1
|
Bhavsar A, Pati F, Chakraborty P. Supramolecular Conductive Hydrogels for Tissue Engineering Applications. Chembiochem 2025; 26:e202400733. [PMID: 39462202 DOI: 10.1002/cbic.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Owing to their unique attributes, including reversibility, specificity, directionality, and tunability, supramolecular biomaterials have evolved as an excellent alternative to conventional biomaterials like polymers, ceramics, and metals. Supramolecular hydrogels, in particular, have garnered significant interest because their fibrous architecture, high water content, and interconnected 3D network resemble the extracellular matrix to some extent. Consequently, supramolecular hydrogels have been used to develop biomaterials for tissue engineering. Supramolecular conductive hydrogels combine the advantages of supramolecular soft materials with the electrical properties of metals, making them highly relevant for electrogenic tissue engineering. Given the versatile applications of these hydrogels, it is essential to periodically review high-quality research in this area. In this review, we focus on recent advances in supramolecular conductive hydrogels, particularly their applications in tissue engineering. We discuss the conductive components of these hydrogels and highlight notable reports on their use in cardiac, skin, and neural tissue engineering. Additionally, we outline potential future developments in this field.
Collapse
Affiliation(s)
- Aashwini Bhavsar
- Centre for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Sangareddy, Telangana, India
| |
Collapse
|
2
|
Zhang D, Zhang J, Bian X, Zhang P, Wu W, Zuo X. Iron Oxide Nanoparticle-Based T 1 Contrast Agents for Magnetic Resonance Imaging: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:33. [PMID: 39791792 PMCID: PMC11722098 DOI: 10.3390/nano15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
This review highlights recent progress in utilizing iron oxide nanoparticles (IONPs) as a safer alternative to gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI). It consolidates findings from multiple studies, discussing current T1 contrast agents (CAs), the synthesis techniques for IONPs, the theoretical principles for designing IONP-based MRI CAs, and the key factors that impact their T1 contrast efficacy, such as nanoparticle size, morphology, surface modifications, valence states, and oxygen vacancies. Furthermore, we summarize current strategies to achieve IONP-based responsive CAs, including self-assembly/disassembly and distance adjustment. This review also evaluates the biocompatibility, organ accumulation, and clearance pathways of IONPs for clinical applications. Finally, the challenges associated with the clinical translation of IONP-based T1 CAs are included.
Collapse
Affiliation(s)
- Dongmei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Jing Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xianglin Bian
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Pei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Weihua Wu
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xudong Zuo
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
- The Jiangsu Key Laboratory of Clean Energy Storage and Conversion, Jiangsu University of Technology, Changzhou 213100, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Alexander E, Leong KW. Nanodiamonds in biomedical research: Therapeutic applications and beyond. PNAS NEXUS 2024; 3:pgae198. [PMID: 38983694 PMCID: PMC11231952 DOI: 10.1093/pnasnexus/pgae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/06/2024] [Indexed: 07/11/2024]
Abstract
Nanodiamonds (NDs) comprise a family of carbon-based nanomaterials (i.e. diameter <100 nm) with the same sp3 lattice structure that gives natural diamonds their exceptional hardness and electrical insulating properties. Among all carbon nanomaterials-e.g. carbon nanotubes, nanodots, and fullerenes-NDs are of particular interest for biomedical applications because they offer high biocompatibility, stability in vivo, and a dynamic surface chemistry that can be manipulated to perform a seemingly limitless variety of ultra-specific tasks. NDs are already deepening our understanding of basic biological processes, while numerous laboratories continue studying these nanomaterials with an aim of making seismic improvements in the prevention, diagnosis, and treatment of human diseases. This review surveys approximately 2,000 the most recent articles published in the last 5 years and includes references to more than 150 of the most relevant publications on the biomedical applications of NDs. The findings are categorized by contemporary lines of investigation based on potential applications, namely: genetics and gene editing, drug delivery systems, neural interfacing, biomedical sensors, synthetic biology, and organ and tissue regeneration. This review also includes a brief background of NDs and the methods currently developed for their synthesis and preparation. Finally, recommendations for future investigations are offered.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
4
|
Xiao Y, Tao Z, Ju Y, Huang X, Zhang X, Liu X, Volotovski PA, Huang C, Chen H, Zhang Y, Liu S. Diamond-Like Carbon Depositing on the Surface of Polylactide Membrane for Prevention of Adhesion Formation During Tendon Repair. NANO-MICRO LETTERS 2024; 16:186. [PMID: 38687411 PMCID: PMC11061095 DOI: 10.1007/s40820-024-01392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine. This study proposes the use of diamond-like carbon (DLC) deposited on polylactic acid (PLA) membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats. The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane, with histological score decreasing from 3.12 ± 0.27 to 2.20 ± 0.22 and anti-adhesion effectiveness increasing from 21.61% to 44.72%. Mechanistically, the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively; thus, the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited. Consequently, excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) is largely reduced. For biocompatibility evaluation, PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes. Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds, which further delays the fibrosis process. It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Yufeng Ju
- Shanghai Tongji Hospital, 389 Xincun Rd, Shanghai, 200065, People's Republic of China
| | - Xiaolu Huang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Xiaonan Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Pavel A Volotovski
- Orthopedic Trauma Department, Belarus Republic Scientific and Practical Center for Traumatology and Orthopedics, Kizhevatova str., 60/4, 220024, Minsk, Belarus
| | - Chao Huang
- Shanghai Haohai Biological Technology Limited Liability Company, 1386 Hongqiao Rd, Shanghai, 200336, People's Republic of China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China.
| | - Yaozhong Zhang
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
5
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
6
|
Colon A, Avalos J, Weiner BR, Morell G, Ríos R. Water treatment membranes embedded with a stable and bactericidal nanodiamond material. JOURNAL OF WATER AND HEALTH 2023; 21:601-614. [PMID: 37254908 PMCID: wh_2023_298 DOI: 10.2166/wh.2023.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Filtration has emerged as a critical technology to reduce waterborne diseases caused by poor water quality. Filtration technology presents key challenges, such as membrane selectivity, permeability and biofouling. Nanomaterials can offer solutions to these challenges by varying the membranes' mechanical and bactericidal properties. This research uses nanodiamond particles with facile surface functionality and biocompatibility properties that are added to membranes used for filtration treatments. Scanning and transmission electron microscopy (SEM and TEM) and Fourier transform infrared spectroscopy (FTIR) were performed to study the membrane surface. FTIR spectra confirms an increase in oxygen functional groups onto the ultradispersed diamond's (UDD) surface following acid treatment. SEM images show particle deagglomeration of functionalized UDD at the membrane surface. Tensile strength tests were done to measure the UDD mechanical properties and Coliscan membrane filtration characterization was performed to determine the filter effectiveness. Polyether sulfone (PES) and polyvinylidene (PVDF) membranes expressed a change in their yield point when UDD was incorporated into the porous matrix. A significant microorganism reduction was obtained and confirmed using t-test analysis at a 95% level of confidence. UDD-embedded membranes exhibit a significant bactericidal reduction compared to commercial membranes suggesting these membranes have the potential to enhance current membrane filtration systems.
Collapse
Affiliation(s)
- Abelardo Colon
- Molecular Science Research Center, University of Puerto Rico, San Juan, PR 00926, USA E-mail: ; Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00925-2537, USA
| | - Javier Avalos
- Molecular Science Research Center, University of Puerto Rico, San Juan, PR 00926, USA E-mail: ; Department of Physics, University of Puerto Rico, Bayamón, PR 00959, USA
| | - Brad R Weiner
- Molecular Science Research Center, University of Puerto Rico, San Juan, PR 00926, USA E-mail: ; Department of Chemistry, University of Puerto Rico, San Juan, PR 00925-2537, USA
| | - Gerardo Morell
- Molecular Science Research Center, University of Puerto Rico, San Juan, PR 00926, USA E-mail: ; Department of Physics, University of Puerto Rico, Bayamón, PR 00959, USA
| | - Rafael Ríos
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00925-2537, USA
| |
Collapse
|
7
|
Li Y, Kong J, Zhao H, Liu Y. Synthesis of Multi-Stimuli Responsive Fe 3O 4 Coated with Diamonds Nanocomposite for Magnetic Assisted Chemo-Photothermal Therapy. Molecules 2023; 28:molecules28041784. [PMID: 36838772 PMCID: PMC9959610 DOI: 10.3390/molecules28041784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Nanodiamonds with magnetic resonance imaging (MRI) and targeted drug delivery to exert combined effects for biomedical applications have been considered to be an urgent challenge. Herein, a novel bio-nanoarchitectonics (Fe3O4@NDs) with simultaneous imaging and therapeutic capacities was fabricated by covalently conjugating nanodiamonds (NDs) with Fe3O4. Fe3O4@NDs exhibited better biocompatibility and excellent photothermal stability with superb photothermal conversion performance (37.2%). Fe3O4@NDs has high doxorubicin (DOX) loading capacity (193 mg/g) with pH and NIR-responsive release characteristics. Fe3O4@NDs loading DOX showed a combined chemo-photothermal inhibitory effect on the tumor cells. Enhanced T2-weighted MRI contrast toward the tumor, with the assistance of a magnetic field, convinced the Fe3O4@NDs gathered in the tumor more efficiently and could be used for MRI-based cancer diagnosis. Our results revealed an effective strategy to achieve a stimuli-sensitive nanoplatform for multifunctional theranostics by the combined action.
Collapse
Affiliation(s)
- Yang Li
- School of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jichuan Kong
- School of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
- Correspondence:
| | - Huan Zhao
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Yao Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo 454000, China
| |
Collapse
|
8
|
Hussain Z, Thu HE, Khan S, Sohail M, Sarfraz RM, Mahmood A, Abourehab MA. Phytonanomedicines, a state-of-the-art strategy for targeted delivery of anti-inflammatory phytochemicals: A review of improved pharmacokinetic profile and therapeutic efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
9
|
Patil S, Mishra VS, Yadav N, Reddy PC, Lochab B. Dendrimer-Functionalized Nanodiamonds as Safe and Efficient Drug Carriers for Cancer Therapy: Nucleus Penetrating Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:3438-3451. [PMID: 35754387 DOI: 10.1021/acsabm.2c00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanodiamonds (NDs) are increasingly being assessed as potential candidates for drug delivery in cancer cells and they hold great promise in overcoming the side effects of traditional chemotherapeutics. In the current work, carboxylic acid functionalized nanodiamonds (ND-COOH) were covalently modified with poly(amidoamine) dendrimer (PAMAM) to form amine-terminated nanodiamonds (NP). Unlike ND-COOH, the chemically modified nanodiamond platform NP revealed a pH-independent aqueous dispersion stability, enhancing its potential as an effective carrier. Physical encapsulation of poorly water soluble cabazitaxel (CTX) drug on NP formed ND-PAMAM-CTX (NPC) nanoconjugates and substantially reduced the size of CTX from micrometer to nanometer. CTX was localized within the pores of nanoparticle aggregates and the cavities of the PAMAM dendrimer, thus facilitating the loaded drug's controlled and sustained release. NPC's cumulative CTX release efficiency was determined to be ∼95% at pH 4 after 96 h. A high cellular uptake of NPC both within the cytoplasm and nucleus of U87 cells is confirmed, accounting for a reduced IC50 value (1 nM). Both the cell cycle and Western blot analyses confirmed enhanced cell death and suppressed tubulin protein expression in NPC-treated cells. A significantly high inhibition to cell division with early apoptosis and reduced metastasis demonstrates the effective loading of CTX dosages on the nanocarrier. The present work highlights the potential of a newly designed nanocarrier NP as an efficient nanocargo for cellular delivery applications and may provide future insights to treat one of the most aggressive tumors in neuro-oncological research, glioblastoma multiforme (GBM).
Collapse
Affiliation(s)
- Sachin Patil
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Vishnu S Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Nisha Yadav
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Puli Chandramouli Reddy
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi-NCR 201314, India
| |
Collapse
|
10
|
Characterization of Carbon Nanostructures by Photoelectron Spectroscopies. MATERIALS 2022; 15:ma15134434. [PMID: 35806559 PMCID: PMC9267296 DOI: 10.3390/ma15134434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023]
Abstract
Recently, the scientific community experienced two revolutionary events. The first was the synthesis of single-layer graphene, which boosted research in many different areas. The second was the advent of quantum technologies with the promise to become pervasive in several aspects of everyday life. In this respect, diamonds and nanodiamonds are among the most promising materials to develop quantum devices. Graphene and nanodiamonds can be coupled with other carbon nanostructures to enhance specific properties or be properly functionalized to tune their quantum response. This contribution briefly explores photoelectron spectroscopies and, in particular, X-ray photoelectron spectroscopy (XPS) and then turns to the present applications of this technique for characterizing carbon nanomaterials. XPS is a qualitative and quantitative chemical analysis technique. It is surface-sensitive due to its limited sampling depth, which confines the analysis only to the outer few top-layers of the material surface. This enables researchers to understand the surface composition of the sample and how the chemistry influences its interaction with the environment. Although the chemical analysis remains the main information provided by XPS, modern instruments couple this information with spatial resolution and mapping or with the possibility to analyze the material in operando conditions at nearly atmospheric pressures. Examples of the application of photoelectron spectroscopies to the characterization of carbon nanostructures will be reviewed to present the potentialities of these techniques.
Collapse
|
11
|
Palmieri E, Cicero C, Orazi N, Mercuri F, Zammit U, Mazzuca C, Orlanducci S. Nanodiamond composites: A new material for the preservation of parchment. J Appl Polym Sci 2022. [DOI: 10.1002/app.52742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elena Palmieri
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Rome Italy
| | - Cristina Cicero
- Department of Literary, Philosophical and Art History Studies University of Rome “Tor Vergata” Rome Italy
| | - Noemi Orazi
- Industrial Engineering Department University of Rome “Tor Vergata” Rome Italy
| | - Fulvio Mercuri
- Industrial Engineering Department University of Rome “Tor Vergata” Rome Italy
| | - Ugo Zammit
- Industrial Engineering Department University of Rome “Tor Vergata” Rome Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Rome Italy
| | - Silvia Orlanducci
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Rome Italy
| |
Collapse
|
12
|
Kumar N, Chamoli P, Misra M, Manoj MK, Sharma A. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. NANOSCALE 2022; 14:3987-4017. [PMID: 35244647 DOI: 10.1039/d1nr07643d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles (NPs) offer great promise for biomedical, environmental, and clinical applications due to their several unique properties as compared to their bulk counterparts. In this review article, we overview various types of metal NPs and magnetic nanoparticles (MNPs) in monolithic form as well as embedded into polymer matrices for specific drug delivery and bio-imaging fields. The second part of this review covers important carbon nanostructures that have gained tremendous attention recently in such medical applications due to their ease of fabrication, excellent biocompatibility, and biodegradability at both cellular and molecular levels for phototherapy, radio-therapeutics, gene-delivery, and biotherapeutics. Furthermore, various applications and challenges involved in the use of NPs as biomaterials are also discussed following the future perspectives of the use of NPs in biomedicine. This review aims to contribute to the applications of different NPs in medicine and healthcare that may open up new avenues to encourage wider research opportunities across various disciplines.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Metallurgical Engineering, SOE, O.P. Jindal University, Raigarh 496109, India
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Pankaj Chamoli
- School of Basic & Applied Sciences, Department of Physics, Shri Guru Ram Rai University, Dehradun-248001, Uttarakhand, India
| | - Mrinmoy Misra
- Department of Mechatronics, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, 303007 Rajasthan, India
| | - M K Manoj
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon-16499, South Korea.
| |
Collapse
|
13
|
Ghanimi Fard M, Khabir Z, Reineck P, Cordina NM, Abe H, Ohshima T, Dalal S, Gibson BC, Packer NH, Parker LM. Targeting cell surface glycans with lectin-coated fluorescent nanodiamonds. NANOSCALE ADVANCES 2022; 4:1551-1564. [PMID: 36134370 PMCID: PMC9418452 DOI: 10.1039/d2na00036a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/06/2022] [Indexed: 06/02/2023]
Abstract
Glycosylation is arguably the most important functional post-translational modification in brain cells and abnormal cell surface glycan expression has been associated with neurological diseases and brain cancers. In this study we developed a novel method for uptake of fluorescent nanodiamonds (FND), carbon-based nanoparticles with low toxicity and easily modifiable surfaces, into brain cell subtypes by targeting their glycan receptors with carbohydrate-binding lectins. Lectins facilitated uptake of 120 nm FND with nitrogen-vacancy centers in three types of brain cells - U87-MG astrocytes, PC12 neurons and BV-2 microglia cells. The nanodiamond/lectin complexes used in this study target glycans that have been described to be altered in brain diseases including sialic acid glycans via wheat (Triticum aestivum) germ agglutinin (WGA), high mannose glycans via tomato (Lycopersicon esculentum) lectin (TL) and core fucosylated glycans via Aleuria aurantia lectin (AAL). The lectin conjugated nanodiamonds were taken up differently by the various brain cell types with fucose binding AAL/FNDs taken up preferentially by glioblastoma phenotype astrocyte cells (U87-MG), sialic acid binding WGA/FNDs by neuronal phenotype cells (PC12) and high mannose binding TL/FNDs by microglial cells (BV-2). With increasing recognition of glycans having a role in many diseases, the lectin bioconjugated nanodiamonds developed here are well suited for further investigation into theranostic applications.
Collapse
Affiliation(s)
- Mina Ghanimi Fard
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Zahra Khabir
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University Melbourne VIC 3001 Australia
| | - Nicole M Cordina
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Hiroshi Abe
- Quantum Beam Science Research Directorate, The Institute for Quantum Life Science, National Institutes for Quantum Science and Technology Takasaki Gunma 3701292 Japan
| | - Takeshi Ohshima
- Quantum Beam Science Research Directorate, The Institute for Quantum Life Science, National Institutes for Quantum Science and Technology Takasaki Gunma 3701292 Japan
| | - Sagar Dalal
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University Melbourne VIC 3001 Australia
| | - Nicolle H Packer
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
- Institute for Glycomics, Griffith University Southport QLD 4222 Australia
| | - Lindsay M Parker
- School of Natural Sciences, Centre of Excellence for Nanoscale BioPhotonics, Macquarie University Sydney NSW 2109 Australia +61 2 9850 8269
| |
Collapse
|
14
|
Shalaby MA, Anwar MM, Saeed H. Nanomaterials for application in wound Healing: current state-of-the-art and future perspectives. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-021-02870-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNanoparticles are the gateway to the new era in drug delivery of biocompatible agents. Several products have emerged from nanomaterials in quest of developing practical wound healing dressings that are nonantigenic, antishear stress, and gas-exchange permeable. Numerous studies have isolated and characterised various wound healing nanomaterials and nanoproducts. The electrospinning of natural and synthetic materials produces fine products that can be mixed with other wound healing medications and herbs. Various produced nanomaterials are highly influential in wound healing experimental models and can be used commercially as well. This article reviewed the current state-of-the-art and briefly specified the future concerns regarding the different systems of nanomaterials in wound healing (i.e., inorganic nanomaterials, organic and hybrid nanomaterials, and nanofibers). This review may be a comprehensive guidance to help health care professionals identify the proper wound healing materials to avoid the usual wound complications.
Collapse
|
15
|
Gbetuwa M, Lu LS, Wang TJ, Chen YJ, Chiou JF, Su TY, Yang TS. Nucleus Near-Infrared (nNIR) Irradiation of Single A549 Cells Induces DNA Damage and Activates EGFR Leading to Mitochondrial Fission. Cells 2022; 11:cells11040624. [PMID: 35203275 PMCID: PMC8870661 DOI: 10.3390/cells11040624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
There has been great interest in identifying the biological substrate for light-cell interaction and their relations to cancer treatment. In this study, a near-infrared (NIR) laser is focused into the nucleus (nNIR) or cytoplasm (cNIR) of a single living cell by a high numerical aperture condenser to dissect the novel role of cell nucleus in mediating NIR effects on mitochondrial dynamics of A549 non-small cell lung cancer cells. Our analysis showed that nNIR, but not cNIR, triggered mitochondrial fission in 10 min. In contrast, the fission/fusion balance of mitochondria directly exposed to cNIR does not change. While the same phenomenon is also triggered by single molecular interactions between epidermal growth factor (EGF) and its receptor EGFR, pharmacological studies with cetuximab, PD153035, and caffeine suggest EGF signaling crosstalk to DNA damaging response to mediate rapid mitochondrial fission as a result of nNIR irradiation. These results suggest that nuclear DNA integrity is a novel biological target for cellular response to NIR.
Collapse
Affiliation(s)
- Momoh Gbetuwa
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center for Cell Therapy, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- International PhD Program for Cell Therapy and Regeneration, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 110, Taiwan;
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan; (M.G.); (L.-S.L.); (Y.-J.C.)
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Radiology, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tai-Yuan Su
- Department of Electrical Engineering, Yuan-Ze University, Chung-Li 32003, Taiwan;
| | - Tzu-Sen Yang
- International PhD Program in Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan
- School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-27361661 (ext. 5206)
| |
Collapse
|
16
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
17
|
Kumar N, Fazal S, Miyako E, Matsumura K, Rajan R. Avengers against cancer: A new era of nano-biomaterial-based therapeutics. MATERIALS TODAY 2021; 51:317-349. [DOI: 10.1016/j.mattod.2021.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
19
|
Abstract
The family of carbon nanostructures comprises several members, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. Their unique electronic properties have attracted great interest for their highly innovative potential in nanomedicine. However, their hydrophobic nature often requires organic solvents for their dispersibility and processing. In this review, we describe the green approaches that have been developed to produce and functionalize carbon nanomaterials for biomedical applications, with a special focus on the very latest reports.
Collapse
|
20
|
Sivtsov EV, Kalinin AV, Gostev AI, Smirnov AV, Agibalova LV, Shumilov FA. In Situ Preparation of Polymer Nanocomposites Based on Sols of Surface-Modified Detonation Nanodiamonds by Classical and Controlled Radical Polymerization. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420050139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Chakravarti AR, Pacelli S, Paul A. Investigation of human adipose stem cell-derived nanoparticles as a biomimetic carrier for intracellular drug delivery. NANOSCALE 2020; 12:24273-24284. [PMID: 33295935 DOI: 10.1039/d0nr06571d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prevailing drug delivery strategies rely on the use of synthetic nanocarriers like metal nanoparticles and polymeric liposomes to control the release of therapeutics in a safe and efficacious manner. Despite their high efficiency in encapsulating drugs, these systems exhibit low to moderate biocompatibility, low cellular uptake, and sub-optimal targeting capabilities. Conversely, cell-derived nanoparticles (CDNs) have emerged as a promising alternative to these artificial drug delivery carriers for achieving safer clinical outcomes. In this study, we have generated CDNs from human adipose-derived stem cells (hASCs) using a high-yield fabrication strategy. Briefly, hASCs were subjected to a cell-shearing approach that entails passing the cells through an array of filters, along with serial centrifugations to eliminate intracellular contents. Ultimately, the fragmented parent cell membrane self-assembles to form the CDNs. This strategy successfully converted 80% of the plasma membrane into the novel nanocarriers with an average hydrodynamic diameter of 100 nm. Stability analysis confirmed that the formulated nanocarriers are stable for over 3 weeks, making them a potent candidate for long-term therapies. To demonstrate their potential in drug delivery, we encapsulated trehalose, a cell-impermeable sugar molecule, into the CDNs via an extrusion loading technique. Drug-loaded CDNs were effectively internalized into human umbilical vein endothelial cells (HUVECs) and hASCs, without inducing any significant cytotoxicity. Overall, the findings of this study establish the potential of hASC-derived CDNs as customizable biomimetic nanocarriers for drug delivery and other translational medicine applications.
Collapse
Affiliation(s)
- Aparna R Chakravarti
- Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
22
|
Porphyrin–Nanodiamond Hybrid Materials—Active, Stable and Reusable Cyclohexene Oxidation Catalysts. Catalysts 2020. [DOI: 10.3390/catal10121402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The quest for active, yet “green” non-toxic catalysts is a continuous challenge. In this work, covalently linked hybrid porphyrin–nanodiamonds were prepared via ipso nitro substitution reaction and characterized by X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, infrared spectroscopy (IR) and thermogravimetry-differential scanning calorimetry (TG-DSC). The amine-functionalized nanodiamonds (ND@NH2) and 2-nitro-5,10,15,20-tetra(4-trifluoromethylphenyl)porphyrin covalently linked to nanodiamonds (ND@βNH-TPPpCF3) were tested using Allium cepa as a plant model, and showed neither phytotoxicity nor cytotoxicity. The hybrid nanodiamond–copper(II)–porphyrin material ND@βNH-TPPpCF3-Cu(II) was also evaluated as a reusable catalyst in cyclohexene allylic oxidation, and displayed a remarkable turnover number (TON) value of ≈265,000, using O2 as green oxidant, in the total absence of sacrificial additives, which is the highest activity ever reported for said allylic oxidation. Additionally, ND@βNH-TPPpCF3-Cu(II) could be easily separated from the reaction mixture by centrifugation, and reused in three consecutive catalytic cycles without major loss of activity.
Collapse
|
23
|
Bondon N, Raehm L, Charnay C, Boukherroub R, Durand JO. Nanodiamonds for bioapplications, recent developments. J Mater Chem B 2020; 8:10878-10896. [PMID: 33156316 DOI: 10.1039/d0tb02221g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The world of biomedical research is in constant evolution, requiring more and more conditions and norms through pre-clinic and clinic studies. Nanodiamonds (NDs) with exceptional optical, thermal and mechanical properties emerged on the global scientific scene and recently gained more attention in biomedicine and bioanalysis fields. Many problematics have been deliberated to better understand their in vitro and in vivo efficiency and compatibility. Light was shed on their synthesis, modification and purification steps, as well as particle size and surface properties in order to find the most suitable operating conditions. In this review, we present the latest advances of NDs use in bioapplications. A large variety of subjects including anticancer and antimicrobial systems, wound healing and tissue engineering management tools, but also bioimaging and labeling probes are tackled. The key information resulting from these recent works were evidenced to make an overview of the potential features of NDs, with a special look on emerging therapeutic and diagnosis combinations.
Collapse
Affiliation(s)
- Nicolas Bondon
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon 34095, Montpellier cedex 05, France.
| | | | | | | | | |
Collapse
|
24
|
Marcinkiewicz C, Lelkes PI, Sternberg M, Feuerstein GZ. Effects of Fluorescent Diamond Particles FDP-NV-800nm on Essential Biochemical Functions of Primary Human Umbilical Vein Cells and Human Hepatic Cell Line, HepG-2 in vitro (Part VI): Acute Biocompatibility Studies. Nanotechnol Sci Appl 2020; 13:103-118. [PMID: 33116443 PMCID: PMC7547810 DOI: 10.2147/nsa.s268107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022] Open
Abstract
Background Recently, we reported the safety and biocompatibility of fluorescent diamond particles, FDP-NV-Z-800nm (FDP-NV) injected intravenously into rats, where no morbidity and mortality were noted over a period of 3 months. The acute effects of FDP-NV-800nm particles on cultured human endothelial and hepatic cells remain unexplored. Purpose In this study, we aimed to explore select cellular and biochemical functions in cultured human umbilical endothelial cells (HUVEC) and a human hepatic cancer cell line (HepG-2) exposed to FDP-NV-800 in vitro at exposure levels within the pharmacokinetics (Cmax and the nadir) previously reported in vivo. Methods Diverse cellular and biochemical functions were monitored, which cumulatively can provide insights into some vital cellular functions. Cell proliferation and migration were assessed by quantitative microscopy. Mitochondrial metabolic functions were tested by the MTT assay, and cytosolic esterase activity was studied by the calcein AM assay. Chaperons (CHOP), BiP and apoptosis (caspase-3 activation) were monitored by using Western blot (WB). MAPK Erk1/2 signaling was assessed by the detection of the phosphorylated form of the protein (P-Erk 1/2) and its translocation into the cell nucleus. Results At all concentrations tested (0.001–0.1mg/mL), FDP-NV did not affect any of the biomarkers of cell integrity of HepG2 cells. In contrast, the proliferation of HUVEC was affected at the highest concentration tested (0.1mg/mL, Cmax). Exposure of HUVEC to (0.01 mg/mL) FDP-NV had a mild-moderate effect on cell proliferation as evident in the MTT assay and was absent when proliferation was assessed by direct cell counting or by using the calcein AM assays. In both cell types, exposure to the highest concentration (0.1 mg/mL) of FDP-NV did neither affect FBS-stimulated cell signaling (MAPK Erk1/2 phosphorylation) nor did it activate of Caspase 3. Conclusion Our data suggest that FDP-NV-800nm are largely biocompatible with HepG-2 cells proliferation within the pharmacokinetic data reported previously. In contrast, HUVEC proliferation at the highest exposure dose (0.1 mg/mL) responded adversely with respect to several biomarkers of cell integrity. However, since the Cmax levels are very short-living, the risk for endothelial injury is likely minimal for slow rate cell proliferation such as endothelial cells.
Collapse
Affiliation(s)
- Cezary Marcinkiewicz
- Debina Diagnostics Inc., Newtown Square, PA, USA.,College of Engineering, Temple University, Philadelphia, PA, USA
| | - Peter I Lelkes
- College of Engineering, Temple University, Philadelphia, PA, USA
| | | | | |
Collapse
|
25
|
Perevedentseva E, Lin YC, Cheng CL. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin Drug Deliv 2020; 18:369-382. [PMID: 33047984 DOI: 10.1080/17425247.2021.1832988] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Nanodiamond (ND) refers to diamond particles with sizes from few to near 100 nanometers. For its superb physical, chemical and spectroscopic properties, it has been proposed and studied with the aims for bio imaging and drug delivery. Many modalities on conjugating drug molecules on ND to form ND-X for more efficient drug delivery have been demonstrated in the cellular and animal models. AREA COVERED Many novel drug delivery approaches utilizing nanodiamond as a platform have been demonstrated recently. This review summarizes recent developments on the nanodiamond facilitated drug delivery, from the ND-X complexes preparations to tests in the cellular and animal models. The outlook on clinical translation is discussed. EXPERT OPINION Nanodiamond and drug complexes (ND-X) produced from different methods are realized for drug delivery; almost all studies reported ND-X being more efficient compared to pure drug alone. However, ND of particle size less than 10 nm are found more toxic due to size and surface structure, and strongly aggregate. In vivo studies demonstrate ND accumulation in animal organs and no confirmed long-term effect studies on their release from organs are available. Standardized nanodiamond materials and drug delivery approaches are needed to advance the applications to the clinical level.
Collapse
Affiliation(s)
- Elena Perevedentseva
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan.,Russian Academy of Sciences, P.N. Lebedev Physics Institute, Moskva, Russian Federation
| | - Yu-Chung Lin
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Shoufeng, Taiwan
| |
Collapse
|
26
|
Hwang HS, Jeong JW, Kim YA, Chang M. Carbon Nanomaterials as Versatile Platforms for Biosensing Applications. MICROMACHINES 2020; 11:mi11090814. [PMID: 32872236 PMCID: PMC7569884 DOI: 10.3390/mi11090814] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/23/2022]
Abstract
A biosensor is defined as a measuring system that includes a biological receptor unit with distinctive specificities toward target analytes. Such analytes include a wide range of biological origins such as DNAs of bacteria or viruses, or proteins generated from an immune system of infected or contaminated living organisms. They further include simple molecules such as glucose, ions, and vitamins. One of the major challenges in biosensor development is achieving efficient signal capture of biological recognition-transduction events. Carbon nanomaterials (CNs) are promising candidates to improve the sensitivity of biosensors while attaining low detection limits owing to their capability of immobilizing large quantities of bioreceptor units at a reduced volume, and they can also act as a transduction element. In addition, CNs can be adapted to functionalization and conjugation with organic compounds or metallic nanoparticles; the creation of surface functional groups offers new properties (e.g., physical, chemical, mechanical, electrical, and optical properties) to the nanomaterials. Because of these intriguing features, CNs have been extensively employed in biosensor applications. In particular, carbon nanotubes (CNTs), nanodiamonds, graphene, and fullerenes serve as scaffolds for the immobilization of biomolecules at their surface and are also used as transducers for the conversion of signals associated with the recognition of biological analytes. Herein, we provide a comprehensive review on the synthesis of CNs and their potential application to biosensors. In addition, we discuss the efforts to improve the mechanical and electrical properties of biosensors by combining different CNs.
Collapse
Affiliation(s)
- Hye Suk Hwang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| | - Jae Won Jeong
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
| | - Yoong Ahm Kim
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| | - Mincheol Chang
- Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea
- Correspondence: (H.S.H.); (Y.A.K.); (M.C.); Tel.: +82-62-530-1771 (M.C.)
| |
Collapse
|
27
|
Tian X, Zeng A, Liu Z, Zheng C, Wei Y, Yang P, Zhang M, Yang F, Xie F. Carbon Quantum Dots: In vitro and in vivo Studies on Biocompatibility and Biointeractions for Optical Imaging. Int J Nanomedicine 2020; 15:6519-6529. [PMID: 32943866 PMCID: PMC7468940 DOI: 10.2147/ijn.s257645] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/15/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Understanding the biocompatibility and biointeractions of nano-carbon quantum dots (nano-CQDs) in vitro and in vivo is important for assessing their potential risk to human health. In the previous research, the physical properties of CQDs synthesized by the laser ablation in liquid (LAL) method were analyzed in detail; however, possible bioapplications were not considered. MATERIALS AND METHODS CQDs were prepared by LAL and characterized by atomic force microscopy, fluorescence lifetime, absorption spectrum, Fourier-transform infrared spectroscopy, and dynamic light scattering. Their biocompatibility was evaluated in vitro using assays for cytotoxicity, apoptosis, and biodistribution and in vivo using immunotoxicity and the relative expression of genes. Cells were measured in vitro using fluorescence-lifetime imaging microscopy to analyze the biointeractions between CQDs and intracellular proteins. RESULTS There were no significant differences in biocompatibility between the CQDs and the negative control. The intracellular interactions had no impact on the optical imaging of CQDs upon intake by cells. Optical imaging of zebrafish showed the green fluorescence was well dispersed. CONCLUSION We have demonstrated that the CQDs have an excellent biocompatibility and can be used as efficient optical nanoprobes for cell tracking and biomedical labeling except for L929 and PC-3M cells.
Collapse
Affiliation(s)
- Xiumei Tian
- School of Basic Medical Sciences, Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou510182, People’s Republic of China
| | - Ao Zeng
- School of Basic Medical Sciences, Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou510182, People’s Republic of China
| | - Ziying Liu
- School of Basic Medical Sciences, Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou510182, People’s Republic of China
| | - Cunjing Zheng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou510080, People’s Republic of China
| | - Yuezi Wei
- School of Basic Medical Sciences, Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou510182, People’s Republic of China
| | - Peiheng Yang
- School of Basic Medical Sciences, Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou510182, People’s Republic of China
| | - Minru Zhang
- School of Basic Medical Sciences, Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou510182, People’s Republic of China
| | - Fanwen Yang
- School of Basic Medical Sciences, Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou510182, People’s Republic of China
| | - Fukang Xie
- School of Basic Medical Sciences, Affiliated Stomatology Hospital, Guangzhou Medical University, Guangzhou510182, People’s Republic of China
| |
Collapse
|
28
|
Giuli MV, Hanieh PN, Giuliani E, Rinaldi F, Marianecci C, Screpanti I, Checquolo S, Carafa M. Current Trends in ATRA Delivery for Cancer Therapy. Pharmaceutics 2020; 12:E707. [PMID: 32731612 PMCID: PMC7465813 DOI: 10.3390/pharmaceutics12080707] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
All-Trans Retinoic Acid (ATRA) is the most active metabolite of vitamin A. It is critically involved in the regulation of multiple processes, such as cell differentiation and apoptosis, by activating specific genomic pathways or by influencing key signaling proteins. Furthermore, mounting evidence highlights the anti-tumor activity of this compound. Notably, oral administration of ATRA is the first choice treatment in Acute Promyelocytic Leukemia (APL) in adults and NeuroBlastoma (NB) in children. Regrettably, the promising results obtained for these diseases have not been translated yet into the clinics for solid tumors. This is mainly due to ATRA-resistance developed by cancer cells and to ineffective delivery and targeting. This up-to-date review deals with recent studies on different ATRA-loaded Drug Delivery Systems (DDSs) development and application on several tumor models. Moreover, patents, pre-clinical, and clinical studies are also reviewed. To sum up, the main aim of this in-depth review is to provide a detailed overview of the several attempts which have been made in the recent years to ameliorate ATRA delivery and targeting in cancer.
Collapse
Affiliation(s)
- Maria Valeria Giuli
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Patrizia Nadia Hanieh
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Eugenia Giuliani
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Federica Rinaldi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (M.V.G.); (E.G.); (I.S.)
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University of Rome, 04100 Latina, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, 00185 Rome, Italy; (P.N.H.); (F.R.); (C.M.); (M.C.)
| |
Collapse
|
29
|
Liu D, Qiao S, Cheng B, Li D, Chen J, Wu Q, Pan H, Pan W. Enhanced Oral Delivery of Curcumin via Vitamin E TPGS Modified Nanodiamonds: a Comparative Study on the Efficacy of Non-covalent and Covalent Conjugated Strategies. AAPS PharmSciTech 2020; 21:187. [PMID: 32642862 DOI: 10.1208/s12249-020-01721-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Despite that either non-covalent or covalent attachment of hydrophilic polymers or surfactants onto nanodiamonds (NDs) could overcome the shortcomings of being a drug delivery system, it is hard to draw a definite conclusion which strategy is more effective. Hence, with the purpose of comparing the influence of different coating approach of NDs on the oral delivery efficiency of water-insoluble model drug curcumin (CUR), NDs were firstly modified with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) via non-covalent or covalent conjugation method, and then loaded with CUR (CUR@NDs-COOH/TPGS or CUR@NDs-TPGS). In comparison with the core-shell-structured CUR@NDs-COOH/TPGS, CUR@NDs-TPGS were irregular in shape with dense TPGS film, and exhibited smaller size, more negatively potential, and higher drug loading efficiency. The covalent connection group also showed higher anti-cancer activity, cellular uptake, and permeability through the Caco-2 cell monolayers, as well as favorable distribution, penetration, and retention in rat intestines. The oral bioavailability study in rats demonstrated that CUR@NDs-TPGS showed significantly greater Cmax and AUC0-t in contrast with CUR suspension and the TPGS-coated ones, respectively. The findings illustrated that covalent grafting TPGS onto the surface of NDs possesses better efficacy and biocompatibility on oral delivery of poorly soluble drug CUR than pristine and non-covalent coated nanoparticles.
Collapse
|
30
|
High Nanodiamond Content-PCL Composite for Tissue Engineering Scaffolds. NANOMATERIALS 2020; 10:nano10050948. [PMID: 32429310 PMCID: PMC7279315 DOI: 10.3390/nano10050948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/04/2022]
Abstract
Multifunctional scaffolds are becoming increasingly important in the field of tissue engineering. In this research, a composite material is developed using polycaprolactone (PCL) and detonation nanodiamond (ND) to take advantage of the unique properties of ND and the biodegradability of PCL polymer. Different ND loading concentrations are investigated, and the physicochemical properties of the composites are characterized. ND-PCL composite films show a higher surface roughness and hydrophilicity than PCL alone, with a slight decrease in tensile strength and a significant increase in degradation. Higher loading of ND also shows a higher osteoblast adhesion than the PCL alone sample. Finally, we show that the ND-PCL composites are successfully extruded to create a 3D scaffold demonstrating their potential as a composite material for tissue regeneration.
Collapse
|
31
|
Krok E, Balakin S, Jung J, Gross F, Opitz J, Cuniberti G. Modification of titanium implants using biofunctional nanodiamonds for enhanced antimicrobial properties. NANOTECHNOLOGY 2020; 31:205603. [PMID: 31958787 DOI: 10.1088/1361-6528/ab6d9b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study describes a novel antimicrobial surface using anodic oxidation of titanium and biofunctional detonation nanodiamonds (ND). ND have been loaded with antibiotics (amoxicillin or ampicillin) using poly(diallyldimethylammonium chloride) (PDDA). Successful conjugation with PDDA was determined by dynamic light scattering, which showed increase in the hydrodynamic diameter of ND agglomerates and shift of zeta potential towards positive values. The surface loading of amoxicillin was determined using UV-vis spectroscopy and the maximum of 44% surface loading was obtained. Biofunctional ND were immobilized by anodic oxidation within a titanium oxide layer, which was confirmed by scanning electron microscopy. The in vitro antimicrobial properties of ND suspensions were examined using Kirby-Bauer test with E. coli. Modified titanium surfaces comprising biofunctional ND were evaluated with E. coli inoculum by live/dead assay staining. Both biofunctional ND suspensions and modified titanium surfaces presented inhibition of bacteria growth and increase in bacteria lethality.
Collapse
Affiliation(s)
- Emilia Krok
- Bio- and Nanotechnology, Fraunhofer Institute for Ceramic Technologies and Systems IKTS Material Diagnostics, Dresden, Germany. Biotechnology Center (BIOTEC) of Technische Universität Dresden, Dresden, Germany. Poznań University of Technology, Faculty of Physics, Institute of Molecular Physics, Poznań, Poland
| | | | | | | | | | | |
Collapse
|
32
|
Kausar A. Nanocarbon in Polymeric Nanocomposite Hydrogel—Design and Multi-Functional Tendencies. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1757106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
33
|
Li M, Li Q, Hou W, Zhang J, Ye H, Li H, Zeng D, Bai J. A redox-sensitive core-crosslinked nanosystem combined with ultrasound for enhanced deep penetration of nanodiamonds into tumors. RSC Adv 2020; 10:15252-15263. [PMID: 35495450 PMCID: PMC9052314 DOI: 10.1039/d0ra01776k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/07/2023] Open
Abstract
Nanodiamonds (NDs) as drug delivery vehicles are of great significance in anticancer therapy through enhancing drug retention. However, the major barrier to clinical application of NDs is insufficient tumor penetration owing to their strong aggregation and low passive penetration efficiency. Herein, the core-crosslinked pullulan carrier, assembled using the visible light-induced diselenide (Se-Se) bond crosslinking method for encapsulating nanodiamonds-doxorubicin (NDX), is proposed to improve monodispersity. Furthermore, the core-crosslinked diselenide bond provides the nanosystem with redox-responsive capability and improved structural stability in a physiological environment, which prevents premature drug leakage and achieves tumor site-specific controlled release. What's more, ultrasound (US) is utilized to promote nanosystem intratumoral penetration via enlarged tumor vascular endothelium cell gaps. As expected, the nanosystem combined with ultrasound can enhance anti-tumor efficacy with deep penetration and excellent retention performance in a HepG2 xenograft mouse model. This study highlights the ability of the integrated therapeutic paradigm to overcome the limitation of nanodiamonds and the potential for further application in cancer therapy.
Collapse
Affiliation(s)
- Meixuan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Qianyan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Wei Hou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Jingni Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Hemin Ye
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Huanan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Deping Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| | - Jin Bai
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
34
|
Masys Š, Rinkevicius Z, Tamulienė J. Computational study on the electronic g-tensors of hydrophilic and hydrophobic nanodiamonds interacting with water. J Chem Phys 2020; 152:144302. [PMID: 32295368 DOI: 10.1063/5.0001485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hydrogenated and hydroxylated nanodiamonds (NDs) are modeled by putting emphasis on the most common paramagnetic impurities-dangling bonds as well as single substitutional nitrogen atoms-and their interaction with water. It is shown that, despite its overall hydrophobicity, hydrogenated ND can become locally hydrophilic due to the introduced defects; therefore, water molecules may be attracted to the particular sites at its surface. To assess the direct influence of water on the magnetic behavior of NDs, the solvent-induced shift of the g-tensor was employed, indicating that for the same types of impurities, the impact the water has strongly depends on their positions in ND. In addition, water molecules at the locally hydrophilic sites of hydrogenated ND may influence the magnetic behavior of defects to the same extent as it may be influenced in the case of hydroxylated ND. Moreover, the overall hydrophilic nature of the latter does not necessarily guarantee that water, although being strongly attracted to the vicinity of impurity, will form a hydrogen bond network with a substantial impact on the local environment of the unpaired electron. The obtained data imply that in the context of the Overhauser effect, for which the solvent-induced shift of the g-tensor is proposed as a tool to reveal whether some NDs are more favorable for it to occur compared to the others, hydrogenated NDs should perform no worse than hydroxylated ones, despite only the local hydrophilicity of the former.
Collapse
Affiliation(s)
- Š Masys
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Z Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - J Tamulienė
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
35
|
Abstract
Carbon nanostructures (CNs), such as carbon nanotubes, fullerenes, carbon dots, nanodiamonds as well as graphene and its derivatives present a tremendous potential for various biomedical applications, ranging from sensing to drug delivery and gene therapy, biomedical imaging and tissue engineering. Since most of these applications encompass blood contact or intravenous injection, hemocompatibility is a critical aspect that must be carefully considered to take advantage of CN exceptional characteristics while allowing their safe use. This review discusses the hemocompatibility of different classes of CNs with the purpose of providing biomaterial scientists with a comprehensive vision of the interactions between CNs and blood components. The various complex mechanisms involved in blood compatibility, including coagulation, hemolysis, as well as the activation of complement, platelets, and leukocytes will be considered. Special attention will be paid to the role of CN size, structure, and surface properties in the formation of the protein corona and in the processes that drive blood response. The aim of this review is to emphasize the importance of hemocompatibility for CNs intended for biomedical applications and to provide some valuable insights for the development of new generation particles with improved performance and safety in the physiological environment.
Collapse
|
36
|
Tsapyuk GG, Diyuk VE, Mariychuk R, Panova AN, Loginova OB, Grishchenko LM, Dyachenko AG, Linnik RP, Zaderko AN, Lisnyak VV. Effect of ultrasonic treatment on the thermal oxidation of detonation nanodiamonds. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01277-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Reina G, Zhao L, Bianco A, Komatsu N. Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angew Chem Int Ed Engl 2019; 58:17918-17929. [DOI: 10.1002/anie.201905997] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/20/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Giacomo Reina
- University of StrasbourgCNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 67000 Strasbourg France
| | - Li Zhao
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou Jiangsu 215123 China
| | - Alberto Bianco
- University of StrasbourgCNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 67000 Strasbourg France
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
38
|
Functionalization of Carbon Nanomaterials for Biomedical Applications. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5040072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the past decade, carbon nanostructures (CNSs) have been widely used in a variety of biomedical applications. Examples are the use of CNSs for drug and protein delivery or in tools to locally dispense nucleic acids to fight tumor affections. CNSs were successfully utilized in diagnostics and in noninvasive and highly sensitive imaging devices thanks to their optical properties in the near infrared region. However, biomedical applications require a complete biocompatibility to avoid adverse reactions of the immune system and CNSs potentials for biodegradability. Water is one of the main constituents of the living matter. Unfortunately, one of the disadvantages of CNSs is their poor solubility. Surface functionalization of CNSs is commonly utilized as an efficient solution to both tune the surface wettability of CNSs and impart biocompatible properties. Grafting functional groups onto the CNSs surface consists in bonding the desired chemical species on the carbon nanoparticles via wet or dry processes leading to the formation of a stable interaction. This latter may be of different nature as the van Der Waals, the electrostatic or the covalent, the π-π interaction, the hydrogen bond etc. depending on the process and on the functional molecule at play. Grafting is utilized for multiple purposes including bonding mimetic agents such as polyethylene glycol, drug/protein adsorption, attaching nanostructures to increase the CNSs opacity to selected wavelengths or provide magnetic properties. This makes the CNSs a very versatile tool for a broad selection of applications as medicinal biochips, new high-performance platforms for magnetic resonance (MR), photothermal therapy, molecular imaging, tissue engineering, and neuroscience. The scope of this work is to highlight up-to-date using of the functionalized carbon materials such as graphene, carbon fibers, carbon nanotubes, fullerene and nanodiamonds in biomedical applications.
Collapse
|
39
|
Masys Š, Rinkevicius Z, Tamulienė J. Electronic g-tensors of nanodiamonds: Dependence on the size, shape, and surface functionalization. J Chem Phys 2019; 151:144305. [PMID: 31615243 DOI: 10.1063/1.5121849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The electronic g-tensor dependence on the size, shape, and surface functionalization of nanodiamonds (NDs) is theoretically investigated by selecting dangling bonds and single substitutional nitrogen atoms as a main source of the unpaired electrons. The performed g-tensor calculations reveal that aforementioned paramagnetic impurities introduced into octahedrally shaped ND of C84H64 size behave in a very similar manner as those embedded into a smaller octahedral model of C35H36 size. Since cubic and tetrahedral NDs-C54H48 and C51H52-demonstrate a wider range of g-shift values than octahedral systems, the g-tensor dependence on different shapes can be considered as more pronounced. However, a different surface functionalization scheme, namely, fluorination, results in a much larger variation of the g-shifts, pointing to a significant impact the F atoms have on the local environment of the unpaired electrons in C35F36. A partial surface functionalization of C35H36 with benzoic acid and aniline groups indicates that, in some special cases, these linkers might induce a noticeable spin density redistribution which in turn substantially modifies the g-shift values of the system. Additional infrared (IR) spectra calculations show that some of paramagnetic defects in C35H36 and C35F36 possess clearly expressed signatures which could be useful while analyzing the experimental IR spectra of NDs.
Collapse
Affiliation(s)
- Š Masys
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Z Rinkevicius
- Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - J Tamulienė
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
40
|
Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Anticancer drug delivery to cancer cells using alkyl amine-functionalized nanodiamond supraparticles. NANOSCALE ADVANCES 2019; 1:3406-3412. [PMID: 36133565 PMCID: PMC9417144 DOI: 10.1039/c9na00453j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 06/16/2023]
Abstract
Nanocarriers have attracted increasing interest due to their potential applications in anticancer drug delivery. In particular, the ability of nanodiamonds (NDs) to spontaneously self-assemble into unique nano-structured architectures has been exploited in the development of nanocarriers. In this context, we synthesized functional supraparticles (SPs) by the self-assembly of alkyl amine-modified NDs for use in anticancer chemotherapy. The structural, physical, and physiological properties of these ND-SPs as well as their high biocompatibility were assessed using microscopic techniques and various characterization experiments. Finally, a model anticancer drug (CPT; camptothecin) was loaded into the ND-SPs to investigate their anticancer efficacy in vitro and in vivo. After incubation of CPT-loaded ND-SPs with cancer cells, a dramatic anticancer effect of ND-SPs was expressed, compared to CPT-loaded ordinary nanocarriers of polyethylene glycol-modified polymer micelles and conventional Intralipid® 20% emulsions containing CPT. Our results demonstrated that ND-SPs may serve as a nanomedicine with significant therapeutic potential.
Collapse
Affiliation(s)
- Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Xi Yang
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Ming Liu
- Corporate Research Center, R&D Headquarters, Daicel Corporation 1239, Shinzaike, Aboshi-ku Himeji Hyogo 671-1283 Japan
| | - Masahiro Nishikawa
- Corporate Research Center, R&D Headquarters, Daicel Corporation 1239, Shinzaike, Aboshi-ku Himeji Hyogo 671-1283 Japan
| | - Takahiro Tei
- Advanced Materials Planning, R&D Headquarters, Daicel Corporation 2-19-1 Konan, Minato-ku Tokyo 108-8230 Japan
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
41
|
Reina G, Zhao L, Bianco A, Komatsu N. Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Giacomo Reina
- University of StrasbourgCNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 67000 Strasbourg France
| | - Li Zhao
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X)Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow University Suzhou Jiangsu 215123 China
| | - Alberto Bianco
- University of StrasbourgCNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 67000 Strasbourg France
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental StudiesKyoto University, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
42
|
Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Multifunctional Cancer Phototherapy Using Fluorophore-Functionalized Nanodiamond Supraparticles. ACS APPLIED BIO MATERIALS 2019; 2:3693-3705. [DOI: 10.1021/acsabm.9b00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Xi Yang
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ming Liu
- Corporate Research Center, R&D Headquarters, Daicel Corporation, 1239, Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Masahiro Nishikawa
- Corporate Research Center, R&D Headquarters, Daicel Corporation, 1239, Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Takahiro Tei
- Advanced Materials Planning, R&D Headquarters, Daicel Corporation, 2-19-1 Konan, Minato-ku, Tokyo 108-8230, Japan
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
43
|
Masys Š, Rinkevicius Z, Tamulienė J. On the magnetic properties of nanodiamonds: Electronic g-tensor calculations. J Chem Phys 2019; 151:044305. [PMID: 31370534 DOI: 10.1063/1.5111024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The electronic g-tensor calculations are carried out for various paramagnetic defects introduced into hydrogenated diamond nanocrystal C35H36, showing that such a system can be successfully used to model magnetic properties of nanodiamonds (NDs) with paramagnetic centers containing no vacancies. In addition, it is revealed that, depending on the geometric positions in ND, paramagnetic centers of the same type produce noticeable variations of the g-tensor values. A side-by-side comparison of the performance of effective nuclear charge and spin-orbit mean field (SOMF) approaches indicates that the latter is more sensitive to the quality of basis sets, especially concerning diffuse functions, the inclusion of which is found to be nonbeneficial. What is more, the SOMF method also exhibits a much more pronounced gauge-origin dependence. Compared to electronic charge centroid, spin centers (SCs) demonstrate a superior suitability as gauge origins, providing a better agreement with diamagnetic and paramagnetic contributions of g-tensor obtained employing gauge-including atomic orbitals (GIAOs). Therefore, SCs can be recommended for the g-tensor calculations of NDs whenever GIAOs are not available.
Collapse
Affiliation(s)
- Š Masys
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Z Rinkevicius
- Department of Theoretical Chemistry & Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - J Tamulienė
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
44
|
Li H, Ma M, Zhang J, Hou W, Chen H, Zeng D, Wang Z. Ultrasound-Enhanced Delivery of Doxorubicin-Loaded Nanodiamonds from Pullulan-all-trans-Retinal Nanoparticles for Effective Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20341-20349. [PMID: 31082187 DOI: 10.1021/acsami.9b03559] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanodiamond as a drug carrier is of great significance in improving cancer therapy by overcoming chemoresistance. However, its clinical application is severely limited because of insufficient tumor vascular penetration. To address this limitation, pullulan-all-trans-retinal (pullulan-ATR) self-assembled nanoparticles were prepared as nanocarriers, which encapsulated doxorubicin-loaded nanodiamonds, to construct a core-shell structured coloading nanosystem. The obtained composite nanoparticles show a homogeneous size distribution with good dispersity and pH sensitivity. Furthermore, ultrasound was utilized to promote the intratumoral penetration of these nanoparticles. As a result, the intracellular retention of DOX was efficiently enhanced, and DOX in the tumor tissue reached 17.3% of the injected dosage. The antitumor effect of this combined strategy was remarkably improved in both the DOX-sensitive HepG2 and DOX-resistant HepG2/ADR tumor models in vivo. This new strategy might serve as a powerful method to address the limitation of nanodiamonds and provide innovative ideas for the application of nanoparticles in clinical cancer therapy.
Collapse
Affiliation(s)
- Huanan Li
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 200050 Shanghai , P. R. China
| | - Jingni Zhang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Wei Hou
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 200050 Shanghai , P. R. China
| | - Deping Zeng
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering , Chongqing Medical University , 400016 Chongqing , P. R. China
| |
Collapse
|
45
|
Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Amphipathic Nanodiamond Supraparticles for Anticancer Drug Loading and Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18978-18987. [PMID: 31090388 DOI: 10.1021/acsami.9b04792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanodiamonds (NDs) have been attracting considerable attention due to their outstanding chemical, physical, and physiological properties. Additional functionalization of NDs can be carried out by the self-assembly technique. This study reports a straightforward chemical route for self-assembled supraparticles (SPs) based on ND (ND-SPs) using alkyl carboxylic acids with different aliphatic alkyl chain lengths by carbodiimide chemistry and sonication. Poly(ethylene glycol) (PEG)-modified ND-SPs are synthesized successfully for effective nanodrug formulations with the hydrophobic anticancer drug paclitaxel (PTX). The properties of these ND-SP nanomedicines are investigated thoroughly by complementary analytical, spectroscopic, and microscopic techniques. This simple methodology permitted the application of PEG-modified ND-SP-encapsulating PTX as a potent drug carrier, achieving greater efficacy than commercial Abraxane. Results revealed that the morphology, particle size, and water dispersibility of the prepared ND-SP nanoclusters affect the drug efficacy. These PEG-modified ND-SP nanoclusters serve as novel nanomedicine for a passive drug delivery system as well as anticancer chemotherapy.
Collapse
Affiliation(s)
- Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Xi Yang
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Ming Liu
- Corporate Research Center, R&D Headquarters, Daicel Corporation , 1239, Shinzaike , Aboshi-ku, Himeji , Hyogo 671-1283 , Japan
| | - Masahiro Nishikawa
- Corporate Research Center, R&D Headquarters, Daicel Corporation , 1239, Shinzaike , Aboshi-ku, Himeji , Hyogo 671-1283 , Japan
| | - Takahiro Tei
- Advanced Materials Planning, R&D Headquarters, Daicel Corporation , 2-19-1 Konan , Minato-ku , Tokyo 108-8230 , Japan
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
46
|
Jr da Costa Fernandes C, Pinto TS, Kang HR, de Magalhães Padilha P, Koh IHJ, Constantino VRL, Zambuzzi WF. Layered Double Hydroxides Are Promising Nanomaterials for Tissue Bioengineering Application. ACTA ACUST UNITED AC 2019; 3:e1800238. [PMID: 32648675 DOI: 10.1002/adbi.201800238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/01/2019] [Indexed: 01/07/2023]
Abstract
Layered double hydroxides (LDHs) have emerged as promising nanomaterials for human health and although it has achieved some progress on this matter, their application within bioengineering is not fully addressed. This prompted to subject fibroblasts to two compositions of LDHs (Mg2 Al-Cl and Zn2 Al-Cl), considering an acute response. First, LDH particles are addressed by scanning electron microscopy, and no significant effect of the cell culture medium on the shape of LDHs particles is reported although it seems to adsorb some soluble proteins as proposed by energy-dispersive X-ray analysis. These LDHs release magnesium, zinc, and aluminum, but there is no cytotoxic or biocompatibility effects. The data show interference to fibroblast adhesion by driving the reorganization of actin-based cytoskeleton, preliminarily to cell cycle progression. Additionally, these molecular findings are validated by performing a functional wound-healing assay, which is accompanied by a dynamic extracellular matrix remodeling in response to the LDHs. Altogether, the results show that LDHs nanomaterials modulate cell adhesion, proliferation, and migration, delineating new advances on the biomaterial field applied in the context of soft tissue bioengineering, which must be explored in health disorders, such as wound healing in burn injuries.
Collapse
Affiliation(s)
- Célio Jr da Costa Fernandes
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Thaís Silva Pinto
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Ha Ram Kang
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Pedro de Magalhães Padilha
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Ivan Hong Jun Koh
- Departamento de Cirurgia, Universidade Federal de São Paulo-UNIFESP, Rua Botucatu 740, CEP 04023-900, São Paulo, SP, Brazil
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
| | - Willian F Zambuzzi
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| |
Collapse
|
47
|
Applications of Nanodiamonds in the Detection and Therapy of Infectious Diseases. MATERIALS 2019; 12:ma12101639. [PMID: 31137476 PMCID: PMC6567273 DOI: 10.3390/ma12101639] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
We are constantly exposed to infectious diseases, and they cause millions of deaths per year. The World Health Organization (WHO) estimates that antibiotic resistance could cause 10 million deaths per year by 2050. Multidrug-resistant bacteria are the cause of infection in at least one in three people suffering from septicemia. While antibiotics are powerful agents against infectious diseases, the alarming increase in antibiotic resistance is of great concern. Alternatives are desperately needed, and nanotechnology provides a great opportunity to develop novel approaches for the treatment of infectious diseases. One of the most important factors in the prognosis of an infection caused by an antibiotic resistant bacteria is an early and rigorous diagnosis, jointly with the use of novel therapeutic systems that can specifically target the pathogen and limit the selection of resistant strains. Nanodiamonds can be used as antimicrobial agents due to some of their properties including size, shape, and biocompatibility, which make them highly suitable for the development of efficient and tailored nanotherapies, including vaccines or drug delivery systems. In this review, we discuss the beneficial findings made in the nanodiamonds field, focusing on diagnosis and treatment of infectious diseases. We also highlight the innovative platform that nanodiamonds confer for vaccine improvement, drug delivery, and shuttle systems, as well as their role in the generation of faster and more sensitive clinical diagnosis.
Collapse
|
48
|
Alexander A, Saraf S, Saraf S, Agrawal M, Patel RJ, Agrawal P, Khan J, Ajazuddin. Amalgamation of Stem Cells with Nanotechnology: A Unique Therapeutic Approach. Curr Stem Cell Res Ther 2019; 14:83-92. [DOI: 10.2174/1574888x13666180703143219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
Abstract
In the last few years, the stem cell therapy has gained much popularity among researchers and scientists of biomedical field. It became an effective and alternative approach for the treatment of various physiological conditions (like accidental injuries, burn damage, organ failure, bone marrow transfusion, etc.) and chronic disorders (diabetes, cancer, neurodegenerative disorders, periodontal diseases, etc.). Due to the unique ability of cellular differentiation and regeneration, stem cell therapy serves as the last hope for various incurable conditions and severe damages. The amalgamation of stem cell therapy with nanotechnology brings new prospects to the stem cell research, as it improves the specificity of the treatment and controls the stem cell proliferation and differentiation. In this review article, we have discussed various nanocarrier systems such as carbon nanotubes, quantum dots, nanofibers, nanoparticles, nanodiamonds, nanoparticle scaffold, etc. utilized for the delivery of stem cell inside the body.
Collapse
Affiliation(s)
- Amit Alexander
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Shailendra Saraf
- Hemchand Yadav University, Govt. Vasudev Vaman Patankar Girls' P.G. College Campus, Raipur Naka, Durg, Chhattisgarh 491001, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Science and Technology (CHARUSAT), Gujarat 388421, India
| | - Palak Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| | - Junaid Khan
- University Teaching Department (Pharmacy), Sarguja University, Ambikapur Chhattisgarh 497001, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India
| |
Collapse
|
49
|
Balek L, Buchtova M, Kunova Bosakova M, Varecha M, Foldynova-Trantirkova S, Gudernova I, Vesela I, Havlik J, Neburkova J, Turner S, Krzyscik MA, Zakrzewska M, Klimaschewski L, Claus P, Trantirek L, Cigler P, Krejci P. Nanodiamonds as “artificial proteins”: Regulation of a cell signalling system using low nanomolar solutions of inorganic nanocrystals. Biomaterials 2018; 176:106-121. [DOI: 10.1016/j.biomaterials.2018.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/31/2018] [Accepted: 05/19/2018] [Indexed: 12/14/2022]
|
50
|
Effective Method for Obtaining the Hydrosols of Detonation Nanodiamond with Particle Size < 4 nm. MATERIALS 2018; 11:ma11081285. [PMID: 30044424 PMCID: PMC6117719 DOI: 10.3390/ma11081285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 11/22/2022]
Abstract
Detonation nanodiamond is a commercially available synthetic diamond that is obtained from the carbon of explosives. It is known that the average particle size of detonation nanodiamond is 4–6 nm. However, it is possible to separate smaller particles. Here we suggest a new approach for the effective separation of detonation nanodiamond particles by centrifugation of a “hydrosol/glycerol” system. The method allows for the production of the detonation nanodiamond hydrosol with a very sharp distribution in size, where more than 85% of particles have a size ranging 1–4 nm. The result is supported by transmission electron microscopy, atomic force microscopy, and dynamic light scattering.
Collapse
|