did not differ. Conclusions Titania nanotube modification and andrographolide loading can significantly improve the antibacterial ability and osteogenic activity of orthopedic implants. Nanotubes-based local delivery could be a promising strategy for combating implant-associated infection.
Collapse
Affiliation(s)
- Eryou Feng
- Department of Arthrosis Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Kaiwei Shen
- Department of Arthrosis Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Feitai Lin
- Department of Arthrosis Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Wentao Lin
- Department of Arthrosis Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Tao Zhang
- Department of Arthrosis Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Yiyuan Zhang
- Department of Arthrosis Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Fengfei Lin
- Department of Orthopaedics, Fuzhou Second Hospital Affiliated to Xiamen University, Teaching Hospital of Fujian Medical University, Fuzhou, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, China
| | - Changjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Cheng H, Zhang H, Xu G, Peng J, Wang Z, Sun B, Aouameur D, Fan Z, Jiang W, Zhou J, Ding Y. A Combinative Assembly Strategy Inspired Reversibly Borate-Bridged Polymeric Micelles for Lesion-Specific Rapid Release of Anti-Coccidial Drugs. NANO-MICRO LETTERS 2020; 12:155. [PMID: 34138187 PMCID: PMC7770674 DOI: 10.1007/s40820-020-00495-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 06/12/2023]
Abstract
HIGHLIGHTS A combined assembly strategy from hydrophobicity-driving and reversible borate bridges is proposed for high drug-loading efficiency and superior stability. Intestinal environment-triggered drug delivery system represents an effective treatment for local infection due to the site-specific targeting and shuttling of drugs. The reduced dosage brought by the drug-loading micelles could solve the problem of drug residue in breeding industry. ABSTRACT Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs. Herein, chitosan conjugates (SPCS) installed with sialic acid (SA) and phenylboronic acid (PBA) were synthesized, of which SA served as targeting ligand for coccidium and reversible-binding bridge for PBA. The enhanced drug-loading capacity of SPCS micelles was attributed to a combination assembly from hydrophobicity-driving and reversible borate bridges. The drug-loaded SPCS micelles shared superior biostability in upper gastrointestinal tract. After reaching the lesions, the borate bridges were snipped by carbohydrates under a higher pH followed by accelerated drug release, while SA exposure on micellar surface facilitated drug cellular internalization to eliminate parasites inside. The drug-micelles revealed an enhanced anti-coccidial capacity with a higher index of 185.72 compared with commercial preparation. The dual-responsive combination of physicochemical assembly could provide an efficient strategy for the exploitation of stable, safe and flexible anti-infectious drug delivery systems. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s40820-020-00495-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Huaqing Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Gujun Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Jin Peng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhen Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Bo Sun
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Djamila Aouameur
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Zhechen Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Wenxin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Yang Ding
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
19
|
Feng R, Wang W, Zhu L, Xu H, Chen S, Song Z. Phenylboronic acid-functionalized F127-oligochitosan conjugate micelles for doxorubicin encapsulation. J Biomed Mater Res B Appl Biomater 2020; 108:3345-3355. [PMID: 32583518 DOI: 10.1002/jbm.b.34670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/16/2020] [Accepted: 06/02/2020] [Indexed: 01/21/2023]
Abstract
Doxorubicin shows good anticancer activity, but poor pharmacokinetic property and high organ toxicity restrict its clinical application. The synthesized phenylboronic acid-modified F127-chitosan conjugate was used to prepare doxorubicin-loaded micelles through dialysis method. The physicochemical properties of the doxorubicin-loaded micelles were characterized. These micelles were further evaluated for in vitro release/cytotoxicity, in vivo activity/biosafety, and pharmacokinetic studies. in vitro release experiment demonstrated that the release of doxorubicin from drug-loaded micelles was pH-dependent. in vitro cytotoxic study showed that the introduction of phenylboronic acid resulted in lower IC50 against B16 cells than that in non-modified F127-chitosan micelles group, and the doxorubicin-loaded micelles displayed lower in vitro activity against B16, A549, and HT-29 cells than free doxorubicin did. However, in vivo experiments confirmed that the doxorubicin-loaded micelles were safe for mouse main organs, obviously improved pharmacokinetic parameters of doxorubicin in rat and achieved comparable inhibition of tumor growth with no animal death in B16-bearing mice models throughout the experiment when compared with free doxorubicin. The phenylboronic acid-sialic acid interaction and pH-sensitive drug release might play important roles in increased tumor targeting and therapeutic effect of the doxorubicin-loaded micelles.
Collapse
Affiliation(s)
- Runliang Feng
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, P. R. China
| | - Wanqiu Wang
- Pharmaceutical research laboratory, Shenyang Research Institute of Chemical Industry Co., Ltd, Shenyang, Liaoning Province, P. R. China
| | - Li Zhu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, P. R. China
| | - Hongmei Xu
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, P. R. China
| | - Shiyu Chen
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, P. R. China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, Jinan, Shandong Province, P. R. China
| |
Collapse
|
20
|
Ryu JH, Lee GJ, Shih YRV, Kim TI, Varghese S. Phenylboronic Acid-polymers for Biomedical Applications. Curr Med Chem 2019; 26:6797-6816. [DOI: 10.2174/0929867325666181008144436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Background:
Phenylboronic acid-polymers (PBA-polymers) have attracted tremendous
attention as potential stimuli-responsive materials with applications in drug-delivery
depots, scaffolds for tissue engineering, HIV barriers, and biomolecule-detecting/sensing platforms.
The unique aspect of PBA-polymers is their interactions with diols, which result in reversible,
covalent bond formation. This very nature of reversible bonding between boronic
acids and diols has been fundamental to their applications in the biomedical area.
Methods:
We have searched peer-reviewed articles including reviews from Scopus, PubMed,
and Google Scholar with a focus on the 1) chemistry of PBA, 2) synthesis of PBA-polymers,
and 3) their biomedical applications.
Results:
We have summarized approximately 179 papers in this review. Most of the applications
described in this review are focused on the unique ability of PBA molecules to interact
with diol molecules and the dynamic nature of the resulting boronate esters. The strong sensitivity
of boronate ester groups towards the surrounding pH also makes these molecules
stimuli-responsive. In addition, we also discuss how the re-arrangement of the dynamic boronate
ester bonds renders PBA-based materials with other unique features such as self-healing
and shear thinning.
Conclusion:
The presence of PBA in the polymer chain can render it with diverse functions/
relativities without changing their intrinsic properties. In this review, we discuss the development
of PBA polymers with diverse functions and their biomedical applications with a
specific focus on the dynamic nature of boronate ester groups.
Collapse
Affiliation(s)
- Ji Hyun Ryu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Yu-Ru V. Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, NC 27703, United States
| |
Collapse
|
21
|
Kim S, Im S, Park EY, Lee J, Kim C, Kim TI, Kim WJ. Drug-loaded titanium dioxide nanoparticle coated with tumor targeting polymer as a sonodynamic chemotherapeutic agent for anti-cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102110. [PMID: 31666202 DOI: 10.1016/j.nano.2019.102110] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/03/2019] [Accepted: 10/03/2019] [Indexed: 11/28/2022]
Abstract
Sonodynamic therapy utilizes ultrasound (US)-responsive generation of reactive oxygen species (ROS) from sonosensitizer, and it is a powerful strategy for anti-cancer treatment in combination with chemotherapy. Herein, we report a precisely designed sonodynamic chemotherapeutics which exhibits US-responsive drug release via ROS generation from co-loaded sono-sensitizer. Doxorubicin (DOX)-coordinated titanium dioxide nanoparticles (TNPs) were encapsulated with polymeric phenyboronic acid (pPBA) via phenylboronic ester bond between pPBA and DOX. Loaded DOX was readily released under US irradiation due to the ROS-cleavable characteristics of phenylboronic ester bond. The size of nanoparticles was around 200 nm, and DOX was released by ROS generated under US irradiation. Tumor targeting by PBA moiety, intracellular ROS generation, and combined therapeutic effect against tumor cells were confirmed in vitro. Finally, we demonstrated high tumor accumulation and efficient tumor growth inhibition in tumor-bearing mice under US irradiation, which revealed potential as a multi-functional agent for sonodynamic chemotherapy.
Collapse
Affiliation(s)
- Seonil Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sooseok Im
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Eun-Yeong Park
- Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Chulhong Kim
- Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Tae-Il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
22
|
Wang K, Yang B, Ye H, Zhang X, Song H, Wang X, Li N, Wei L, Wang Y, Zhang H, Kan Q, He Z, Wang D, Sun J. Self-Strengthened Oxidation-Responsive Bioactivating Prodrug Nanosystem with Sequential and Synergistically Facilitated Drug Release for Treatment of Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18914-18922. [PMID: 31055911 DOI: 10.1021/acsami.9b03056] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although environment-sensitive prodrug-based nanoparticles (NPs) have developed rapidly, lots of prodrug NPs still show poor selectivity and efficiency of parent drug bioactivation because of tumor heterogeneity. Herein, self-strengthened bioactivating prodrug-based NPs are fabricated via co-encapsulation of oxidation-responsive thioether-linked linoleic acid-paclitaxel conjugates (PTX-S-LA) and β-lapachone (LPC) into polymeric micelles (PMs). Following cellular uptake, PMs first release LPC to significantly elevate the reactive oxidative species (ROS) level through NAD(P)H: quinone oxidoreductase-1 (NQO1) catalysis. Then, NQO1-generated ROS in combination with endogenous high ROS levels in tumor cells could synergistically facilitate PTX-S-LA to release the active cytotoxic agent PTX. Such a novel prodrug nanosystem exhibits self-strengthened prodrug bioactivation, ultraselective release, and cytotoxicity between cancer and normal cells, prolonged circulation time, and enhanced tumor accumulation, leading to high antitumor efficiency and superior biosafety. Our findings pave the new way for the rational design of oxidation-responsive prodrug NPs for high-efficacy cancer chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Wei
- Key Laboratory of Microbiology, School of Life Science , Heilongjiang University , Harbin 150080 , P. R. China
| | | | | | | | | | | | | |
Collapse
|
23
|
Kim J, Jang D, Park H, Jung S, Kim DH, Kim WJ. Functional-DNA-Driven Dynamic Nanoconstructs for Biomolecule Capture and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707351. [PMID: 30062803 DOI: 10.1002/adma.201707351] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The discovery of sequence-specific hybridization has allowed the development of DNA nanotechnology, which is divided into two categories: 1) structural DNA nanotechnology, which utilizes DNA as a biopolymer; and 2) dynamic DNA nanotechnology, which focuses on the catalytic reactions or displacement of DNA structures. Recently, numerous attempts have been made to combine DNA nanotechnologies with functional DNAs such as aptamers, DNAzymes, amplified DNA, polymer-conjugated DNA, and DNA loaded on functional nanoparticles for various applications; thus, the new interdisciplinary research field of "functional DNA nanotechnology" is initiated. In particular, a fine-tuned nanostructure composed of functional DNAs has shown immense potential as a programmable nanomachine by controlling DNA dynamics triggered by specific environments. Moreover, the programmability and predictability of functional DNA have enabled the use of DNA nanostructures as nanomedicines for various biomedical applications, such as cargo delivery and molecular drugs via stimuli-mediated dynamic structural changes of functional DNAs. Here, the concepts and recent case studies of functional DNA nanotechnology and nanostructures in nanomedicine are reviewed, and future prospects of functional DNA for nanomedicine are indicated.
Collapse
Affiliation(s)
- Jinhwan Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Donghyun Jang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyeongmok Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon, 57922, Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
24
|
Zhou Z, Li C, Zhang M, Zhang Q, Qian C, Oupicky D, Sun M. Charge and Assembly Reversible Micelles Fueled by Intracellular ATP for Improved siRNA Transfection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32026-32037. [PMID: 30179452 DOI: 10.1021/acsami.8b13300] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrophobic modification on polycations were commonly used to improve the stability and transfection efficiency of polyplexes. However, the improved stability often means undesired release of the encapsulated siRNA, limiting the application of cationic micelles for siRNA delivery. The current strategy of preparing bioresponsive micelles based on the cleavage of sensitive linkages between polycation and hydrophobic part was far from sufficient, owing to the siRNA binding of the separated polycations from micelles leading to the incomplete release of siRNA. In this study, we propose a new strategy by the combination of micelles disassembly and separated polycations charge reversal. FPBA (3-fluoro-4-carboxyphenylboronic acid) grafted PEI 1.8 k (polyethylenimine) as the polycations of PEI-FPBA and dopamine (with diol-containing moiety) conjugated with cholesterol as the hydrophobic part (Chol-Dopa). The PFCDM micelles was assembled by PEI-FPBA and Chol-Dopa, based on the FPBA-Dopa conjugation. The prepared PFCDM showed strong siRNA loading ability and superior stability in the presence of PBS or serum. Besides, the PFCDM exhibited excellent ATP sensibility. The intracellular ATP could effectively trigger the disassembly of micelles and charge reversal of PEI-FPBA, resulting in the burst release of siRNA in the cytosol. With the property of extracellular stability and intracellular instability, PFCDM displayed good performance on in vitro and in vivo luciferase silencing on 4T1 cells. It should also be noted that the assembly of low molecular weight PEI was relatively safe to cells compared with 25 k PEI. To sum up, the ATP-fueled assembly and charge reversible micelles gave examples for polyplexes to achieve better stability and on demand cargo release at the same time and shows potential to be used for in vitro and in vivo siRNA transfection.
Collapse
Affiliation(s)
- Zhanwei Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China
| | - Chenzi Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China
| | - Minghua Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China
| | - Qingyan Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China
| | - Chenggen Qian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China
| | - David Oupicky
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| | - Minjie Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics , China Pharmaceutical University , 24 Tong Jia Xiang , Nanjing 210009 , PR China
| |
Collapse
|
25
|
Zhou Z, Zhang Q, Zhang M, Li H, Chen G, Qian C, Oupicky D, Sun M. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Am J Cancer Res 2018; 8:4604-4619. [PMID: 30279726 PMCID: PMC6160761 DOI: 10.7150/thno.26889] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/17/2018] [Indexed: 02/04/2023] Open
Abstract
Stimuli-responsive polycations have been developed for improved nucleic acid transfection and enhanced therapeutic efficacy. The most reported mechanisms for controlled release of siRNA are based on polyelectrolyte exchange reactions in the cytoplasm and the degradation of polycations initiated by specific triggers. However, the degradation strategy has not always been sufficient due to unsatisfactory kinetics and binding of cationic fragments to siRNA, which limits the gene silencing effect. In this study, a new strategy that combines degradation and charge reversal is proposed. Methods: We prepared a polycation (CrossPPA) by crosslinking of phenylboronic acid (PBA)-grafted 1.8k PEI with alginate. It was compared with 25k PEI, 1.8k PEI and 1.8k PEI-PBA on siRNA encapsulation, ATP-responsive behavior and mechanism, cytotoxicity, cell uptake, siRNA transfection, in vivo biodistribution and in vivo anti-tumor efficacy. The in vitro and in vivo experiments were performed on 4T1 murine breast cancer cells and 4T1 tumor model separately. Results: The crosslinking strategy obviously improve the siRNA loading ability of 1.8k PEI. We validated that intracellular levels of ATP could trigger CrossPPA disassembly and charge reversal, which resulted in efficient and rapid siRNA release due to electrostatic repulsion. Besides, CrossPPA/siRNA showed strong cell uptake in 4T1 cells compared with 1.8k PEI/siRNA. Notably, the cytotoxicity of CrossPPA was pretty low, which was owing to its biodegradability. Furthermore, the crosslinked polyplexes significantly enhanced siRNA transfection and improved tumor accumulation. The high gene silencing ability of CrossPPA polyplex led to strong anti-tumor efficacy when using Bcl2-targeted siRNA. Conclusion: These results indicated that the ATP-triggered disassembly and charge reversal strategy provided a new way for developing stimuli-responsive siRNA carriers and showed potential for nucleic acid delivery in the treatment of cancer.
Collapse
|
26
|
Duan X, Li T, Han X, Ren J, Chen P, Li H, Gong S. The antitumor effect of arsenic trioxide on hepatocellular carcinoma is enhanced by andrographolide. Oncotarget 2017; 8:90905-90915. [PMID: 29207612 PMCID: PMC5710893 DOI: 10.18632/oncotarget.18677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022] Open
Abstract
High concentrations of arsenic trioxide (As2O3) are used to treat acute promyelocytic leukemia and solid tumors, with negative side effects to normal cells. Andrographolide is a traditional Chinese medicine that exerts anti-cancer, anti-inflammatory, anti-virus, and anti-diabetic effects. Here, we tested the effects of combined andrographolide with As2O3 against hepatocellular carcinoma (HCC). We found that by increasing apoptosis, andrographolide synergistically enhanced the anti-tumor effects of As2O3 in HepG2 cells in vitro and in vivo. Furthermore, results from our microarray assays and experiments with mouse xenografts showed that EphB4 was downregulated by the combination of As2O3 plus andrographolide. These findings suggest that the combination of andrographolide and As2O3 could yield therapeutic benefits in the treatment of HCC.
Collapse
Affiliation(s)
- Xuhua Duan
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Pengfei Chen
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Hao Li
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Shaojun Gong
- Department of Interventional Radiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|